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Summary
Many species of mammals are very good at categorizing odors. One model for how this is achieved
involves the formation of “attractor” states in the olfactory processing pathway, which converge to
stable representations for the odor. We analyzed the responses of rat olfactory bulb mitral/tufted (M/
T) cells using stimuli “morphing” from one odor to another through intermediate mixtures. We then
developed a phenomenological model for the representation of odors and mixtures by M/T cells and
show that >80% of odorant responses to different concentrations and mixtures can be expressed in
terms of smoothly summing responses to air and the two pure odorants. Furthermore, the model
successfully predicts M/T cell responses to odor mixtures when respiration dependence is eliminated.
Thus, odor mixtures are represented in the bulb through summation of components, rather than
distinct attractor states. We suggest that our olfactory coding model captures many aspects of single
and mixed odor representation in M/T cells.

Keywords
SYSNEURO

Introduction
Attractor networks are the most common models for explaining memory storage and recall,
and input-output transformations in networks of neurons (Amit, 1989; Hopfield, 1982; Rolls
and Treves, 1998). These Artificial Neural Networks (ANNs) have multiple stable states. Each
such state is a specific, stable pattern of spatial and possibly temporal activity across the
network. The key attribute of such an attractor network is that when its neurons are stimulated
with patterned input, the ANN converges to the stored pattern most closely resembling the
input.

A large body of work on categorical perception (Rotshtein et al., 2005; Wyttenbach et al.,
1996) might be explained by such attractor-based models. The few explicit tests of these ideas
have provided some evidence for signatures of attractor dynamics in different systems
(Freedman et al., 2001; Guzowski et al., 2004; K. Jezek et al., 2006, FENS Forum, abstract;
Lee et al., 2004; Leutgeb et al., 2005; Vazdarjanova and Guzowski, 2004; Wills et al., 2005).
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The recent work by Wills et al. and Jezek et al. in the hippocampus and entorhinal cortex
provides striking results in favor of such theories.

It has been proposed that the mammalian olfactory bulb (OB) may also act as an attractor-
based neural network (Hendin et al., 1998). A directly testable prediction of such a model is
that the network should transition abruptly from one stable state to another when it is presented
with a stimulus set that progresses from one distinct odor stimulus to another through a series
of intermediate mixtures. A related proposal, based on experiments and models, suggests that
odor representations in the OB take the form of chaotic attractors (Freeman, 1991; Freeman
and Grajski, 1987). This idea is based on EEG recordings, and is therefore not directly
comparable to our single-unit recordings, but it too predicts abrupt transitions between
responses to different odorants.

To address the question of whether olfactory responses change abruptly, one must first consider
how odors are represented in the OB. This is necessary to quantify transitions between olfactory
representations. These representations are comprised of OB cell activity patterns in response
to an odor stimulus, and are transmitted to downstream regions through the principal output
neurons, the mitral/tufted (M/T) cells. The activity of individual M/T cells can be patterned
over respiration cycles, both in terms of their baseline activity and in terms of their response
to an odor (Bhalla and Bower, 1997; Chaput and Holley, 1980; Macrides and Chorover,
1972). This patterned activity is preserved in cells downstream in the piriform cortex (N.
Uchida and Z.F. Mainen, 2006, Soc. Neurosci., abstract; Wilson, 1998) and hippocampus
(Deshmukh and Bhalla, 2003) and may be used for encoding olfactory information. Different
odors can evoke distinct patterns, which are often complicated combinations of excitation and
inhibition.

There is evidence that respiration-patterned activity is primarily driven by olfactory receptor
neuron (ORN) input patterns (Sobel and Tank, 1993). Patterned activity to air alone may be
explained by recent work on mechanosensitive properties of ORNs (Grosmaitre et al., 2007).
Studies have suggested that these patterns are shaped further by processing within the bulb,
through the interaction of glomerular and M/T cell activity with inhibitory neurons like the
periglomerular and granule cells (Li and Hertz, 2000; Linster and Cleland, 2004; Linster and
Hasselmo, 1997; Shepherd, 2003). There have been many studies attempting to provide a
characterization of this behavior (Cang and Isaacson, 2003; Chalansonnet and Chaput, 1998;
Giraudet et al., 2002; Hamilton and Kauer, 1989; Harrison and Scott, 1986; Meredith, 1986;
Motokizawa, 1996; Wellis et al., 1989). Nevertheless, these studies do not establish a unified
model to explain how the patterned responses of M/T cells can encode both identity and
intensity of odors. The issue of odor combinations has been addressed in human studies (Laing
et al., 1984) and in many systems with nonrespiration-based odor sampling (Broome et al.,
2006; Kang and Caprio, 1995; Tabor et al., 2004). Only one study has addressed odor mixtures
in the context of respiration-patterned responses (Giraudet et al., 2002), though here too this
issue has not been incorporated into a unified model.

Our experiments were designed to answer the initial question: Does the OB show signatures
of attractor dynamics? In the process we have addressed the fundamental issue of the
representation of odor identity and intensity in M/T cells, including their responses to varying
odor mixtures. This led us to formulate a unified model explaining the behavior of these cells
along multiple dimensions of odor identity, intensity, and combinations in a limited
concentration range.
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Results
Recordings and Respiration-Tuned Responses

We characterized responses of rat OB M/T cells to different odors and analyzed how these
responses changed when the stimulus was “morphed” from one odor to another through a series
of intermediate mixtures. In order to do this, we performed extracellular single-unit recordings
from anesthetized, freely breathing rats, using tetrodes. We recorded from 593 M/T cells in
these data sets and have analyzed a subset based on stability and responsiveness to one or more
odors. We simultaneously recorded the breathing of the rat through a thermocouple placed in
front of its nostril. The anesthetized rats typically respired at a steady rate of 1 Hz. We delivered
controlled pulses of odor stimuli to the rats' noses using an air-dilution olfactometer (Figures
1A and 1B; see Experimental Procedures).

In our recordings we frequently observed a modulation of M/T cell firing rate over the
respiration cycle, as previously reported (Deshmukh and Bhalla, 2003; Macrides and Chorover,
1972). We refer to this phenomenon as respiration tuning. Figure 1B is a schematic description
of our procedure for characterizing respiration tuning, and Figure 1C shows an example of a
cell with five trials of odor presentation overlaid. This “respiration raster” was smoothed and
color-coded for visualization (see Experimental Procedures). In this example, without any
odor, the cell fired preferentially in the later part of the respiration cycle. In the presence of
odor, the cell responded by changing its respiration tuning pattern rather than its mean firing
rate. We used this color-coded representation of an overlay of five trials in several of our
following illustrations.

Odor Response Distributions
We first tested each cell with 1% dilution of saturated odor vapor from our panel of four odors:
iso-amyl acetate, methyl amyl ketone, 1,4-cineole and (+) limonene (at least three odors were
tested in the naive rats and the two familiar odors in the familiarized rats—see below). The
fraction of our total set of neurons responding to at least one odorant was 50% in our study, in
line with published data (Giraudet et al., 2002). Out of these, identical responses to two or more
odorants were relatively common (23% of total), while different responses to two odors were
rare in our study (8%, or 47/593, of which only 66% were stable through the length of the
morph experiments). While our four-odor panel was small, all four odorants had very different
structures and functional groups, and were designed to be a representative sampling of
functionally significant responses.

Intermediate Responses to Mixtures
We looked for cells that showed different respiration-tuned responses to two odors. On finding
such a cell, we performed the morph protocol, i.e., presented mixtures of the two odors (labeled
A and B) with the following compositions: [1.0A 0.0B], [0.8A 0.2B], [0.6A 0.4B], [0.4A 0.6B],
[0.2A 0.8B], [0.0A 1.0B]. We refer to this as the “morph sequence.” Each sequence took
approximately 30 min. When the recordings were exceptionally stable, we were able to perform
the morph sequence in both directions, and if possible a second time each.

Since most theoretical models of attractor-based networks rely on the network being trained
on the stimuli to be stored (Hertz et al., 1991), we familiarized one group of rats on one pair
of odors (I and M) for 5–8 days before the recording (see Experimental Procedures). We
compared these responses with those from naive rats. We found no difference between the two
groups in all subsequent analysis and therefore pooled all the cells (n = 32 cells; 19 naive, 13
odor-familiarized; distribution in categories is not different for the two groups, chi-square test,
p < 0.05; see Table S1 available online).
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In Figure 2 we present some examples of the neuronal responses to different pure odors and
the morph sequence(s) between them. Our findings were the following: (1) cells could display
clearly distinct responses to different odors; (2) the responses to intermediate mixtures were
intermediate between the two pure odor cases; and (3) the baseline activity of the cell drifted
to varying degrees, as measured by the firing rate and respiration tuning in the air periods of
the same cell. The response to the same odor after an interval also drifted. This drift could be
due to anesthesia effects (see Discussion) and has been included in our quantification of the
noise in the system (see Supplementary Material). However, despite this drift, the responses
varied smoothly between the two pure odor cases.

One of two prominent ways a cell behaved to a morph sequence was with a “band” of excitation
gradually shifting along the respiration phase axis. For example, in Figure 2A, the response to
1% cineole (odor-on: red bar) is a large shift in respiration tuning with a broad band of
excitation, and for 1% iso-amyl acetate, it is a smaller shift in respiration tuning and a narrower
band. The morph protocol for this cell was done in both directions, and one can observe the
band gradually shifting higher and becoming narrower in the forward morph while the reverse
occurs in the reverse morph. Other instances of such shifting bands are shown in Figures 2B
and 2E.

The second type of prominent behavior was firing rate building up or fading out in specific
phases of respiration. This can be seen in Figures 2B, 2D, and 2F–2H.

A further class of responses is shown in Figure 2C, which showed firing patterns changing
even over the course of the 8 s odor presentation. We could not use this cell (n = 1) for
subsequent analysis, since that assumes a single stable respiration tuning pattern for each odor.
However, the basic result, smooth transitions of responses, is still apparent in this example.

As a first-pass quantification, we extracted the values of the two features mentioned above for
each morph experiment (41 morphs from 32 cells): the position of the band or the firing rate
in a specific phase of respiration. For cells which had both these effects, we chose the more
prominent one. Some cells could not be categorized in either group. The distribution to these
groups is shown in Figure 3F.

To estimate the position of the band, we fitted Gaussians to the binned data (Figure 3A, see
Experimental Procedures). As a measure of firing rate, we summed up the total number of
spikes in a box enclosing the excitatory band (Figure 3B). We plotted these values against the
composition of the mixture. These curves were fit to straight lines, logarithms, or sigmoids.
Examples are shown of cells which were best fit with straight lines (Figure 3C), sigmoidal
curves (Figure 3D), or logarithmic curves (Figure 3E) (p < 0.01 and best explained variance
by the F statistic). An abrupt transition from one stable attractor to another would be expected
to give a steep sigmoid-like curve. As can be seen in the distribution in Figure 3G, all three
categories existed in these morph sequences. Further, most morph sequences belonged to the
straight line (38%) or log (29%) categories (see Experimental Procedures). Therefore this
preliminary analysis argues against strong attractor dynamics in OB responses to odorants.

Though we had recordings of some morph sequences repeated either in the reverse (n = 6) or
forward (n = 1) direction, we did not have sufficient data to analyze effects of hysteresis.

These initial findings were suggestive, but were based on a model-free analysis that did not
provide a deeper explanation of why the parameters we tracked over the morph sequence were
the relevant ones. This analysis also failed to explain the following observations: (1) the
presence of cells from which simple features could not be extracted; (2) cells in which multiple
features coexisted and changed at different rates (such as in Figure 2B with two regions of
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excitation, and Figure 2H with excitation followed by inhibition); and (3) the exact specific
shapes of the intermediate responses.

Thus, our preliminary analysis argued against strong attractor dynamics in the OB, but this
analysis was limited in several ways. To overcome these limitations, we developed a more
complete model of M/T cell responses as described below.

The Model: Addition of Excitatory and Inhibitory Input Functions of Respiration Phase
Here we describe a phenomenological model for M/T cell activity that explains most aspects
of these complex responses to odors and odor mixtures. The model may be summarized as
follows (Figure 4):

1. Odor input: Any odor that elicits a response from a cell provides an input that is a
combination of excitation and inhibition as a function of the respiration phase
(Figure 4C).

2. Air input: Similarly, air itself provides an input that is a combination of excitation
and inhibition as a function of the respiration phase (Figure 4B).

3. Scaling: The odor input scales in amplitude, but not in shape, when odor intensity
changes (Figure 4D).

4. Additivity: The weighted odor and air inputs sum to give the total input, which is also
a function of respiration phase (Figure 4D).

5. Firing rate: The output of a cell, measured in terms of firing rate, is a sigmoidal
function of its input (thus, strongly negative inputs give zero firing rate, while strongly
positive inputs elicit the saturation firing rate). The summed inputs, when transformed
through this sigmoid, give the instantaneous firing rate as a function of the respiration
phase.

Using this model, we should be able to completely define the response to any odorant mixture
given just the underlying air and pure odor inputs. We define an “input strength function” to
be the input mentioned in point 1. It is a measure of the actual total input impinging on the cell
from a source, the sum total of which, when passed through the abovementioned sigmoid,
results in the observed firing rate of the cell.

In order to compare the predictions of this model with our experimental observations, we took
two further steps.

First, the raw data were in the form of individual action potentials, while the model predicted
instantaneous firing rates. In order to enable comparison, we transformed the observed firing
events into firing rates as follows. We first separated the respiration raster along the time axis
into two windows corresponding to the “Air” and “Air+Odor” epochs. Within each epoch, we
then pooled the firing events into NR = 17 equally spaced bins along the respiration phase axis.
The bin size was chosen to strike a balance between two competing effects: too large, and
variations in firing rate over the respiration phase would be missed; too small, and Poisson
fluctuations would produce large errors in the estimated rate. We found that using 10 bins
instead of 17 reduced the quality of our fit, while using 25 bins instead of 17 left the quality
essentially unchanged (see Figure S6 available online).

The observed responses to air and to odor were thus represented as two NR-dimensional vectors
of instantaneous firing rates.

Second, the model gave us considerable freedom in choosing how the inputs to the cell were
represented as functions of the respiration phase. One option was to represent the inputs as
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sums of positive and negative Gaussians, as is often done in center-surround models of spatial
excitation and inhibition. However, in the absence of detailed mechanistic information, we had
no reason to select this functional form over any other. A more natural choice, given that the
response is periodic over the respiration cycle, would be to write the input as a truncated Fourier
series. We repeated the complete analysis using 9 and 11 coefficient Fourier sums as input
strength functions. These Fourier expansions did not follow some of the sharper changes during
the respiration cycle, suggesting that even 11-coefficient series might be insufficient to
represent the data. Furthermore, the resultant models did not explain 50% of the morph
sequences. We opted for the simplest approach, in which the inputs themselves were
represented, like the firing rate data, as NR-dimensional vectors running over the respiration
phase. This makes no assumptions about functional form, but instead spans the space of all
possible functions.

Although we did not use a compact representation of the odor or air inputs, the model was
parsimonious. This was because we were able to capture the responses to all mixtures of odors
in terms of just three input functions, one each for air, odor A, and odor B. More precisely: a
typical experiment involved a morph sequence consisting of [1.0A 0.0B], [0.8A 0.2B], [0.6A
0.4B], [0.4A 0.6B], [0.2A 0.8B], [0.0A 1.0B], as well as exposure to air alone. These seven
curves (functions of respiration phase) involved 7 × 17 = 119 datapoints. Our model uses just
three of these curves (the responses to pure A, pure B, and air alone) to predict the four
remaining mixture responses (4 × 17 = 68 datapoints) using just nine parameters, making this
a highly constrained fit. In practice, we estimate the three pure responses as well as the
remaining nine parameters simultaneously, so as to fit all seven curves; see Experimental
Procedures.

Parameter estimation was carried out as follows. For any given experiment, we first represented
the data as 17-bin vectors of firing rates, with one vector for each intermediate odor mixture
in a morph sequence. Starting with an initial guess of parameter values, we then used the model
to generate predicted firing rates for each intermediate odor mixture. We then quantified the
error in terms of a chi-square statistic, essentially summing the squared deviations of
predictions from observations. By iteratively minimizing this score, we finally obtained our
best-fit parameters (Press and Teukolsky, 1992).

This model was a good description of the data in 80% (33 out of 41) of the morph sequences
that we obtained from the original data set of 32 cells (see below). An example of one cell is
in Figure 5, which is the same cell from Figure 2A (odors are here labeled A and B for
simplicity). Figure 5A compares the data to the results obtained from the model for one morph
sequence. Figure 5B is the same comparison in a different format. As is clearly seen in both
these panels, there were a number of features that changed over the morph sequence, and most
of them were captured in the model. Figure 5C shows overlaid the data and model for the pure
odors and air with error bars.

The underlying input strength functions for the two odors that emerged from this analysis are
shown in Figure 5D. These are the functions of Figure 4D, the contributions of the odors on
top of the air baseline. It is interesting to note that these functions have “inhibitory surrounds”
around their excitatory components that account for the bands shifting in the morph sequence
as opposed to the bands fading in and fading out.

The odor intensity coefficient is the scale factor by which the input strength function is
multiplied when the odor is present at a particular concentration. It was defined as 1 for an
odor at 1% concentration, and 0 when the odor was not present. The coefficients for
intermediate odor concentrations were calculated by fitting them to the data as part of the
process of computing the input strength functions. These odor intensity coefficients are a
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measure of the effect of the odor on the cell and are plotted in Figure 5E, against the externally
applied odor concentrations. In this case, these plots were both best fit with a straight line.
Figure 5F illustrates the process of addition of input strength functions for one of the mixtures
(.4A + .6B), and also shows the approximate upper and lower cutoffs imposed by the sigmoid
(horizontal black lines). The green air curve in the left panel gave the Model Air curve in
Figure 5B when passed through the sigmoid. Similarly, the brown curve in the middle panel,
when passed through this sigmoid, gave the red Model curve in the right panel, and this is
overlaid with the data for this particular mixture of .4A + .6B.

Validating the Model in Terms of Statistical Significance
As our model included a large number of parameters and a sigmoidal nonlinearity, it was
particularly important to employ rigorous tests for statistical significance. The first step in our
evaluation was to understand sources of noise in the measurements. During a single-odor
presentation session of five trials, measured firing rates displayed precisely the standard
deviation expected from Poisson statistics (Figure S2). However, a comparison of results
between different odor presentations revealed slightly larger fluctuations, about 1.21 times the
Poisson expectation (see Experimental Procedures). It is known that mammalian M/T cell
responses are highly variable (Bhalla and Bower, 1997; Chaput and Holley, 1985). To our
knowledge, such variability has not been separated into trial-to-trial fluctuations in anesthetized
animals and variability in underlying respiration tuning properties of M/T cells. It is the latter
form of variability that affects the current analysis (see Discussion). We added this 1.21-times-
Poisson noise estimate to our inferred air and odor inputs, and used a Monte Carlo procedure
to simulate the distribution of chi-square values that would be observed if the model were true
(Experimental Procedures). We then compared the actual chi-square value (obtained from
fitting the experimental data) to this simulated distribution of chi-square values (obtained from
the Monte Carlo procedure). If the actual value lies near the mean of the simulated distribution,
it is very likely that the model is true. Using this procedure, we found that data from 80%
(33/41) of our experiments were within the 99.9% boundary and 54% (22/41) were within the
95% boundary of the simulated chi-square scores (Figure 6). Since we have been conservative
in our noise estimate (which is set at just 1.2 times the minimum possible level) it is appropriate
to use the 99.9% cutoff rather than the overly stringent 95% cutoff (Press and Teukolsky,
1992) in selecting cells that are “well fit” by our model.

Applicability of Model to Single-Odor Concentration Series
The above model should also hold for cases where a single odor is presented to the cell and its
concentration is increased. The model predicts that an increase in the concentration of a single
odor should lead to observations consistent with a single-odor input strength function growing
in size. For example, for most simple input strength functions, one should observe the excitatory
or inhibitory components of a response growing in amplitude and possibly in width.

We performed these concentration series experiments on 24 cells (11 cells from the previous
set, with two odor concentration series each, and 13 new cells that responded to only one odor
and thus have one concentration series each, for a total of 35 series). Two examples of such
experiments are shown in Figures 7A(i) and 7A(ii), with one primarily inhibitory and the other
primarily excitatory. These examples illustrate the key prediction of the response, i.e., the
increase in the amplitude or width of the responsive region but no shift in phase. The first
example is further explored in detail in Figures 7B–7E. In Figure 7B the data and the prediction
from the model are compared for all the concentrations and the air, as in Figure 5B. Figure 7C
shows the firing rates as a function of respiration phase for the air period and the odor period
for the 1% odor case. The data and the model curves are overlaid. In Figure 5D we show the
underlying input strength functions with a strong inhibitory component. One can see from the
asymmetry of this inhibitory component why the inhibitory “gap” increases more rapidly in
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one direction (toward the later respiration phases). Also, increasing this odor's concentration
did not proportionately increase its effect on the cell, as is seen in the plot of the odor intensity
coefficients in Figure 7E.

Applying the same model validation to this data as to the mixture data, we obtained the
histogram in Figure 7F. Here, 91% (32/35) of the concentration series were within the 99.9%
boundary and 63% (22/35) were within the 95% boundary of the chi-square scores expected
if the model were true.

Revisiting the Attractor Question
In the above sections we have shown that our model of M/T cell responses was able to
encapsulate many of the encoding properties of these cells, and was quite accurate in describing
how these responses changed with mixtures of odors. A key prediction of the model is that the
contribution of each odor to the final output of each cell is represented in its odor intensity
coefficient. This odor intensity coefficient is therefore a good measure of how much each cell
represents one odor or another. This makes it a good variable to track over the morph sequence.
Strong attractor dynamics would predict that the odor intensity coefficient should change
abruptly through the morph sequence.

We obtained several kinds of curves when we plotted the odor intensity coefficient against
odor proportion (Figure 5E and Figure 7E). As in Figure 3, we characterized the responses in
terms of the best fit to straight lines, logarithms, and sigmoids (p < 0.01 and best explained
variance by the F statistic). The distribution of responses is shown in Figure 7G (82 odor
intensity coefficient plots, two for each of the 41 morph sequences). As before, we observed
cells belonging to all categories. In particular, sigmoid responses characteristic of attractor
dynamics were indeed seen, but accounted for only 26% of responses. Also, as mentioned
earlier, there was no difference between the naive and familiarized groups (chi-square test, p
< 0.05, Table S1).

We tested whether this broad distribution of odor morph responses was an inherent property
of M/T cells. We did so by generating odor intensity coefficient curves from the experiments
that involved only concentration series with a single odor (Figure 7E). The distribution of
cellular responses is shown in Figure 7H. Again, we found that curves for odor intensity
coefficients were distributed between straight lines, logarithms, and sigmoids. We performed
a chi-square test between the distributions in Figure 7G and 7H, which showed that they were
not different from each other (p < 0.05). Thus, even the relatively steep sigmoid transitions of
odor intensity coefficients in the morph sequences were also seen in single-odor cases. There
was no tendency for any of the four different odors to have a predominance of any category
(chi-square test, p < 0.05).

As we discuss below, this suggests that all the properties shown by the cells in the odor-mixing
experiments, including the fraction of sigmoidal transitions, can be inferred from the cases
where single odors were presented separately, and may not require attractor dynamics.

Direct Demonstration of Additivity
Our odorant and mixture representation model is complex because the respiration cycle
introduces respiration phase dependencies. To directly test the core assumptions of the model,
we eliminated respiration dependence. We did so using a double-tracheotomized preparation
where air/odorant intake was continuous. In each of the 10–15 trials, we presented odor in the
manner shown in Figure 8B. We found that cells were no longer respiration-tuned in these
experiments and had a flat baseline, while they still responded in a time-dependent fashion to
odors.
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We tested whether the firing rate curves scaled in size while preserving their shape with
increasing odor concentration. As seen in Figures 8C and 8D, this was indeed the case, and
was true for a variety of odor pulse durations and concentration scales. To confirm this scaling
rigorously, we fit all data in a given concentration series by a single curve varying only in
amplitude. Predictions from this fit were consistent with the measured data for 12 out of 17
cells, as shown in Figure 8E.

We asked if the response to a 0.5% + 0.5% mixture of two odors eliciting different responses
(henceforth, M) was the same as the sum of the responses to two individual odorants at 0.5%
concentration (henceforth, A and B). We were able to record 15 neurons that responded to two
odorants with this protocol. We found that the mixture M was well predicted by simply adding
the individual responses A and B (M = A + B). Graphically, this can be interpreted as the curve
M/2 lying halfway between the curves A and B [M/2 = (A+B)/2]. This is seen to be the case
in Figures 8F and 8G. To quantify this data, we took all measured points where A and B were
well separated and computed the ratio R = (M/2 − B)/(A − B). This ratio should be 0.5 if M is
perfectly predicted by the model. We see that measured values of R indeed cluster around 0.5.
The mean of the distribution is 0.49 ± 0.03, and 60 out of the 80 points lie within 2 standard
errors from the value 0.5. (Figure 8H).

In summary, we find that most OB neurons respond to odor mixtures as a weighted sum of
individual odor responses rather than as distinct attractor states. This is an economical encoding
scheme for a stimulus modality rich in complex mixtures.

Discussion
We have characterized M/T cell responses in the dimensions of odor identity and intensity,
and we have explored responses in both dimensions through the use of odor combinations.
We find that responses to mixtures morph smoothly between single odor responses; this trend
is inconsistent with models of strong attractor dynamics occurring in the OB. We show that
over a wide range of mixtures and concentrations, M/T cell responses can be described by a
model of input strength functions acting on a cell, where different odorant contributions
combine additively.

Is the Olfactory Bulb an Attractor Network?
An attractor network would be expected to exhibit abrupt transitions upon presentation of
morph sequences of odors. Most of our experiments do not show abrupt transitions. The smooth
transitions between single-odor representations are apparent in both the simple analysis and
the model-based analysis. In about 30% of cases in the model-based analysis, we see sigmoid
transitions that are relatively steep. However, these could be accounted for by the responses
of the cells to the increasing concentration of a single odor, as seen in the single-odor
concentration series data. As there was no elevation in occurrence of abrupt transitions over
the single-odor case, we consider the rat OB free from strong attractor dynamics. Our data are
mostly from neurons recorded one at a time. A strong case for attractors would require
simultaneous recordings from many neurons to show coherent transitions in the population.
However, as we show that even cells recorded one at a time mostly show smooth transitions,
abrupt population transitions may be ruled out. Attractor dynamics are invoked to explain
recognition of stored patterns or categorization of stimuli. To explain these phenomena in
olfaction, one will thus have to look at other mechanisms and other brain regions, a likely
candidate being the olfactory cortex (Haberly, 2001; Haberly and Bower, 1989; Rennaker et al.,
2007; Zou et al., 2005).
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M/T Cell Encoding of Single Odors and Mixtures
In the process of addressing the attractor question, we have developed an encoding model for
the representation of odors in single M/T cells. This model describes three things about these
cells' responses: the representation of odor identity, the representation of odor intensity, and
the summation of odors in odor mixtures.

The model states that the firing rate profile of a cell over the respiration cycle arises from an
underlying input strength function specific to each odor. These functions have the interesting
property of scaling multiplicatively with odor concentration and summing for different odor-
air contributions. The multiplicative odor scaling terms, or odor intensity coefficients, are a
measure of overall input strength received by the cell from an odor at a particular concentration.

There are two distinct types of saturation that occur in our experiment. First, the response to
any given odor tends to saturate at high odor concentrations. This is accounted for in the model
because the intensity coefficients can saturate even as concentration increases, as seen in
Figure 7E. Second, regardless of odor concentration, the firing rate of a cell must remain
between zero and some physiologically constrained maximum value. In our model, firing rates
are obtained by a sigmoidal transformation, and so are naturally restricted between zero and
maximal values. Finally, we have observed that at high odor concentrations the response can
change qualitatively, varying over the course of odor presentation as seen in Figure S5. In these
cases the model would fail to capture the observed behavior.

Our model is an economical phenomenological model, and may be a useful stepping stone on
the way to a mechanistic explanation. We suggest that the primary mechanistic insight is the
additivity of the different odor contributions at the level of M/T cell responses. We speculate
that such additivity is more likely at the input stage, rather than through feedback via granule
cells. This is because the observed simple additive responses do not show history dependence,
which might have been expected if feedback were present. Instead we suggest that convergent
odorant signals, possibly arising from receptor neuron and periglomerular cell inputs,
contribute to additivity at the inputs.

M/T Cells Synthesize Novel Representations to Odor Combinations
In the cases where two different odors elicit activity in a cell with peaks at different phases of
the respiration cycle, we often observe this peak shifting through intermediate phases on
presentation of odor mixtures (Figures 2A, 2B and 2E). Thus, the identity of the mixture (as
encoded by phase position) is now different from either of the two primary components. Odor
mixtures are known to be elemental (the components are recognizable) or configural (the
mixture is qualitatively different from the components) to a degree depending on concentration
ratios (Kay et al., 2005). Our observations of phase-position morphing provide neuron-level
mechanisms for configural odor mixtures. Consider the activity of a given M/T cell that
responds to two odors, A and B, where each odor has a peak of activity at a different phase of
respiration (e.g., Figure 2). If the response to a mixture were a simple weighted sum of the
peaks due to A and B, it would be an elemental response, because the individual odor identities,
as encoded by peak phase, are retained. Additionally, if different neurons responded
independently to A and B, they too might contribute to an elemental response. This is the kind
of response seen at the glomerular level of the OB (Lin et al., 2006). A configural response,
on the other hand, occurs when mixtures give different responses from either individual odor,
which is what we sometimes observe (Figures 2A, 2B, and 2E) and now explain in terms of
our model (Figure 5). Though multiple levels of processing seem to be involved, including
receptor neurons (Duchamp-Viret et al., 2003) and the glomerular layer (Linster and Cleland,
2004), we suggest that this transformation from elemental to configural responses is one of the
computational functions of the OB M/T cells.
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Comparisons with Previous Studies
On examining earlier studies of M/T cell responses to different odors and concentrations, we
found that their data could also be explained in the framework of this model. This is despite
the fact that the conditions of the experiments were often very different. Cang and Isaacson
(2003) performed whole-cell recordings in rats and measured intracellular postsynaptic
potentials in response to odor stimuli. They observed that EPSPs and IPSPs both grew
multiplicatively in amplitude with odor concentration, which is consistent with our model.

Chalansonnet and Chaput (1998) showed that when odor concentrations were increased, cells
did not change their respiration tuning for successive concentrations. This is consistent with
our model's claim that increasing concentration only increases the amplitude and not the shape
of an odor input strength function.

While our study is based on natural respiration, some of our findings are consistent with those
from a study with controlled airflow using tracheotomized rats and artificial sniffs (Harrison
and Scott, 1986). This study reported odor responses that consisted of both excitatory and
inhibitory components. Furthermore, the amplitude of both components of the response
increased with odor concentration, which is in agreement with our data and model.

In a study in hamsters (Meredith, 1986) and in salamanders (Hamilton and Kauer, 1989), the
authors reported complex odor responses consisting of both excitation and inhibition, which
changed with intensity in a similar manner as we found. As in our study, these groups observed
different timing patterns of M/T cell activity for different odors.

Our results are not in agreement with those of Giraudet et al. (2002), who find that one
component in a binary mixture usually dominates in M/T cell responses. This disagreement
may arise because their analysis does not consider the components of a response saturating and
going below zero firing rate, whereas our analysis does.

Limitations of the Model
There were three main limitations of our model. First, when the respiration tuning of the cell
varied from cycle to cycle over the duration of odor stimulus, the model was unable to explain
the results. Second, we frequently observed a drift in baseline firing pattern and response to an
odor over the duration of a morph sequence (∼3 min). This was larger than that accounted for
by Poisson noise and may have been due to anesthesia level fluctuations. We chose not to
include this as a separate term in the model to avoid further complexity, and instead
incorporated it in our estimate of noise as explained in the Supplemental Material. Finally,
most of the experiments that did not fit the model were due to too large a baseline drift.
However, in two examples of a concentration series with an odor, there was inhibition that
changed to excitation at one respiration phase, and in one example there was a large shift in a
band of excitation. Neither of these rare cases could be explained by our model.

Relevance in Awake Rats
It has been observed that respiration tuning exists in M/T cells in awake rats, with a baseline
tuning pattern for air that can change on odor presentation (Bhalla and Bower, 1997). Further,
in awake rat recordings from piriform cortex, respiration-locked firing also exists and can be
different for different odors (N. Uchida and Z.F. Mainen, 2006, Soc. Neurosci., abstract).

Thus, the basic property of respiration-phase tuned odor-specific responses is common to
awake and anesthetized rats. We therefore predict that our model of M/T cell encoding of odors
will also be applicable to awake animals.

Khan et al. Page 11

Published as: Neuron. 2008 February 28; 57(4): 571–585.

Sponsored D
ocum

ent 
 Sponsored D

ocum
ent 

 Sponsored D
ocum

ent



Experimental Procedures
We used standard extracellular single-unit recording techniques for our experiments. These
methods are very similar to those used in two earlier studies from the lab (Deshmukh and
Bhalla, 2003; Rajan et al., 2006). They are described in detail in the Supplementary Material.
Briefly, female wistar rats (200–350 g) were anesthetized with xylazine (10 mg/kg) and
ketamine (100 mg/kg), and anesthesia was maintained with thiopental. Only females were used
since we could not induce complete surgical anesthesia to our satisfaction in males. Respiration
was monitored by placing a thermocouple in the nostril.

Recordings were done with gold-plated tetrodes that were lowered from the dorsal surface of
the bulb to the mitral cell layer. This we identified by the distinctive high-amplitude and
respiration-locked multiunit activity. In a few cases we lesioned at the electrode tip and
confirmed its placement in the mitral cell layer by sectioning and staining. Signals were
amplified (10,000×) and band-pass filtered (300–6000 Hz), and triggered waveforms were
digitized and stored at 32 kHz. Single-unit data were extracted by clustering using MClust
(A.D. Redish; http://www.cbc.umn.edu/∼redish/mclust/).

Cells were classified as responsive to an odor using Student's t test and MANOVA. Cells
responding differently to two odors were used in the morph experiments. Cells with very large
changes in baseline (air period) firing rates over a morph sequence/concentration series were
excluded from the study.

Odors were delivered using a computer-controlled air dilution olfactometer based on designs
described earlier (Deshmukh and Bhalla, 2003; Slotnick and Nigrosh, 1974).

Familiarization to Odors
One group of rats (n = 14) was familiarized to two odors (iso-amyl acetate and methyl amyl
ketone) by a classical-conditioning-like protocol. They were water deprived for 20 hr and given
water with iso-amyl acetate mixed in it at a final concentration of 0.01% for 4 hr. They were
also food deprived for 20 hr and food was introduced into the cages preceded 5 min earlier by
a small piece of cloth moistened with 1% methyl amyl ketone, for 4 hr. The two odor exposures
were separated in time by at least 2 hr. This procedure was repeated for 5–8 days.

Calculating Air and Odor Response Functions
To estimate air and odor response functions, we defined two Δt = 7 s time windows, one within
the air period, 1 to 8 s before odor valve opening, and the other within the odor presentation
period, 1 to 8 s after odor valve opening. The 1 s period immediately after valve opening was
avoided, because there were delays in the odor traveling down the delivery tube and because
our odor valve opening was not synchronized with respiration. For each window, we binned
firing events into NR = 17 bins along the respiration phase axis. This produced two vectors:
v0

i (air response) and v1
i (odor response), periodic over the respiration cycle i = 1, …, NR, in

units of firing rate.

Modeling the Response to Mixtures of Odors
We modeled our neuron as having a sigmoidal response to simple linear inputs (Hertz et al.,
1991):

[1]

Here, vi represents the firing rate of a neuron during respiration phase i, which can take some
saturating value vmax. The vectors w0

i, wA
i, and wB

i represent inputs to the neurons due to air,
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odor A, and odor B, respectively. The latter two are multiplied by concentration-dependent
coefficients cA and cB. Without loss of generality, the value of the coefficient at the maximum
odorant concentration is set to 1.0.

The function f (.) is a sigmoid, defined such that f (−0.5) = 0.1, f (0) = 0.5, and f (+0.5) = 0.9:

[2]

Finally, the quantity b sets the baseline firing rate of the neuron in the absence of any inputs.
Note the following dependencies: vmax and b are fixed for any given neuron; the vectors wi are
functions of respiration phase alone, but are concentration independent; and the coefficients
c are functions of concentration alone, but are phase independent. These features strongly
restrict the space of possible responses to mixed odors. In effect, we are claiming that the
response to any mixture of odors is completely determined by the response to the individual
components.

Parameter Fitting
A typical morphing experiment involves Nmix = 6 presentations of odors A and B, in the
following proportions: [1.0A 0.0B], [0.8A 0.2B], [0.6A 0.4B], [0.4A 0.6B], [0.2A 0.8B], and
[0.0A 1.0B]. For each such measurement, we obtained the air and odor responses v0

i and v1
i.

Since the six air responses were not independent, we averaged them into a single vector
〈vi0〉. This gives:

We fit these data to the neural model defined above. The concentration-dependent coefficients
were defined such that cA = 1.0 and cB = 0.0 for pure A, and cA = 0.0 and cB = 1.0 for pure B,
with their values for the four intermediate mixtures left as free parameters. Since the baseline
b could not be determined independent of the vector w0

i (this would require varying the
“strength” of the air stimulus), this constant was absorbed into w0

i. Adding in vmax, wA
i, and

wB
i, this resulted in

This is a highly constrained fit, involving 59 degrees of freedom (d.f.). That is, if we use the
first 60 datapoints to calculate the parameters, we claim that the remaining 59 datapoints will
be completely determined. [Note that, in the single-odor case, we fit NR × Nmix = 102 datapoints
using 1 + (Nmix − 2) + 2(NR) = 39 parameters, corresponding to 63 d.f.]

The model was initialized with suitable parameter estimates based on the response to pure
odors, and the system was run to minimize the χ2 score defined in Equation 1 in the
Supplementary Material. The minimization was performed in MATLAB (Mathworks), using
the fminsearch function. This procedure was carried out for each independent morphing
experiment.

Estimating Significance of the Fit
We estimated the significance of our fit using a Monte Carlo technique (Press and Teukolsky,
1992). The χ2 statistic has a well-defined distribution for linear models. However, our model
involves a sigmoidal nonlinearity, so we must be careful in estimating the background
distribution of χ2 values against which to test the significance of the fit. For each morphing
experiment, we proceeded as follows. Beginning with the best-fit predictions for the six odor
presentations plus air, we generated a “fake data set” by adding Gaussian noise to each
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datapoint, with variance equal to αeff times the Poisson estimate (see the Supplementary
Material). We then fitted parameters to this simulated data set, exactly as described above. This
procedure was repeated for 50 trials, and the resulting parameters, as well as the resulting χ2

values, were recorded for each trial. This procedure allowed us to estimate the mean and
variance of χ2 values, assuming that the model is true, and that we understand noise sources.
We were therefore able to estimate the significance of our fit in terms of the p value: the fraction
of times the simulated χ2 showed a greater deviation from its mean value than the actual χ2. If
this number is close to unity, we can be confident that the model explains the observations
without being overdetermined (χ2 too large) or underdetermined (χ2 too small); in practice, we
can settle for a p value as low as 1e−3 or above, since a wrong model will typically produce a
much lower value (Press and Teukolsky, 1992). This corresponds to ±3.29 standard deviations
of a Gaussian, which defines the boundaries in Figure 6 and Figure 7F.

Curve Fitting
For the simple analysis (Figure 3), shifting band responses and buildup responses were
categorized by eye. Firing properties were quantified (see Supplementary Material) and plotted.
These plots were fit to a straight line, a log, and a sigmoid. Fits with p < 0.01 were considered
significant, and each fit was assigned to the category with the highest explained variance. The
explained variance was measured with the F statistic, which is corrected for the different d.f.
(d.f. = 2 for straight line and log fits and d.f. = 4 for sigmoid fits).

Supplemental Data
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Recording Procedures and Data Representation
(A) Extracellular single-unit recordings were made using tetrodes, and the signal was amplified
and filtered and acquired on a computer. The respiration of the rat was typically steady at 1 Hz
and was monitored with a thermocouple placed in front of its nostril. The odor presentation
protocol is shown below.
(B) A schematic of the construction of a respiration raster that shows the respiration-locked
firing pattern of a cell. The spike train is divided into each respiration cycle, and each spike is
replotted with the respiration phase on the y axis and time of respiration cycle start (or simply
time) on the x axis, aligned to the odor valve onset.
(C) Data from a cell with five trials of an odor presentation superimposed. Each + sign
represents an action potential. The color plot to the right is the same data after smoothing and
color coding. The red bar indicates the duration of the odor stimulus here and in subsequent
figures. This cell responds to the odor by changing its respiration tuning, but not its firing rate.
The frequency shown on the side of the plot is the maximum firing rate on this figure here and
in subsequent plots.
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Figure 2.
Odor Responses Pass through Intermediates During Exposure to the Morph Sequence
(A)–(D) show cells from naive rats. (E)–(H) are from rats that were familiarized with the odors
for 5–8 days. Each panel is from a cell that responded to two odors differently, and these two
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responses are shown on the top of each panel. Below these are the responses to the mixtures
of the two odors in the morph sequence, which can be seen to pass through intermediate forms
of responses. In a few particularly stable recordings, morph sequences were recorded in both
directions as in (A), (B), (E), and (F). Arrows indicate temporal order of recordings. The color
coding is the same for all plots in each panel. Numbers in brackets are the highest firing rate
in each panel.
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Figure 3.
Simple Analysis of Morphing Responses
(A) Estimating peak firing phase using Gaussian fit. (B) Firing rate buildup in a defined range
of respiration phase. Rates were calculated by summing all spikes within the selected
respiration phase range, shown as a box on the raster plot. (C) Example of change of response
as a function of composition of the mixture fitting a straight line. (D) Sigmoid response. (E)
Log response. (C) and (D) are from cells with firing rate buildup and (E) is from a cell with a
shifting band. (F) The distribution of the 41 morphs from 32 cells between firing phase and
firing rate calculations. (G) The distribution of cells between straight line, log, sigmoid, and
other categories.
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Figure 4.
Schematic of Model
(A) Example of a cell's response to an odor shown in three dimensions.
(B) The air input strength function of the cell (left) is a function of the respiration cycle during
air presentation. When passed through a sigmoid, the air input function results in the firing rate
over the respiration cycle for the air period.
(C) The odor input strength function (black) is added to the air input strength function (red) to
give the function AIR + ODOR (blue). This AIR + ODOR function, when passed through the
same sigmoid, will result in the AIR + ODOR firing rate function (right).
(D) All possible mixture responses are obtained by scaling each odor input strength function
and adding them to the air function. This is passed through the sigmoid to obtain the response
of the cell to the mixture.
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Figure 5.
Model Validation and Predictions
(A) Above is the original data showing odor responses to the morph sequence, and below is
the model prediction. This is the same example from Figure 2A, reverse morph. Cineole is
odor A and iso amyl acetate is odor B. (B) Alternate representation of data in (A) and its
comparison with the model. Odor periods are placed alongside for each mixture of the morph
sequence. The model representation is very close to the experiment. (C) Overlaid respiration
phase versus firing rate plots for the data (with error bars) and the model. Curves are shown
for air, 1%A, and 1%B. (D) Input strength functions for odors A and B, showing scaling with
different odor concentrations. (E) Coefficients for odors A and B as a function of odor mixture.
In this example the coefficients fit a straight line. (F) An illustration of the process of obtaining
the mixture response of .4A + .6B. The two respective curves from (D) of .4A and .6B are
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added to obtain the purple curve (left). The air baseline is shown in green. The two horizontal
lines correspond to the approximate lower and upper cutoffs imposed by the sigmoid, of zero
and saturated firing, respectively. Adding the three curves gives the brown Air + .4A + .6B
curve (center). This is passed through the sigmoid to give the red curve (right) showing the
response for this particular mixture. It is a good fit to the experimental data, in black. Error
bars indicate SEM.
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Figure 6.
Population Data and Validation of the Model
A distribution of simulated chi-square scores was calculated for each morph experiment in a
Monte Carlo manner (n = 41 morphs). The difference between the mean of the simulated scores
and the score from fitting the data, normalized by the standard deviation of the simulated score
distribution, was found. The histograms of these values are plotted. The two vertical lines are
at ±3.29. Eighty percent of morphs (33/41) were within this range. The arrowhead indicates
the bin in which the example from Figure 5 belongs.
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Figure 7.
The Model in the Single-Odor Case
(A) Two examples of the effect of increasing the concentration of a single odor on a cell's
response, comparing data and model. A(i) is a primarily inhibitory response and A(ii) is
primarily excitatory. Here the effect is an increase in the width and/or amplitude of the response.
This contrasts with the shift in the tuning pattern seen in some of the mixture results. Example
A(i) is explored in detail in the rest of the figure.
(B) Comparing the entire concentration series and the average air period for the data and model
for the cell shown in A(i), as in Figure 5B.
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(C) The 1% odor case and the air period overlaid for odor and model. Error bars indicate SEM.
(D) The input strength functions for the odor at different concentrations. The large inhibitory
component is evident, and the asymmetry in its shape explains why the inhibitory “gap” in the
data increases in one direction more than the other (toward later respiration phases).
(E) The plot of the coefficients against the externally applied odor concentration is shown
overlaid with the best fit; in this case, a sigmoid.
(F) The population analysis (akin to Figure 6), showing that 91% (32/35) of the experiments
validate the model. Arrowhead indicates the bin in which example A(i) belongs. Vertical red
lines are at ±3.29.
(G and H) Distributions of coefficient plots across straight line, log, and sigmoid categories
for the morph and single-odor experiments, respectively. These two distributions were not
different as shown by a chi-square test (p < 0.05).
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Figure 8.
Validation of Scaling and Additivity
(A) Diagram showing the double tracheotomy preparation and the odor presentation protocol.
As earlier, an air stream was always blowing at the rat's nose and this was switched to an air
+ odor stream in the period shown (100, 200, or 500 ms).
(B) Raster showing a cell with a flat baseline responding to a 500 ms odor pulse. Below is the
PSTH of same cell binned at 125 ms. Black bar: odor duration; blue bar: suction duration; gray
bar: 2 s period used for determining baseline firing rate. Both transient and stable firing rate
changes from suction alone can be seen.
(C and D) Two examples of cells showing the same-shaped response scaling in amplitude with
odor concentration. Shown are 200 ms and 100 ms odor pulses [(C) and (D), respectively];
spikes are binned at 50 ms, and odor was iso-amyl acetate in both. Error bars indicating SEM
have been removed for clarity.
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(E) Predicted versus observed firing rate; baseline is plotted for the 12/17 cells that were
consistent with a single-shape scaling (Q value > 0.001).
(F and G) Two examples of cells that showed that the response to the mixture was a direct
summation of the responses to the components. A and B are the components and M is the
mixture. The dashed green line shows what the mixture would be if there were perfect addition.
The odor pairs in (F) and (G) are iso-amyl acetate/(+) limonene and methyl amyl ketone/iso-
amyl acetate, respectively. Error bars indicate SEM.
(H) Histogram of the values of R. Perfect addition would cause these values to be 0.5 (red line).
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