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Abstract

In the orbifold limit of K3, one can give exact conformal field theory description of
D-branes wrapped on certain non-supersymmetric cycles of K3. We study the effect of
switching on the ‘non-geometric blow up modes’ corresponding to anti-symmetric ten-
sor gauge field flux through the 2-cycles on these D-branes. Working to first order in
the blow up parameter, we determine the region of the moduli space in which these
D-branes are stable. Across the boundary of this region, the D-brane wrapped on the
non-supersymmetric cycle decays to a pair of D-branes, each wrapped on a supersymmet-
ric cycle, via a second order phase transition.
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1 Introduction and Summary

BPS D-branes[1, 2] have proved to be extremely useful in studying various aspects of

string dualities, stringy black holes and other properties of string theory. The original

formulation of D-branes was given for flat D-branes in flat space-time. Significant progress

was made in [3] in the study of curved D-branes. In particular [3] showed how to find

an exact boundary conformal field theory description of D-branes wrapped on certain

2-cycles of K3 in the orbifold limit. The 2-cycles studied there correspond to the cycles

associated with the blow up of the orbifold fixed points.2 Although in the orbifold limit

these 2-cycles have zero size, D-branes wrapped on these 2-cycles have finite tension due to

the presence of the anti-symmetric two form flux through these cycles[4]. These cycles are

supersymmetric, so that D-branes wrapped on these cycles correspond to BPS D-branes.

If we take two such branes, associated with two different 2-cycles (i.e. different fixed

points P and Q of the orbifold) then the combined system could be non-supersymmetric

although the individual branes are BPS. It was shown in [5, 6] that in certain region

of the moduli space, there is a single non-BPS D-brane configuration carrying the same

charge quantum numbers as this combined system, but with tension less than the sum

of the tension of the two individual D-branes. Thus we can regard this single brane as

a (classical) bound state of the two BPS branes[7, 8, 9]. It can also be interpreted as

a D-brane wrapped around a single 2-cycle of K3 which is homologically equivalent to

the sum of the two individual cycles associated with the fixed points P and Q. Since

the wrapped D-brane is non-BPS, the associated cycle is non-supersymmetric. Refs.[5, 6]

gave an exact boundary conformal field theory description of this non-BPS brane.

In the orbifold limit the relevant modulus which controls the stability of the non-BPS

brane is the radius R̃ of the circle of the original torus passing through the orbifold fixed

2Throughout this paper we shall use the words fixed points and orbifold planes interchangeably, both
refering to five dimensional fixed planes spanning the non-compact directions.
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points P and Q.3 When this radius is less than a critical radius R̃c, the brane wrapped

on the non-supersymmetric cycle has lower tension than the sum of the tensions of the

two supersymmetric branes. This is reflected in the fact that in this region of moduli

space the non-BPS brane has no tachyonic mode and hence is stable, whereas the system

containing the pair of BPS branes has a tachyonic mode and hence is unstable. When the

radius is larger than the critical radius the situation is reversed. Now the tension of the

non-BPS brane is larger than the sum of the tension of the two BPS branes. Furthermore

the tachyonic mode disappears from the system containing pair of BPS branes, and a

tachyonic mode appears on the non-BPS brane. Thus in this region of the moduli space

the stable system is clearly the configuration of two BPS branes.4

At the critical radius R̃c both systems have a massless open string mode representing

the limit of the tachyonic mode from their respective region of instability. We shall refer

to this as the tachyonic mode although at the critical radius it is not tachyonic. One can

show that this represents an exactly marginal deformation which interpolates between the

system containing a pair of BPS branes and the non-BPS brane[8, 5, 10, 11, 12]. Let us

denote by α the parameter labelling the marginal deformation, normalized so that α = 0

(mod 2) represents the pair of BPS branes and α = 1 (mod 2) represents the non-BPS

brane. α can be interpreted as the vacuum expectation value (vev) of the tachyonic mode

on the brane. Away from the critical radius the tachyonic mode develops a potential.

This potential energy (density) V (α) is periodic under α → α+ 2 due to a periodicity in

the underlying conformal field theory[8], and has the following qualitative behaviour:

1. At the critical radius V (α) vanishes, since the tachyonic deformation is exactly

marginal.

2. For R̃ > R̃c, V (α) has a minimum at α = 0 and a maximum at α = 1. This

shows that the α = 0 configuration, representing a pair of BPS branes, is the stable

configuration, whereas the α = 1 configuration representing the non-BPS brane is

unstable.
3For simplicity we are assuming that the torus used in the construction of the orbifold is a product

of four circles and the points P and Q lie along one of the circles. We also take the radii of the other
circles to be sufficiently large in order to avoid other kinds of instability[5, 6] than the ones which will be
discussed here.

4Throughout this paper we shall restrict our analysis to open string tree level. Thus the process of
formation of the bound state via tachyon condensation discussed here is distinct from the bound state
formation via possible attractive force due to closed string exchange interaction. The former is an open
string tree level effect whereas the latter is open string one loop effect.

3



α

R<Rc
R>Rc

V V

1
1

R=R c

2

2

~ ~ ~ ~

~ ~V

α

α

Figure 1: The potential V (α) for different values of R̃.

3. For R̃ < R̃c, V (α) has a minimum at α = 1 and a maximum at α = 0, showing that

the α = 1 configuration, representing a non-BPS brane, is the stable configuration.

The α = 0 configuration, being the maximum of V (α), is unstable.

This has been sketched in Fig.1. Note that the location of the ground state in the α space

jumps discontinuously as we pass through the critical radius, as shown in Fig.2.

This is the result in the orbifold limit of the theory. In this paper we shall study how

this picture gets modified when we blow up the orbifold fixed points. In fact the particular
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Figure 2: Location of the minimum of V (α) for different values of R̃.

moduli which we shall turn on are not the geometric blow up modes, but deformations

corresponding to changing the flux of the anti-symmetric tensor field through the 2-cycle.

Although these particular moduli do not correspond to the geometric blow up parameters,

but deformations of the Kahler class associated with the cycles by an imaginary part, we

shall refer to these as the blow up modes. We find that to first order in the blow up

parameters, the potential V (α) depends on only one of these parameters, which is the

difference in the antisymmetric tensor field flux through the two 2-cycles. We compute

the complete potential V (α) to first order in the blow up parameter ζ and first order in

the difference (R̃− R̃c). The result is:

V (α) ∝ (
1

4
(R̃c − R̃) cos(απ) + ζ cos(

1

2
απ)) . (1.1)

From this we can study the locations of the extrema of the potential for various ranges of

R̃. We can also identify the nature of the absolute minimum of V (α) in different ranges of

R̃ by continuously connecting it to a minimum of V (α) for ζ = 0, where the identification

is known. As is clear from eq.(1.1), V (α) is invariant under α → α + 4, and α → −α.

Using this we can restrict α to the range 0 ≤ α ≤ 2. In this range the minimum of V (α)

has the following structure:
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Figure 3: The potential V (α) for different values of R̃ for ζ < 0.

1. For R̃ > (R̃c − |ζ |) the absolute minimum of the potential corresponds to a pair

of BPS D-branes. This minimum is at α = 0 (α = 2) for ζ < 0 (ζ > 0). The

α = 2 configuration differs from the α = 0 configuration in that the D0-brane

charge carried by the pair of wrapped membranes get exchanged.

2. For R̃ < (R̃c − |ζ |) the absolute minimum of the potential corresponds to a single

non-BPS D-brane. This minimum is at α = 2
π

cos−1(ζ/(R̃−R̃c)). For |ζ | << |R̃−R̃c|
the minimum approaches α = 1 in agreement with the answer for ζ = 0.

Fig.3 gives a sketch of the potential for various ranges of values of R̃ for ζ < 0. Fig.4

shows the phase diagram in the (R̃, ζ) plane.

From this we see that for ζ 6= 0 the critical radius is shifted to (R̃c − |ζ |). Also as R̃
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Figure 4: Phase diagram in the R̃ − ζ plane. Phase I (αmin = (2/π) cos−1(ζ/(R̃ − R̃c))
corresponds to a D2-brane wrapped on a non-supersymmetric cycle, phase II (αmin = 2)
corresponds to a pair of D2-branes, each wrapped on a supersymmetric cycle, and phase
III (αmin = 0) corresponds to a pair of D2-branes wrapped on the same supersymmetric
cycles as in phase II, but carrying opposite D0-brane charges compared to those in phase
II. The shape of the curves displayed here is valid only to first order in ζ and (R̃− R̃c).

approaches (R̃c−|ζ |) from below (region I in Fig.4), the location of the absolute minimum

approaches the point α = 0 (α = 2) for ζ < 0 (ζ > 0). This is the same as the location of

the minimum for R̃ > (R̃c − |ζ |). Fig.5 shows a sketch of the evolution of the minimum

of V (α) as a function of R̃ for a fixed ζ < 0. Thus there is no discontinuous jump in the

location of the minimum as we pass through the phase boundary between regions I and III

and between regions I and II. A detailed analysis of the potential shows that in this case

the phase transition from the non-BPS D-brane to the pair of BPS D-branes is second

order.5 On the other hand the minimum of V (α) jumps discontinuously from α = 0 to

α = 2 as ζ changes sign keeping R̃ > R̃c. Thus the phase transition between regions II

and III across the ζ = 0, R̃ > R̃c line is first order.

The rest of the paper is organised as follows. Although our analysis is valid for

any even (odd) dimensional D-brane in type IIA (IIB) string theory wrapped on (non)-

supersymmetric cycles of K3, for convenience we shall focus on a particular case − D2-

5Possibility of the existence of such critical points in non-BPS D-branes was speculated by C. Vafa[13].
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Figure 5: Location of the minimum αmin of V (α) for different values of R̃ for ζ < 0. As
|ζ | → 0, this approaches a step function.

brane of type IIA string theory wrapped on the cycles of K3. In section 2 we give a

description of these states using the (non-BPS) D-branes of type II string theory, and

give a precise statement of the problem that we want to solve. In section 3 we solve the

problem by finding the tachyon potential, and finding its extrema.

2 Statement of the Problem

In this section we review some of the earlier results which will be required for our analysis,

carry out some preliminary analysis of the problem, and give a precise statement of the

problem that we shall solve in the next section. The system that we shall analyse is the

same one as in [5], namely a non-BPS D-string of IIA wrapped on a circle S̃1 of radius

R̃, modded out by I4 where I4 reverses the direction tangential to S̃1 and three other

directions.6 This can be regarded as a two brane wrapped on a non-supersymmetric cycle

of K3 in the orbifold limit if the other three directions are compact[5, 6]. We shall take the

radii of these three directions to be sufficiently large so that there are no tachyonic modes

from open strings wound in these directions. In order to use some of the already known

6The D-string is taken to be at the origin of these other three coordinates, so that the original
configuration is invariant under I4.
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results, we shall first make a T-duality transformation on S̃1, so that the background now

represents type IIB string theory on the dual S1 modded out by (−1)FL · I4, and the non-

BPS D-string of the original type IIA theory becomes a non-BPS D-particle of IIB[14, 15]

stuck to one of the orbifold planes. This system is identical to the one analysed in [7, 15],

and can also be identified to the system analysed in [8] before the orbifold projection.

We shall denote by R = α′R̃−1 the radius of the dual S1 and by x the coordinate of the

dual S1 and take the non-BPS D-particle to be located at x = 0. We shall refer to this

new description of the system as the IIB description, and the original description as the

IIA description. From now on we shall continue to use the type IIB description unless

mentioned otherwise.

Although the non-BPS D-particle in type IIB string theory has a tachyonic mode, it

is projected out by the orbifolding operation[15, 8]. However, as we reduce the radius R

of S1, the open string stretched between the D-particle and its image across S1 develops

a tachyonic mode. Let Rc denote the critical radius below which this tachyonic mode

appears. In the α′ = 1 unit that we shall be using, Rc = 1√
2
. The physical interpretation

of the appearance of the tachyonic mode can be understood by studying the mass of the

non-BPS D-particle, as well as the total mass of a D-string D̄-string pair of type IIB string

theory, wrapped on S1. If g denotes the type IIB string coupling constant, then the mass

of the non-BPS D-particle stuck to the orbifold plane is given by:

mD0 =
1

2
·
√

2 · 1

g
=

1√
2g
. (2.1)

The various factors in this expression can be understood as follows. Since taking orbifold

by I4 · (−1)FL cuts space into half its original size, it keeps only half of the D-particle at

x = 0. Thus its mass is half of that of the non-BPS D-particle in type IIB string theory,

which in turn is equal to (
√

2/g). By the same argument, after the orbifold projection the

mass of a D-string wrapped on S1 is computed by multiplying its tension by πR instead

of 2πR, since one fundamental region of the orbifold contains a piece of the D-string

stretched from the fixed point at x = 0 to the fixed point at x = πR. The total mass of

the D-string D̄-string pair stretched from x = 0 to x = πR is given by:

mD1D̄1 = 2.
1

2πg
.πR =

R

g
. (2.2)

We see that at R = Rc = 1√
2

the two systems are degenerate. Below the critical radius

the D-string D̄-string pair has lower energy. Thus it would be natural to associate the
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tachyonic instability of the D0-brane to the possibility of its decay into a D-string D̄-string

pair, provided the two systems carry the same charge quantum numbers.

In order to investigate whether the D-particle carries the same charge quantum num-

bers as a D-string D̄-string pair, we use the boundary state[16, 17, 18, 19, 20, 21] descrip-

tion of the two systems. The boundary state describing the D-particle was constructed in

[15]. It is a linear combination of untwisted sector Neveu-Schwarz-Neveu-Schwarz (NSNS)

states and twisted sector Ramond-Ramond (RR) states, from which it follows that it is

charged under the gauge field at x = 0 originating in the twisted RR sector. The situation

with a D-string (D̄-string) is somewhat more complex. The boundary state describing a

BPS D-string (D̄-string) is characterized by a Z2 Wilson line eiθ = ±1 along S1, and two

more parameters ǫ1, ǫ2 which can take values ±1[7]:

|θ, ǫ1, ǫ2〉 =
1

2
(|θ, U〉NSNS + ǫ1|θ, U〉RR) +

1

2
√

2
ǫ2(|T1〉NSNS + ǫ1|T1〉RR)

+
1

2
√

2
eiθǫ2(|T2〉NSNS + ǫ1|T2〉RR) . (2.3)

Here U stands for untwisted sector, T1 stands for twisted sector at x = 0 and T2 stands

for twisted sector at x = πR. ǫ1 takes value +1 (−1) for a D-string (D̄-string), and ǫ1ǫ2

denotes the sign of the twisted sector RR charge carried by the x = 0 end of the D-string.

eiθǫ1ǫ2 denotes the sign of the twisted sector RR charge carried by the x = πR end of the

string.

Thus we see that after modding out by (−1)FL ·I4 a D-string (D̄-string) carries twisted

sector Ramond-Ramond (RR) charge at its two ends. If we choose a D-string state that

carries + charge at the x = 0 end and − charge at the x = πRc end corresponding to

(θ, ǫ1, ǫ2) = (π,+,+) (configuration (a) in Fig.6 of [7]), and a D̄-string that carries +

charge at both ends corresponding to (θ, ǫ1, ǫ2) = (0,−,−) (configuration (g) of Fig.6 of

[7]), then the D-string D̄-string pair is neutral under the twisted sector gauge field at x =

πRc and carries +ve charge under the twisted sector gauge field at x = 0. This matches

with the charge quantum number of the non-BPS D-particle at x = 0, as can be seen from

the fact that the massless RR component of the boundary state describing a non-BPS

D-particle at x = 0[15](published version) is given precisely by twice that appearing in

eq.(2.3).7 Hence the D-particle can decay into this pair of D-string states. The appearance

7This relative factor of (1/2) between the twisted sector RR charge carried by the end of a BPS
D-string and by a non-BPS D-particle can be seen as follows. The open string partition function for
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of the tachyonic mode on the D-particle below R = Rc signals the possibility of this decay.

From this analysis we see that this configuration requires the D-string to carry a Z2 Wilson

line, whereas the D̄-string does not carry any Wilson line. In the dual type IIA description

the D-string D̄-string pair, with the D-string carrying a Z2 Wilson line, corresponds to a

D0-D̄0 pair situated at diametrically opposite points on the dual circle S̃1. After modding

out by I4 this can be reinterpreted as a pair of BPS D2-branes of IIA, wrapped on the

two cycles associated with the two orbifold fixed points on S̃1[3].

Note that we could also consider a D-string state that carries + charge at both ends

corresponding to (θ, ǫ1, ǫ2) = (0,+,+) (configuration (c) in Fig.6 of [7]), and a D̄-string

that carries + charge at the x = 0 end and − charge at the x = πRc end corresponding

to (θ, ǫ1, ǫ2) = (π,−,−) (configuration (e) of Fig.6 of [7]). This has the same RR charge

as the previous configuration, and so the D-particle can also decay into this state. This

differs from the previous configuration by having the Wilson line on the D̄-string rather

than on the D-string. In the dual type IIA description this again corresponds to a D0-D̄0

pair on S̃1, but with their positions reversed.

A more systematic analysis of the transition from the D-particle state to a D-string

D̄-string pair was carried out in refs.[8, 5]. It was shown that the lowest mode of the

tachyon, which is massless at R = Rc, represents an exactly marginal deformation. By

switching on this marginal deformation one can continuously interpolate between the

boundary conformal field theories (BCFT) describing the non-BPS D-particle and the

D-string D̄-string pair. We could see this marginal deformation either by starting from

the D-particle side, or by starting from the D-string − D̄-string side. We shall find it

more convenient to do the analysis from the D-string D̄-string side, so that we can use

the results of [8].

On an infinite D-string D̄-string system there is a tachyonic mode with mass2 = −1
2
.

Upon wrapping the D-string D̄-string pair on a circle of radiusR, with a Z2 Wilson line on

the D-string, the tachyon field T is anti-periodic under x → x + 2πR, and has a Fourier

the non-BPS D-string has a projection operator 1+(−1)F

2
1+g1

2
1+g2

2 , where F denotes world-sheet fermion
number, g1 denotes (−1)FL accompanied by the transformation (x6. . . . x9 ≡ x) → (−x6, . . . − x9), and
g2 denotes (−1)FL accompanied by the transformation (x6. . . . x9) → (−x6, . . . − x8, 2πR − x9)[7]. On
the other hand, partition function of open strings living on a non-BPS D-particle at x ≡ x9 = 0 has a

projection operator 1+(−1)F ·g1

2 [15]. Thus the coefficient of (−1)F · g1 in the two cases differ by a factor
of 4. Since this coefficient is related to the norm of the twisted sector RR component of the boundary
state describing the system, we conclude that the twisted sector RR component of the boundary state
describing a D-particle has an extra factor of 2 compared to that describing a D-string.
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expansion of the form:

T (x) =
∑

n∈Z

Tn+ 1

2

ei(n+ 1

2
) x

R . (2.4)

The effective mass2 of the mode Tn+ 1

2

is given by

m2
n+ 1

2

=
(n+ 1

2
)2

R2
− 1

2
. (2.5)

Thus for R ≤ Rc = 1√
2

there are no tachyonic modes on this system. For R > Rc, T± 1

2

becomes tachyonic, indicating that the system becomes unstable in this range of R. At

R = Rc, (T 1

2

±T− 1

2

) can be shown to be exactly marginal, and one can deform the BCFT

by switching on vev of this field. But from eq.(2.59) of [7] one finds that only the mode

(T 1

2

−T− 1

2

) is invariant under (−1)FL · I4 and can be switched on. It was shown in [8] that

by switching on the vev of (T 1

2

− T− 1

2

) we can reach the BCFT describing the non-BPS

D-particle of type IIB string theory.8 We denote by α the suitably normalized vev of this

mode of the tachyon at R = Rc, with α = 0 representing the D-string D̄-string system,

and α = 1 representing the D-particle, as in [8].

The marginality of (T 1

2

−T− 1

2

) can be seen by rewriting the BCFT at R = Rc in terms

of a different set of variables. As discussed in [8], the effect of switching on the tachyon

vev is to insert the following operator at the boundary of the world-sheet:

Tr exp(i
α

2
√

2
σ1

∫
dt∂tφB) . (2.6)

Here
∫
dt denotes integration along the boundary of the world-sheet, σ1 =

(
0 1
1 0

)
is

a Chan Paton factor, Tr denotes trace over the Chan Paton factors, and φB denotes

the boundary value of the world-sheet field φ = φL + φR, where the field φ is related

to the bosonic coordinate field X = (XL + XR) along S1 and its right- and left-moving

world-sheet partners ψ, ψ̃, through the fermionization − bosonization relations:

ei
√

2XR =
1√
2
(ξ + iη), ei

√
2XL =

1√
2
(ξ̃ + iη̃), (2.7)

8Ref.[8] introduced the vertex operators V± for T± 1

2

, which, in the −1 picture[22], were taken to be

proportional to ±e(±i/
√

2)X . But if Tr is to label the rth mode of the tachyon field T (x), then its vertex
operator in the −1 picture should be proportional to eirX/R without any extra r dependent sign. For
this reason the vertex operator for (T 1

2

− T− 1

2

) of this paper corresponds to what was called (V+ + V−)

in [8].

12



ei
√

2φR =
1√
2
(ξ + iψ), ei

√
2φL =

1√
2
(ξ̃ + iψ̃). (2.8)

ξ, η, ξ̃, η̃ are world-sheet fermion fields. (2.6) can be interpreted as a Wilson line along

the bosonic coordinate φ, and clearly represents a marginal deformation.

Since at R = Rc the tachyon becomes marginal, the tachyon potential V (α) vanishes

at R = Rc. For R < Rc, V (α) has a minimum at α = 0, representing the fact that the D-

string D̄-string configuration corresponds to the minimum energy configuration, whereas

for R > Rc, V (α) has a minimum at α = 1 indicating that the non-BPS D-particle

represents the minimum energy configuration. Thus the point R = Rc marks the phase

boundary between the stable D-particle configuration, and the stable D-string D̄-string

configuration. The question that we shall be interested in is: how does this picture get

modified when we go to a different point in the moduli space of K3 (in the original type IIA

description)? We shall only analyse the effect of small deformations around the original

configuration. These may be divided into two classes: moduli of type IIA string theory

on the torus (constant metric and antisymmetric tensor field background), and the blow

up modes of the fixed points corresponding to twisted sector closed string states from the

NSNS sector. There are four such blow up modes from each orbifold fixed point. Three of

these modes correspond to geometric blow up parameters, and the fourth one corresponds

to antisymmetric tensor field flux through the 2-cycle associated with the fixed point. In

the dual type IIB description that we have been using, we have the moduli corresponding

to constant metric and anti-symmetric tensor field background in the dual torus, and

the twisted sector modes. In this case however the twisted sector modes from the NSNS

sector have a different interpretation. Each orbifold plane obtained by modding out by

I4 · (−1)FL has a hidden NS five brane, since it is S-dual to the coincident orientifold

5-plane D-5-brane system[23]. Switching on the twisted sector modes associated with

a given orbifold plane corresponds to moving the NS five-brane away from the orbifold

plane.

It can be easily verified that switching on the constant metric or anti-symmetric tensor

field background does not modify the physics at the phase boundary between a stable

configuration of D-particle and the D-string D̄-string system. To see this note that if we

denote by R the radius of S1 measured in the new metric, then in terms of R, the tachyon

mass formula (2.5) as well as the D-brane mass formulae (2.1), (2.2) remain unchanged.

Thus at the critical radius R = 1√
2

the D-particle becomes degenerate with the D-string

13



D̄-string system, and the tachyonic modes T± 1

2

become massless. We can use the same

bosonization and fermionization formulae to show that at R = Rc, (T 1

2

− T− 1

2

) represents

an exactly marginal deformation and interpolates between the BCFT describing these two

systems.

Thus it remains to study what happens when we switch on the twisted sector massless

NSNS fields. We shall now argue that only one of the eight blow up modes associated

with the two fixed points actually affect the masses of the D-brane system to first order

and hence could modify the physics at the phase boundary to this order. To do this we

use the boundary state description of the D-string D̄-string system given in [7] and that

of the non-BPS D-particle given in [15]. First of all, the boundary state describing the

non-BPS D-particle is a linear combination of the boundary state from untwisted sector

NSNS sector, and twisted sector RR sector[15]. Since it has no component from the

twisted sector NSNS sector, we see that the D-particle does not have a direct coupling to

these states and hence its mass does not depend on these twisted sector moduli to first

order. On the other hand, from eq.(2.3) we see that the D-string (D̄-string) boundary

state has components along the twisted sector NSNS states, and so the mass of the D-

string (D̄-string) has linear dependence on the particular moduli fields which appear in

the boundary state. There are two such moduli, one from |T1〉NSNS and the other from

|T2〉NSNS. The physical interpretation is quite clear. These moduli represent the motion

of the NS five branes along the circle S1, and since the ends of the D-string (D̄-string) lie

on the NS five-branes, their lengths and hence their masses depend on the location of the

five-brane along S1.9 Also note that for a given change in the location of the five brane

the change in the mass can have either sign (as reflected in the coefficient of |T1〉NSNS

and |T2〉NSNS in (2.3), which can be of either sign). This can be traced to the fact that

the D-string (D̄-string) can either end on the NS 5-brane or its image under I4 · (−1)FL.10

As we move the five brane in one direction, its image moves in the opposite direction.

Thus whether the mass increases or decreases for a given movement of the five-brane is

determined by whether the D-string (D̄-string) ends on the five-brane or its image.

As has been discussed earlier, the D-string D̄-string system under consideration cor-

responds to the configurations (a) and (g) of ref.[7], characterized by (θ, ǫ1, ǫ2) values

(π,+,+) and (0,−,−) respectively. Using eq.(2.3) we see that the twisted sector compo-

9Moving the five-branes in directions transverse to S1 does not affect the length and hence the mass
of the D-string (D̄-string) to first order.

10The S-dual version of this was explained in Fig.2 of [7].
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nent of the boundary state of the combined system is given by:

1√
2
(|T1〉RR − |T2〉NSNS) . (2.9)

The component |T1〉RR indicates that it carries twisted sector RR charge associated with

the x = 0 plane, as must be the case since it has the same charge as the D-particle situated

at x = 0. On the other hand, the component |T2〉NSNS indicates that it couples to NSNS

sector twisted sector modes associated with the orbifold plane at x = πR. Thus the mass

of the combined system depends only on the location of the NS five-brane associated with

the orbifold plane at x = πR. This can be explained by taking both the D-string and

the D̄-string to end on the NS 5-brane at x = πR, but having one of them end on the

5-brane and the other end on its image near x = 0.11 In that case the motion of the NS

5-brane near x = 0 will not change the total mass of the system, but the motion of the

NS 5-brane near x = πR will change the total mass.

Let us denote by ζ the specific massless mode that appears in |T2〉NSNS. From eq.(2.9)

we see that this is the only NSNS twisted sector mode on which the mass of the D-string

D̄-string pair depends to first order, and we shall study how the transition between the D-

particle state and the D-string D̄-string state is affected upon switching on this mode. In

the original type IIA description, ζ denotes the difference in the flux of the antisymmetric

tensor field through the two 2-cycles of K3, associated with the two orbifold fixed points.

Our strategy will be to determine the tachyon potential completely for R ≃ Rc, ζ ≃ 0

to linear order in (R − Rc) and ζ , ignoring terms quadratic in (R − Rc) and ζ , as well

as terms of order (R − Rc)ζ , and then study its minimum as a function of α for various

values of R and ζ . Thus the general form of the potential will be

V (α) ≃ 1

g
[(R −Rc)f(α) + ζg(α)] , (2.10)

where f(α) and g(α) are two functions to be determined. Note that since we are working

close to the point R = Rc, ζ = 0, we can continue to use the parameter α to label

the nearly massless tachyonic mode. Also note that we have extracted an overall power

11This must be the case if both of them have to carry the same charge at the x = 0 end and opposite
charge at the x = πR end, since the D-string and the D̄-string, ending on the same five-brane, carry
opposite charge. On the other hand if the D-string and the D̄-string end on the five brane and its image
respectively, then their ends carry the same charge, since the gauge field on the five-brane world-volume
that survives the orbifold projection is the difference between the U(1) gauge field on the five brane and
its image. This is exactly analogous to the situation describing a D5-brane near an orientifold 5-plane.
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of the inverse string coupling (g−1) outside the potential since the g dependence of the

world-volume action of a D-brane always comes through such an overall multiplicative

factor.

In the next section we shall determine the functions f(α) and g(α), and study the

extremum of the potential as a function of α. By studying how the minimum of the

potential varies as we change the parameters R and ζ , we shall be able to determine the

phase diagram of the D-brane system under study in the R− ζ plane.

3 Determination of the Tachyon Potential and the

Phase Diagram

First we shall determine f(α). For this we set ζ = 0, so that the tachyon potential has

the form:

V (α) =
1

g
[(R− Rc)f(α) +O((R− Rc)

2)] , (3.1)

for R ≃ Rc. We can determine f(α) by noting that (∂V/∂α) ≃ g−1(R − Rc)f
′(α)

corresponds to the one point function of the tachyon to order (R−Rc). This was computed

in [8] and the answer was found to be proportional to sin πα. Integrating this we see that

f(α) must be proportional to cos(πα). The constant of proportionality can also be easily

found by noting that the difference between V (α) at α = 0 and at α = 1 must be equal

to the difference between the total mass of the D-string D̄-string pair wrapped on S1, and

the mass of the non-BPS D-particle. Using eqs.(2.1), (2.2) we get

V (α = 0) − V (α = 1) =
1

g
(R− Rc) . (3.2)

This gives12

f(α) =
1

2
cos(απ) . (3.3)

From eqs.(3.1) and (3.3) we see that the minimum of V is at α = 0 for R < Rc, and is at

α = 1 for R > Rc. This is consistent with the fact that the D-string D̄-string pair is the

stable configuration for R < Rc, and the D-particle is the stable configuration for R > Rc.

We shall now use a shortcut for determining f(α), which we shall generalise later for

determining g(α). In the derivation given above, we have used the tachyon one point

12This analysis determines V (α) up to an additive α-independent constant which has no relevance for
finding the extrema of V (α) in the α-space.
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function to first order in (R−Rc) to compute f ′(α). This represents a two point function

on the disk in the theory at R = Rc, with one insertion of the closed string vertex operator

VB corresponding to radius deformation at the center, and one insertion of the tachyon

vertex operator at the boundary[8]. We need to choose the picture numbers[22] of these

vertex operators so that the total picture number is −2. Let us take VB to be in (−1,−1)

picture, and the tachyon vertex operator in the 0-picture. Besides this there is an insertion

of the exponential of the integrated zero picture tachyon vertex operator at the boundary

as given in eq.(2.6). Since the α dependence of the one point function comes from only

the matter part of the correlation function, let us restrict ourselves to this sector. In this

case it is clear that if we start from an amplitude where we only have the insertion of

VB at the center, and the exponential of the integrated tachyon vertex operator at the

boundary, then by differentiating it with respect to α we bring down an extra factor of

tachyon vertex operator at the boundary. Since this two point function has been argued

to be proportional to f ′(α), we see that the original amplitude is proportional to f(α)

itself.

The main lesson from here is that f(α) may be computed directly by computing the

matter part of the disk amplitude with a single insertion of VB at the center (reflecting

that we are working to order (R − Rc)) and insertion of the exponential of integrated

tachyon vertex operator at the boundary given in eq.(2.6). The computation of g(α)

will be done in the same way, with VB replaced by the appropriate twisted sector vertex

operator VTW .13

Let us now turn to the determination of g(α). Since we have already argued that

the energy of the D-string D̄-string system depends linearly on ζ , we see that g(0) must

be a non-zero constant. We shall absorb this constant into the definition of ζ and set

g(0) = 1.14 On the other hand by analysing the boundary state describing the non-BPS

D-particle we have argued before that the mass of this D-particle does not depend on ζ .

Hence g(1) must vanish.

The complete determination of g(α) is done by computing the disk amplitude with

an insertion of the ζ vertex operator at the center, and the exponential of the integrated

13If one could construct the boundary state describing the system at R = Rc for all α analogously to
ref.[10], then one could read out g(α) by computing the component of the boundary state along VTW .

14With this normalization the ζ dependent contribution to the mass of the D-string D̄-string pair is
given by (ζ/g). This should be equated to the total tension (1/πg) of the D-string D̄-string pair multiplied
by the shift in the position of the NS 5-brane. Thus πζ measures the shift in the position of the NS
5-brane.
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tachyon vertex operator at the boundary. We use the notation and the normalization

conventions of [8]. The vertex operator VTW for a twisted sector state associated with the

orbifold plane at x = πRc has the property that as we go around such a vertex operator on

the fundamental string world-sheet, the various world-sheet fields undergo the following

changes:

X → (2πRc −X), ψ → −ψ, ψ̃ → −ψ̃ . (3.4)

Using eqs.(2.7), (2.8) we see that this transformation is equivalent to,

ξ → −ξ, ξ̃ → −ξ̃, ψ → −ψ, ψ̃ → −ψ̃, η → η, η̃ → η̃ , (3.5)

or to,

φL → φL +
π√
2
, φR → φR +

π√
2
. (3.6)

Thus as we go around VTW on the string world-sheet, φ = φL +φR changes by
√

2π. Since
∫
dt∂tφB measures the total change of φ as we go around the boundary of the disk, we see

that if there is an insertion of VTW at the center of the disk, then

Tr exp(i
α

2
√

2
σ1

∫
dt∂tφB) = Tr exp(i

α

2
√

2
· σ1 ·

√
2π) = 2 cos(

1

2
απ) . (3.7)

This shows that g(α) is proportional to cos(1
2
απ). Using the normalization g(0) = 1, we

get

g(α) = cos(
1

2
απ) . (3.8)

This satisfies the condition g(1) = 0 derived earlier. Thus the full tachyon potential to

this order is given by:

V (α) ≃ 1

g
(
1

2
(R− Rc) cos(απ) + ζ cos(

1

2
απ)) . (3.9)

Note that the potential is periodic in α with periodicity 4. This may appear as a

surprise, as in ref.[8] it was found that the BCFT describing the D-string D̄-string system is

periodic in α with periodicity 2. We can understand the origin of this apparent discrepancy

as follows. Let us set ζ = 0, R = Rc, and start from the D-particle state represented

by the point α = 1. We can perturb this system by the marginal tachyonic deformation

and study the fate of the BCFT as a function of the new deformation parameter (α− 1).

The T-dual version of this analysis in the type IIA description was carried out in [5].

In this analysis the starting configuration was a non-BPS D-string of IIA wrapped on a
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circle. Switching on the marginal deformation corresponding to (α − 1) = 1 corresponds

to the creation of a kink-antikink pair on the circle, which is to be interpreted as a D0-

brane D̄0-brane pair of type IIA string theory situated at diametrically opposite points

on a circle[5, 24].15 On the other hand if we take (α − 1) = −1, the effect is to create

an antikink-kink pair. Thus the result is again a D0-D̄0 pair, but with their positions

reversed. This has the following interpretation in the dual type IIB description. If we take

the α = 0 configuration to represent a D-string D̄-string pair with a Wilson line on the

D-string, then the α = 2 configuration denotes a D-string D̄-string pair with a Wilson line

along the D̄-string. These correspond to the same BCFT before the orbifold projection,

but differ in the orbifold theory when twisted sector modes are switched on. As discussed

in section 2, since the Wilson line is on the D̄ string, the α = 2 configuration corresponds to

the pair of states carrying (θ, ǫ1, ǫ2) quantum numbers (0,+,+) and (π,−,−) respectively

(pair of states (c) and (e) in the language of [7]). Using eq.(2.3) we see that the twisted

sector component of the boundary state describing the combined system is given by:

1√
2
(|T1〉RR + |T2〉NSNS) . (3.10)

Comparing with eq.(2.9) we see that it carries the same twisted sector RR charge as the

system at α = 0, but its coupling to the twisted sector NSNS state is opposite to that of

the system at α = 0. Thus the ζ dependent component of the tachyon potential should

have opposite signs at α = 0 and at α = 2, as is the case for the potential given in eq.(3.9).

Using the periodicity α → α + 4 we can restrict α to the range −2 < α ≤ 2. Also,

by making a gauge transformation on the D-string D̄-string system at α = 0, we can

change the sign of the tachyon, which corresponds to the transformation α → −α. Thus

α and −α denote equivalent configurations, and the physical range of α can be taken to

be 0 ≤ α ≤ 2. Finally, without any loss of generality we can take ζ to be negative in our

analysis, since the sign of ζ can be changed by a redefinition α → 2 − α.

Let us define:

u = 2(R− Rc) . (3.11)

By analysing the potential (3.9) with ζ < 0, we get the following results:

1. For u < (−|ζ |), V (α) has a pair of minima at α = 0 and at α = 2, and a maximum

at α = (2/π) cos−1(−ζ/u). The absolute minimum is at α = 0. As ζ → 0, this
15Note that (α − 1) was denoted by α in [5], since there the starting configuration was the non-BPS

D-string.
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state goes over smoothly to the D-string D̄-string system with the Wilson line on

the D-string. Thus even for non-zero ζ we can identify the system at α = 0 to a

D-string D̄-string pair.

2. For (−|ζ |) < u < (|ζ |), V (α) has a minimum at α = 0 and a maximum at α = 2.

As u passes through the point u = −|ζ |, the minimum at α = 0 evolves smoothly.

Thus even in this range of u, we can interprete the stable minimum at α = 0 as a

D-string D̄-string pair.

3. For u > (|ζ |), V (α) has a pair of maxima at α = 0 and at α = 2, and a minimum

at α = (2/π) cos−1(−ζ/u). As ζ → 0, this minimum evolves smoothly to the stable

non-BPS D-particle corresponding to the point α = 1. Thus by continuity we can

conclude that for u > |ζ | the stable minimum at α = (2/π) cos−1(−ζ/u) denotes

the stable non-BPS D-particle.

The results for ζ > 0 can be obtained by using the symmetry ζ → −ζ , α→ 2− α. In

this case the α = 2 configuration, representing a D-string D̄-string pair with Wilson line

on the D̄ string, corresponds to the stable minimum for u < |ζ |, and the α = 2
π

cos−1(− ζ

u
)

configuration, representing a non-BPS D-particle at x = 0, corresponds to the stable

minimum for u > |ζ |.
If we want to translate these results to the dual IIA description, we only need to note

that the radius R̃ of the circle in this description is given by (1/R). Thus (R̃ − R̃c) ≃
1

R2
c

(Rc − R) = 2(Rc − R). Thus the parameter u can be identified as (R̃c − R̃). This

reproduces the results quoted in the introduction.

The phase diagram in the u−ζ plane is quite simple. For ζ < 0, u < (|ζ |) the D-string

D̄-string with Wilson line on the D-string is the stable configuration. In the dual theory

describing type IIA on K3, this corresponds to a pair of D2-branes, each wrapped on

a supersymmetric cycle of K3. For ζ > 0, u < |ζ |, the D-string D̄-string system with

Wilson line on the D̄-string is the stable configuration. In the dual IIA theory this again

corresponds to a pair of wrapped D2-branes, but carrying opposite D0-brane charges

compared to the previous configuration. For u > (|ζ |) the non-BPS D-particle is the

stable configuration for all ζ . In the dual type IIA theory this represents a D2-brane

wrapped on the non-supersymmetric cycle. The phase diagram in the (R̃ = R̃c − u, ζ)

plane has been shown in Fig.4.
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The location of the minimum αmin of V (α) evolves continuously as u crosses the phase

boundary |ζ |. It is instructive to study the nature of the transition across the line u = |ζ |.
For this note that for ζ < 0, u > |ζ | the potential has two maxima and a minimum in the

range 0 ≤ α ≤ 2. As u approaches |ζ | from above, the maximum at α = 0, the minimum

at α = (2/π) cos−1(−ζ/u), and its image under α → −α merge together to become a

single minimum at α = 0. Thus we can conclude that the phase transition across the

ζ < 0, u = |ζ | line is second order. As is the characteristic of such a phase transition, at

u = |ζ | the first three α derivatives of V (α) vanish at α = 0. The same result holds for

the line ζ > 0, u = |ζ |. On the other hand, phase transition across the line ζ = 0, u < 0

is first order, as the location of the minimum of V (α) jumps discontinuously from α = 0

to α = 2 across this line.

Note that for u > |ζ | the value of the potential at the minimum αmin is given by:

V (αmin) = −1

g
[
1

2
(R− Rc) +

ζ2

4(R−Rc)
] . (3.12)

From this one can calculate the mass of the non-BPS D-particle as follows. First of all

we note that the total mass of the system for a given value of α must be related to V (α)

by an additive constant:

M(α) = C + V (α) . (3.13)

C is determined by demanding the M(α = 0) reproduces correctly the mass of the D-

string D̄-string pair. Since using footnote 14 we see that πζ corresponds to the shift of

the NS 5-brane near x = πR, the net distance of this NS 5-brane from the x = 0 plane is

π(R + ζ). Thus the mass of the D-string D̄-string system, obtained by multiplying their

length by the tension, is given by (R + ζ)/g. This gives:

C =
1

g
(R + ζ) − V (α = 0) =

1

2g
(R +Rc) . (3.14)

Thus the mass of the stable non-BPS D-particle for R > Rc + 1
2
|ζ | is given by:

M(αmin) = C + V (αmin) =
1

g
(Rc −

ζ2

4(R− Rc)
) . (3.15)
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