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Abstract

The spectrum of open strings on various non-BPS D-brane configurations in type II
string theory on a K3 orbifold is analysed. At a generic point in the corresponding moduli
space the spectrum of open strings does not have any degeneracy between bosonic and
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at all mass levels. In this case the closed string exchange interaction between a pair of
such D-brane configurations vanishes at all distances.
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1 Introduction and Summary

BPS D-branes carrying identical charges do not exert any force on each other, and can

be at equilibrium at all distances. This is a consequence of supersymmetry, and reflects

the fact that the spectrum of open strings living on the world volume of the system has

exact degeneracy between bosonic and fermionic states at all mass levels. As a result the

partition function of the open strings, which corresponds to the negative of the interaction

energy of the pair of D-branes, vanishes identically.

If we consider a set of non-BPS D-branes, or a system of BPS D-branes carrying

different sets of charges and/or with different orientations so that the combined system

is not supersymmetric, then in general the spectrum of open strings will not have exact

bose-fermi degeneracy. The open string partition function, and hence the interaction

energy of the D-branes, is then not zero. In this case the D-branes exert a force on each

other, and the system is not in equilibrium.

In this paper we analyse explicitly the partition function of open strings for various

non-supersymmetric systems of D-branes in type IIA/IIB string theory on an orbifold K3.

We find that in general this partition function does not vanish and that it has non-trivial

dependence on the relative distance between the branes. However, we also find that as

we vary the moduli of the K3 orbifold, the open string spectrum can develop exact bose-

fermi degeneracy at some special points in the moduli space. For such configurations the
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partition function vanishes identically, and to one loop in open string theory, the D-branes

do not exert any force on each other. Our examples contain pairs of non-BPS D-branes, as

well as a system of BPS branes carrying different charge quantum numbers or orientations

so that the combined system is not supersymmetric.

The various examples that we shall examine involve either BPS D-branes of type

IIA/IIB string theories wrapped on non-supersymmetric cycles of the K3 orbifold [1, 2],

or a system of BPS D-branes each wrapped on a supersymmetric cycle [3], but such

that the combined system breaks all supersymmetries.1 A BPS D-brane wrapped on a

supersymmetric cycle is obtained by starting with a BPS D-brane in type IIA/IIB string

theory on a torus T 4, where an even number of tangential directions of the brane are

along the torus. This configuration is then modded out by a ZZ2 transformation generated

by I4, the transformation that reverses the sign of all the coordinates of T 4 [3]. On the

other hand, a BPS D-brane wrapped on a non-supersymmetric cycle of K3 is obtained

by starting with a non-BPS D-brane in type IIA/IIB string theory on T 4, where an odd

number of tangential directions of the brane are along the torus; this is then modded out

by the same ZZ2 transformation I4. For our analysis we shall use a T-dual description

which maps the orbifold of type IIA/IIB on T 4 by I4 to the orbifold of type IIB/IIA on T 4

by g = I4 · (−1)FL, where FL denotes the contribution to the space-time fermion number

from the left-moving sector of the world-sheet. In this description, the T-dual of a BPS

D-brane wrapped on a supersymmetric cycle of K3 is obtained by taking a BPS D-brane

on T 4 with an odd number of tangential directions along the torus and then modding

out the theory by g. On the other hand the T-dual of a BPS D-brane wrapped on a

non-supersymmetric cycle of K3 is obtained by taking a non-BPS D-brane with an even

number of tangential directions along the torus, and then modding out the theory by g.

In all the examples that we discuss we take T 4 to be a direct product of four circles with

no background anti-symmetric tensor field.

The first example that we shall consider is that of a single non-BPS Dp brane of

IIB/IIA situated at one of the orbifold fixed points of T 4/g, all of whose tangential

directions extend along the non-compact space-time. (In the dual type IIA/IIB theory

on K3 this corresponds to a BPS (p+2)-brane wrapped on a non-supersymmetric 2-cycle

of K3.) This system is stable when the radius of each circle of the torus is larger than

1A simpler example of a bose-fermi degenerate spectrum on a non-BPS brane configuration involving
a combination of a 9-brane and a 5̄-brane has been recently discussed in [4].
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(1/
√

2).2 We find that precisely when all the four radii are at their critical value, the

spectrum of open strings living on the system develops exact bose-fermi degeneracy, and

thus the one loop open string partition function vanishes. This implies that to this order,

the force between a pair of branes of this type due to closed string exchange vanishes at

all distance scales. We also find that when any of the radii is above the critical radius,

the force is repulsive at all distances.

The second example involves a pair of anti-parallel BPS D(p + 1) branes of type

IIB/IIA string theory on T 4/g, where one of the tangential directions of the branes is

along one of the circles of the torus, and the other tangential directions extend along

the non-compact space-time. The two branes could be separated along the non-compact

directions transverse to the brane, but both branes lie along a common fixed line of T 4/g.

(In the dual type IIA/IIB theory on K3 orbifold, this represents a pair of D(p+2) branes,

each wrapped on a supersymmetric 2-cycle.) This system is stable if the radius of the

circle tangential to the brane is smaller than
√

2, and the radii of the circles transverse to

the brane are each larger than (1/
√

2). Again we find that precisely when all the radii take

their critical values, the open string spectrum on this system develops exact bose-fermi

degeneracy, even though the brane configuration is not supersymmetric.

The third example is that of a pair of non-BPS Dp-branes of type IIB/IIA placed at two

different orbifold points of T 4/g, − at diametrically opposite points of one of the circles of

T 4, − with all directions tangential to the branes lying along the non-compact directions.

This system is stable when the radius of this special circle is larger than
√

2, and the radii

of the other circles are larger than (1/
√

2). Again when all the radii are at their critical

value, the open string spectrum on this system develops exact bose-fermi degeneracy. At

the critical point there is a marginal deformation which interpolates between this system

and the one in the previous example; but one can show that the bose-fermi degeneracy

does not survive along this line of marginal deformation.

The fourth example is that of a pair of BPS D(p + 1) branes in IIB/IIA on T 4/g,

each with one tangential direction along a circle of the torus, but unlike the second

example where these directions are anti-parallel, we take the two directions to be along

two orthogonal circles of the torus representing fixed lines on T 4/g that intersect at a

fixed point. The two D-branes share the same p + 1 non-compact tangential directions.

The spectrum of open strings living on this system develops exact bose-fermi degeneracy

2We are using α′ = 1 units.
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when each of the two circles transverse to both the branes has radius (1/2). This is also

the critical radius below which this system of branes develops a tachyonic mode and hence

becomes unstable.

There are two ways of computing the partition function of open strings living on the

D-brane system, − directly from the spectrum of open strings, or using the boundary state

formalism to represent the D-branes as a source for closed strings, and then computing the

amplitude for emission and reabsorption of closed strings. In the open string calculation

it is easy to work out the normalisation of the partition function, but sometimes it is

difficult to know the rules for projection under various symmetries. In the closed string

computation it is easy to find the rules for projection under various symmetries, but the

computation of the normalisation factors is difficult. We use both approaches. In section

2 we use the known spectrum of open strings on BPS and non-BPS D-branes in type II

string theory on T 4 modded out by g to compute the partition function in examples 1

and 2 in the open string formalism. Then in section 3 we repeat the analysis for these

examples in the boundary state formalism, and in the process fix the overall normalisation

of the boundary states by comparing with the known answers in section 2. Then we carry

out the analysis of examples 3 and 4 using the boundary state formalism.

Theories with accidental bose-fermi degeneracy have been used before [5, 6, 7, 8, 9,

10] in postulating the existence of non-supersymmetric string theories with vanishing

cosmological constant. It is tempting to speculate that the type of examples described

here could be useful in constructing orientifold duals of these theories.

The existence of non-BPS brane configurations which do not exert any force on each

other also opens up the possibility of putting a large number of such systems together,

unless higher loop corrections generate a repulsive interaction between these systems.

In this case we might expect the near horizon geometry of this system to be described

reliably by a solution of the supergravity equations of motion, thereby giving rise to new

relations between non-supersymmetric field theories and string theory in the spirit of Refs.

[11, 12, 13].
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2 Examples of non-BPS D-brane configurations with

exact bose-fermi degeneracy

In this section we shall construct examples of stable non-BPS brane configurations for

which the spectrum of open strings living on the brane has exact bose-fermi degeneracy at

all mass levels, and as a result the force between these branes due to single closed string

exchange vanishes at all distances. The theory that we shall consider is type IIB/IIA

string theory on T 4 modded out by I4 · (−1)FL, with I4 denoting the transformation that

reverses the sign of all the coordinates of the torus and FL denoting the contribution

to the space-time fermion number from the left-moving sector of the world-sheet. (This

theory is T-dual to type IIA/IIB string theory on T 4/I4.) Let us denote by x6, . . . , x9

the coordinates on T 4, by R6, . . . , R9 the corresponding radii, and by x0, . . . , x5 the non-

compact coordinates. We shall assume that we have Dirichlet boundary conditions on

the brane along the x1, x2 directions, and use a light-cone gauge formalism with x1, x2 as

the light-cone directions; a standard D-brane (with Neumann boundary conditions in the

time-direction) can be obtained from this by a double Wick rotation [14].

For a given configuration of D-branes, the object of interest is the open string partition

function:

Z =
∫
dt

2t
T rNS−R(e−2tHoP) , (2.1)

where NS and R denote Neveu-Schwarz and Ramond sectors, respectively, P is an appro-

priate projection operator, and Ho is the open string Hamiltonian:

Ho = π~p2 +
1

4π
~w2 + π

∑

µ=0,3,...9

[
∞∑

n=1

αµ
−nα

µ
n +

∑

r>0

rψµ
−rψ

µ
r ] + πCo . (2.2)

Here ~p denotes the open string momentum along the directions for which the string has

Neumann (N) boundary conditions at both ends, and ~w denotes the winding charge

along the directions for which both ends obey Dirichlet (D) boundary conditions. αµ
n and

ψµ
r denote respectively the bosonic and fermionic oscillators satisfying the commutation

relations:

[αµ
m, α

ν
n] = mδµνδm+n,0, {ψµ

r , ψ
ν
s} = δµνδr+s,0 . (2.3)

For coordinates satisfying the same boundary condition at both ends of the open string

(i.e. both Neumann (N) or both Dirichlet (D)) n always takes integer values, whereas r

takes integer (integer + 1
2
) values in the R (NS) sector. On the other hand, for coordinates
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satisfying different boundary conditions at the two ends of the open string (one D and

one N) n takes integer+1
2

values and r takes integer +1
2

(integer) values in the R (NS)

sector. The normal ordering constant Co vanishes in the R-sector and is equal to −1
2

+ s
8

in the NS sector (in α′ = 1 units) where s denotes the number of coordinates satisfying

D-N boundary conditions. The trace, denoted by Tr, is taken over the full Fock space of

the open string, and also includes a sum (integral) over various momentum and winding

numbers, and a sum over the different Chan Paton sectors.

2.1 Example 1: BPS D-brane wrapped on non-supersymmetric

cycle of K3

We begin with a single non-BPS Dp-brane [15, 16, 17, 18] in type IIB/IIA string theory

on T 4/(−1)FL · I4. The D-brane is situated at one of the fixed points of T 4/(−1)FL · I4,

and all p + 1 directions on the world-volume extend along the non-compact space-time.

p is even for type IIB string theory, and odd for type IIA string theory. (In the T-dual

description this can be regarded as a BPS D-(p + 2)-brane in IIA/IIB wrapped on a

non-supersymmetric cycle of K3 [1, 2].) There are two different Chan Paton sectors, −
labelled by the 2 × 2 identity matrix I and the Pauli matrix σ1, −, each having its own

rule for GSO ((−1)F ) projection, and g ≡ I4 · (−1)FL projection. Thus P in Eq. (2.1) is

given by:

P =
1 + (−1)F

2

1 + g

2
. (2.4)

(−1)F reverses the sign of all the world-sheet fermions, whereas g reverses the sign of the

world-sheet scalar and fermions associated with the x6, . . . , x9 coordinates. In computing

the partition function (2.1) we also need to know how (−1)F and g act on the Fock vacuum

in the different sectors; this is known [16, 17, 19]. In the NS sector we have

I : (−1)F = −1 g = 1

σ1 : (−1)F = 1 g = −1 . (2.5)

Thus when we combine the open string spectrum from the two sectors, we see that there is

no net (−1)F or g projection, as at a given mass level we have open string states carrying

both (−1)F charges and both g charges. However, there is a net (−1)F ·g projection, since

the Fock vacuum in both sectors is odd under (−1)F · g, and hence only those open string

states, obtained by oscillators carrying a net (−1)F · g charge −1 acting on the vacuum,
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are allowed in the spectrum. Thus the combined contribution of all Chan Paton factors

to (2.1) from NS sector states can be written as

∫
dt

2t
trNS

(
e−2tHo

1 + (−1)F · g
2

)
, (2.6)

where tr now denotes a sum over the oscillators in a single Fock space, an integration over

momenta in the non-compact directions, and a sum over winding numbers in the compact

directions, but does not contain a sum over the different Chan Paton factors.

The situation in the Ramond sector is even simpler. The ground state is 16-fold de-

generate due to the 8 fermionic zero modes, and it contains an equal number of states

with charge 1 and −1 under each of the three operators (−1)F , g and (−1)F · g. Thus

TrR(e−2tHo(−1)F ), TrR(e−2tHog), and TrR(e−2tHo(−1)F · g) all vanish, and when we com-

bine the spectrum from the two Chan Paton sectors, the contribution to (2.1) can be

written as ∫
dt

2t

1

2
trR(e−2tHo) . (2.7)

We can now evaluate the contribution from each sector separately. We get

trNS(e−2tHo) =
A

(2π)p+1
(2t)−

p+1
2
f3(q̃)

8

f1(q̃)8




9∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i


 , (2.8)

where A is the (infinite) (p + 1)-dimensional volume of the brane in the non-compact

directions,

q̃ = e−πt , (2.9)

and fi are defined in the usual manner [20]:

f1(q̃) = q̃
1
12

∞∏

n=1

(1 − q̃2n) ,

f2(q̃) =
√

2q̃
1
12

∞∏

n=1

(1 + q̃2n) ,

f3(q̃) = q̃−
1
24

∞∏

n=1

(1 + q̃2n−1) ,

f4(q̃) = q̃−
1
24

∞∏

n=1

(1 − q̃2n−1) . (2.10)

The origin of the various factors in (2.8) is as follows. The A(2π)−p+1(2t)−(p+1)/2 factor

comes from integration over the open string momenta along the non-compact directions
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and the f3(q̃)
8/f1(q̃)

8 factor represents the contribution of the bosonic and the fermionic

oscillators. The last factor
∏

i

∑
ni
q̃2R2

i
n2

i comes from the sum over open string winding

modes along the compact directions.

Similarly we get

trNS(e−2tHo(−1)F · g) = − A

(2π)p+1
(2t)−

p+1
2 · 4 · f3(q̃)

4f4(q̃)
4

f1(q̃)4f2(q̃)4
. (2.11)

The contribution from the momentum integration along the non-compact directions re-

mains the same but the oscillator contribution changes, since four of the bosonic oscillators

and four of the fermionic oscillators change sign under (−1)F · g. There is no contribution

from the winding sector, since (−1)F · g takes a state with winding charge ~w to a state

with winding charge −~w, and hence the contribution from these states vanishes in the

trace. Finally, the overall − sign reflects the fact that the NS sector ground state is odd

under (−1)F · g (which is the reason why this model is free of tachyons).

The contribution from the Ramond sector can also be evaluated in a straightforward

manner. We get

trR(e−2tHo) =
A

(2π)p+1
(2t)−

p+1
2
f2(q̃)

8

f1(q̃)8




9∏

i=6

∑

ni∈Z

q̃2R2
i
n2

i


 . (2.12)

Comparing with Eq. (2.8) we see that the contribution from momentum integration along

the non-compact directions, and the sum over winding modes in the compact direction

remains the same. The only change is in the contribution from the fermionic oscillators.

Combining the contribution from all sectors, and using the (abstruse) identity

f3(q̃)
8 − f2(q̃)

8 = f4(q̃)
8 , (2.13)

we see that the total partition function is given by:

Z =
1

2

∫
dt

2t

A

(2π)p+1
(2t)−

p+1
2


f4(q̃)

8

f1(q̃)8




9∏

i=6

∑

ni∈ZZ

q̃2R2
i n2

i


− 4 · f3(q̃)

4f4(q̃)
4

f1(q̃)4f2(q̃)4


 . (2.14)

Let us now consider the case where Ri = 1√
2

for each i. In this case we get

∑

ni∈ZZ

q̃2R2
i
n2

i =
∑

n∈ZZ

q̃n2

. (2.15)

Using the sum and the product representation of the Jacobi ϑ-function ϑ3(0|τ) [21],

ϑ3(0|τ) =
∑

n∈ZZ

q̃n2

=
∞∏

n=1

(1 − q̃2n)(1 + q̃2n−1)2 = f1(q̃)f
2
3 (q̃) , (2.16)
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where q̃ = e2πiτ , and the identity

f4(q̃)
1√
2
f2(q̃)f3(q̃) = 1 , (2.17)

we get
∑

n∈ZZ

q̃n2

=
√

2
f1(q̃)f3(q̃)

f2(q̃)f4(q̃)
. (2.18)

Using Eqs. (2.15) and (2.18), (2.14) then becomes

Z = 0 . (2.19)

Since the integrand of Z vanishes for all t, this shows that there is exact degeneracy

between bosonic and fermionic open string states at all mass level, although the brane is

non-BPS. In order to find the bosonic and the fermionic spectrum separately, we need to

evaluate (2.12) or the sum of (2.8) and (2.11). This is given by:

A

(2π)p+1
(2t)−

p+1
2 4 · f2(q̃)

4f3(q̃)
4

f1(q̃)4f4(q̃)4
. (2.20)

This is proportional to the partition function of bosonic (or fermionic) open string states

stretched between a BPS p-brane and a BPS (p+ 4)-brane in type II string theory.

Note that the critical radii where the spectrum of open strings develops exact bose-

fermi degeneracy correspond precisely to the values below which the non-BPS D-brane

becomes unstable against decay into a pair of BPS branes [15]. This is not a coincidence.

For Ri >
1√
2

the massless spectrum contains four bosonic states from sector I, four

fermionic states from sector I, and four fermionic states from sector σ1. In order to have

bose-fermi degeneracy at the massless level, we need four extra massless bosonic states

which are provided by some of the modes from sector σ1 becoming massless at the critical

radius. As we decrease any of the Ri below the critical radius, the corresponding mode

becomes tachyonic signalling an instability in the system.

We can use this result to conclude that when R6 = R7 = R8 = R9 = 1√
2
, the force

between a pair of non-BPS branes of this kind vanishes at all distances. To see this

we note that if we consider a pair of such branes separated by a distance r in any of

the non-compact directions transverse to the brane, then the partition function of open

strings stretched from one of the branes to another is given by the same expression as

(2.14) except for an overall extra factor of q̃r2/2π2
in the integrand, reflecting the energy

10



associated with the tension of the open string stretched over a distance r. Thus at the

critical radius the partition function vanishes, reflecting that the potential energy V (r)

between the pair of branes (which is equal to negative of the partition function) vanishes

identically for all r.

Since
∑

ni∈ZZ q̃
2R2

i
n2

i is a monotonically decreasing function of Ri (as 0 < q̃ < 1), we see

that for Ri >
1√
2

the integrand of Eq. (2.14) is a negative definite function. Thus V (r) is

positive definite. Furthermore since V (r) only depends on r via q̃r2/2π2
, it follows by the

same argument that V ′(r) is negative, and hence that V (r) is a monotonically decreasing

function of r. Thus for Ri >
1√
2
, where the non-BPS brane is stable, the interaction

between a pair of such branes is repulsive at all distances.

2.2 Example 2: Pair of BPS D-branes wrapped on supersym-

metric cycles of K3

In this section we shall study the example of a parallel BPS D-(p+1)-brane D̄-(p+1) brane

pair, where one direction extends along x9, and the other p + 1 directions on the world-

volume lie along the non-compact space-time directions. As before we are considering

type IIB/IIA string theory on T 4 modded out by (−1)FL · I4, where I4 inverts x6, . . . , x9.

Consistency requires that p is odd for type IIA string theory, and even for type IIB string

theory. We consider the situation where we do not have a Wilson line on any of the

branes, and we take them both to be situated at x6 = x7 = x8 = 0, while they can

be separated by a distance r along any of the non-compact directions transverse to the

brane. There are two different cases, depending on whether the brane and the anti-brane

carry the same or opposite twisted sector RR charge [15]; here we shall only consider

the situation where the twisted sector RR charge is the same for both branes. (In the

T-dual description this corresponds to a pair of fractional p-branes situated at one of the

orbifold fixed points of T 4/I4 in type IIA/IIB string theory on T 4/I4, carrying the same

twisted sector RR charge, but opposite untwisted sector RR charge. Each of these can

be interpreted as a BPS (p+2)-brane wrapped on a supersymmetric cycle [3]. Thus each

system is individually BPS, but the combined system is not BPS, as the RR charges of

the two systems are not aligned.)

We shall compute the partition function of open strings living on this system. Since

each of the branes is individually BPS, the spectrum of open strings with both ends living

on the same brane is automatically supersymmetric. Thus we only need to focus on the
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open strings with one end on the D-brane and the other end on the D̄-brane. There are

two such sectors, related by reversal of the orientation of the open strings. But since

both sectors contribute equally to the partition function we shall restrict our attention to

only one sector. Thus there is no sum over Chan Paton factors, and we can express the

partition function (2.1) as

Z =
∫
dt

2t
trNS−R

(
e−2tHo

1 + (−1)F

2

1 + g

2

)
. (2.21)

The action of (−1)F and g on the world-sheet fields is identical to that described in the

last example, but we need to know the action on the vacuum. Since the open string is

stretched between the D-string and the D̄-string, the NS sector ground state is (−1)F

even. On the other hand, from the analysis of Ref. [15] we know that the NS sector

ground state carrying zero momentum is projected out under the g projection. Thus

it is odd under g.3 In the Ramond sector we have a 16-fold degeneracy, and as in the

previous example, the ground state contains an equal number of states carrying +1 and

−1 eigenvalues of (−1)F , g and (−1)F · g. Thus only the trR(e−2tHo) term contributes

from this sector.

We can now easily write down the expression for the contribution from the various

sectors,

trNS(e−2tHo) =
A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2 f3(q̃)

8

f1(q̃)8

( 8∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i

)( ∑

m9∈ZZ

q̃2m2
9/R2

9

)
. (2.22)

Compared to (2.8), there is an extra factor of q̃r2/2π2
reflecting the effect of the transverse

separation between the two branes, and the sum over winding numbers along the 9th

direction has been replaced by a sum over momenta, since we now have a Neumann

boundary condition along this direction. Similarly we get

trNS(e−2tHo(−1)F ) =
A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2 f4(q̃)

8

f1(q̃)8

( 8∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i

)( ∑

m9∈ZZ

q̃2m2
9/R2

9

)
.

(2.23)

3We are using a slightly different convention from the one used in [15]. There the action of g and
(−1)F on the NS sector ground state was defined to be the same as in the case of open strings with both
ends on the D-brane, but the sign of (−1)F and g in the projection operator was chosen to be negative.
Here we have chosen the signs of (−1)F and g in the projection operator to be positive, but are taking
the action of these operators on the NS sector ground state to be opposite of that for open strings with
both ends on the D-brane.
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trNS(e−2tHog) = − A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2 · 4 · f3(q̃)

4f4(q̃)
4

f1(q̃)4f2(q̃)4
. (2.24)

trNS(e−2tHo(−1)F · g) = − A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2 · 4 · f3(q̃)

4f4(q̃)
4

f1(q̃)4f2(q̃)4
. (2.25)

trR(e−2tHo) =
A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2 f2(q̃)

8

f1(q̃)8

( 8∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i

)( ∑

m9∈ZZ

q̃2m2
9/R2

9

)
. (2.26)

Substituting these into (2.21) and using the identity (2.13), Z becomes in this case

∫ dt

2t

1

2

A

(2π)p+1
(2t)−

p+1
2 q̃r2/2π2


f4(q̃)

8

f1(q̃)8

( 8∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i

)( ∑

m9∈ZZ

q̃2m2
9/R2

9

)
− 4 · f3(q̃)

4f4(q̃)
4

f1(q̃)4f2(q̃)4


 .

(2.27)

Now we note that for R6 = R7 = R8 = 1√
2

and R9 =
√

2,

( 8∏

i=6

∑

ni∈ZZ

q̃2R2
i
n2

i

)( ∑

m9∈ZZ

q̃2m2
9/R2

9

)
= (

∑

n∈ZZ

q̃n2

)4 =
(√

2
f1(q̃)f3(q̃)

f2(q̃)f4(q̃)

)4
. (2.28)

Substituting this into Eq. (2.27) we see that

Z = 0 . (2.29)

Thus the spectrum of open strings has exact bose-fermi degeneracy even though the brane

configuration is not supersymmetric. At this critical point in the moduli space, the force

between the pair of branes vanishes for all separations.

By repeating the analysis of the previous example we can easily verify that the partition

function in the NS or R sector is again proportional to that of a BPS D-p − D-(p + 4)

brane system in type II string theory. Also, if Ri >
1√
2

for 6 ≤ i ≤ 8, and R9 <
√

2, the

interaction between the pair of branes is repulsive at all distances.

3 The boundary state approach

It is instructive to compare the above derivation of the bose-fermi degeneracy of the open

string spectrum with that using the closed string theory point of view, describing Dirichlet

branes as boundary states [20, 22, 23, 24, 25, 26]. We shall use the conventions of [15]

in the following. Let us first treat the two cases that we have analysed above in turn in

order to fix the relevant normalisation constants of the boundary states; we shall then

also construct two new examples.
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3.1 Example 1: BPS D-brane wrapped on non-supersymmetric

cycle of K3

This is the same example that we studied in section 2.1, − namely, a non-BPS p-brane of

IIB/IIA on T 4/(−1)FL · I4, all of whose tangential directions lie along the non-compact

space-time. Let us denote by C ⊂ {0, 3, 4, 5} the set of p+1 indices for which the Dirichlet

brane satisfies Neumann boundary conditions, and denote by D the complement of C in

{0, 3, 4, 5}. We also denote by Dc the union of D with {1, 2}, and by D̂ the union of D
with {6, 7, 8, 9}. The boundary state that represents the non-BPS p-brane is of the form

[16]4

|D̃p, a,b, ǫ〉 =
1

2

(
|Bp, a,b,+〉NSNS;U − |Bp, a,b,−〉NSNS;U

)

+
ǫ

2

(
|Bp, a,b,+〉RR;T + |Bp, a,b,−〉RR;T

)
, (3.1)

where the first two (last two) states are coherent states in the untwisted NSNS (twisted

RR) sector. a denotes the location of the brane in the non-compact directions with

a1 = a2 = 0, and b denotes the location of the brane in the compact directions. Since we

always take the brane to lie at one of the fixed points of T 4/g, bi can only take the values

0 or πRi (6 ≤ i ≤ 9). ǫ can take values ±1, and denotes the sign of the twisted sector

RR charge carried by the brane. Up to an overall normalisation, the coherent states are

(uniquely) characterised by the conditions

Xµ(τ = 0, σ)|Bp, a,b, η〉 = aµ for µ ∈ D
Xµ(τ = 0, σ)|Bp, a,b, η〉 = bµ for 6 ≤ µ ≤ 9

∂τX
µ(τ = 0, σ)|Bp, a,b, η〉 = 0 for µ ∈ C

(ψµ(τ = 0, σ) − iηψ̃µ(τ = 0, σ))|Bp, a,b, η〉 = 0 for µ ∈ D̂
(ψµ(τ = 0, σ) + iηψ̃µ(τ = 0, σ))|Bp, a,b, η〉 = 0 for µ ∈ C

xµ|Bp, a,b, η〉 = 0 for µ = 1, 2 .

(3.2)

Here Xµ denotes the bosonic coordinate field, ψµ and ψ̃µ its right- and left-moving super-

partner on the closed string world-sheet, and xµ the zero mode of Xµ. η can take values

±1. More explicitly the boundary state |Bp, a,b, η〉 can be written as

|Bp, a,b, η〉NSNS;U = N
∫ 
 ∏

µ∈Dc

dkµeik·a






9∏

i=6

∑

mi∈ZZ

eimib
i/Ri


 ̂|Bp,k,m, η〉NSNS;U ,

(3.3)

4We shall be using the convention that D̃ denotes a non-BPS D-brane, and D denotes a BPS D-brane.
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and

|Bp, a,b, η〉RR;T = 2iÑ
∫ 
 ∏

µ∈Dc

dkµeik·a


 ̂|Bp,k,b, η〉RR;T , (3.4)

where k denotes the momentum in the non-compact directions, andmi/Ri the momentum

along the ith compact direction. ̂|Bp, · · · , η〉 is the coherent momentum eigenstate

̂|Bp, · · · , η〉 = exp




∞∑

n=1


−1

n

∑

µ∈C
αµ
−nα̃

µ
−n +

1

n

∑

µ∈D̂

αµ
−nα̃

µ
−n




+iη
∑

r>0


−

∑

µ∈C
ψµ
−rψ̃

µ
−r +

∑

µ∈D̂

ψµ
−rψ̃

µ
−r




 | · · · , η〉(0) . (3.5)

Here αµ
n, α̃µ

n are the right- and left-moving modes of Xµ, and ψµ
r and ψ̃µ

r are the modes

of ψµ and ψ̃µ, respectively. n is integer in the untwisted NSNS sector, and in the twisted

RR sector for µ = 0, 3, 4, 5, and half-integer in the twisted RR sector for µ = 6, 7, 8, 9. r is

half-integer in the untwisted NSNS sector, and in the twisted RR sector for µ = 6, 7, 8, 9,

and integer in the twisted RR sector for the other values of µ. | · · · , η〉(0) denotes the Fock

vacuum labelled by the quantum numbers · · ·. In the untwisted sector · · · correspond to

the quantum numbers {k,m}, whereas in the twisted sector · · · stand for the quantum

numbers {k,b}. The Fock vacuum in the twisted RR sector is degenerate, but the state

appearing in (3.5) is uniquely determined by the condition coming from the fermionic

zero modes in Eq. (3.2). N , Ñ are normalisation factors to be determined later.

We are interested in the tree level amplitude that describes the exchange of closed

string states between two identical non-BPS Dp-branes which are located at the same

fixed point of T 4/g (at b = 0, say) and whose positions along the non-compact directions

(indexed by Dc) are described by a1 and a2.
5 This amplitude is given by

∫ ∞

0
dl 〈D̃p, a1,b = 0, ǫ|e−lHc|D̃p, a2,b = 0, ǫ〉 , (3.6)

where Hc is the closed string hamiltonian in light cone gauge,

Hc = π~p2 +
1

4π
~w2 + 2π

∑

µ=0,3,...,9

[ ∞∑

n=1

(αµ
−nα

µ
n + α̃µ

−nα̃
µ
n) +

∑

r>0

(ψµ
−rψ

µ
r + ψ̃µ

−rψ̃
µ
r )

]
+ 2πCc .

(3.7)

5In order to compute the self-interaction of such a non-BPS D-brane we simply need to take a1 = a2.
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The constant Cc takes the value −1 in the untwisted NSNS sector, and 0 in the untwisted

RR, twisted NSNS, and twisted RR sectors. ~p and ~w denote the momentum and winding

charges as usual. Using standard techniques this amplitude can be determined to be

1

2

∫ ∞

0
dl l−

5−p

2 e−
(a1−a2)2

4πl


N 2




9∏

i=6

∑

mi∈ZZ

e−lπm2
i /R2

i


 f 8

3 (q) − f 8
4 (q)

f 8
1 (q)

− Ñ 2f
4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)


 ,

(3.8)

where q = e−2πl. In order to determine the normalisation constants, we apply a modular

transformation, setting t = 1/2l, which converts the closed string tree amplitude into an

open string loop amplitude. In the present case, using the transformation properties of

the fi functions,

f1(e
−π/t) =

√
tf1(e

−πt) , f2(e
−π/t) = f4(e

−πt) ,
f3(e

−π/t) = f3(e
−πt) , f4(e

−π/t) = f2(e
−πt) ,

(3.9)

together with the identity

∑

m∈ZZ

e−πl(m/R)2 =
R√
l

∑

n∈ZZ

e−2tπ(nR)2 , (3.10)

we can express (3.8) as

1

2

∫ ∞

0

dt

2t
t−

p+1
2 q̃

(a1−a2)2

2π2 2
5−p

2


4N 2




9∏

j=6

Rj






9∏

i=6

∑

ni∈ZZ

q̃2n2
i
R2

i


 f 8

3 (q̃) − f 8
2 (q̃)

f 8
1 (q̃)

−Ñ 2 f
4
4 (q̃)f 4

3 (q̃)

f 4
1 (q̃)f 4

2 (q̃)

]
, (3.11)

where q̃ = e−πt. This agrees with the result of the open string calculation (2.14) provided

that

32R6R7R8R9N 2 =
A

(2π)p+1
2Ñ 2 =

A

(2π)p+1
. (3.12)

Using these values of N and Ñ , (3.8) reduces to

A

(2π)p+1

1

4

∫ ∞

0
dl l−

5−p

2 e−
(a1−a2)2

4πl


 1

16R6R7R8R9




9∏

i=6

∑

mi∈ZZ

e−lπm2
i
/R2

i


 f 8

3 (q) − f 8
4 (q)

f 8
1 (q)

−f
4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)

]
. (3.13)

At the critical radii Ri = 1√
2

for i = 6, 7, 8, 9, the sums over mi can be simplified us-

ing (2.18), and together with (2.13) this implies that the integrand in (3.13) vanishes

identically.
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From the point of view of the closed string calculation, the first line in (3.13) con-

tains the attractive (bulk) gravitational force that is mediated by the massless fields from

the untwisted NSNS sector, whereas the second line contains the repulsive force between

objects carrying the same charge with respect to the twisted RR sector. The latter is

independent of the radii of the transverse directions, but the former is inversely propor-

tional to the radii, and also contains winding contributions which become less and less

relevant as the radii are increased. Indeed, in the uncompactified theory, the untwisted

sector contribution to the integrand would be proportional to l−(9−p)/2 for large l, indicat-

ing that the gravitational attraction is much weaker at long distances than the repulsive

force due to the charges.

3.2 Example 2: Pair of BPS D-branes wrapped on supersym-

metric cycles of K3

This is the same example discussed in section 2.2. In this case we are interested in a system

containing a BPS D-(p+ 1)-brane and its anti-brane in type IIB/IIA on T 4 modded out

by I4 · (−1)FL . The branes stretch along the x9 direction, and the other p + 1 directions

of their world-volumes are in the non-compact directions. (In particular, they lie in the

subspace xi = bi for 6 ≤ i ≤ 8 where bi can take values 0 or πRi.) None of the branes carry

any Wilson line. If a denotes the location of such a brane in the non-compact directions

(⊂ (x1, . . . , x5)) transverse to the brane, the boundary state describing this BPS D-(p+1)

brane is of the form [15]

|D(p+ 1), a,b, ǫ, κ〉 =
1

2

(
|B(p+ 1), a,b〉NSNS;U + ǫ|B(p+ 1), a,b〉RR;U

)

+
1

2
√

2
ǫκ
(
|B(p+ 1), a,b; 0〉NSNS;T + ǫ|B(p+ 1), a,b; 0〉RR;T

)

+
1

2
√

2
ǫκ
(
|B(p+ 1), a,b; πR9〉NSNS;T

+ǫ|B(p+ 1), a,b; πR9〉RR;T

)
.

(3.14)

ǫ and κ can take values ±1 and denote the sign of the untwisted sector RR charge and

the twisted sector RR charge, respectively. (Thus ǫ = ± corresponds to the brane and the

anti-brane, respectively.) The suffices indicate the closed string sector to which each state

belongs. For the case of the twisted sectors, NSNS;T and RR;T, we have also indicated
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whether the state is in the sector localised at the fixed point x6 = x7 = x8 = x9 = 0 of

T 4/g (as is the case for the states in the second line of Eq. (3.14)) or at the fixed point

x6 = x7 = x8 = 0, x9 = πR9 (as is the case for the states in the third and fourth line

of Eq. (3.14)). Note that the sign of the twisted sector charges at the x9 = 0 and the

x9 = πR9 ends are taken to be the same. This is a consequence of the fact that the branes

do not carry any Wilson line along x9; more general cases have been discussed in Ref. [15].

The different boundary states appearing on the right hand side of Eqs. (3.14) are given

as

|B(p+ 1), a,b〉NSNS;U =
1√
2

(
|B(p+ 1), a,b,+〉NSNS;U

−|B(p+ 1), a,b,−〉NSNS;U

)

|B(p+ 1), a,b〉RR;U =
1√
2

(
|B(p+ 1), a,b,+〉RR;U + |B(p+ 1), a,b,−〉RR;U

)

|B(p+ 1), a,b; c9〉NSNS;T =
1√
2

(
|B(p+ 1), a,b,+; c9〉NSNS;T

+|B(p+ 1), a,b,−; c9〉NSNS;T

)

|B(p+ 1), a,b; c9〉RR;T =
1√
2

(
|B(p+ 1), a,b,+; c9〉RR;T

+|B(p+ 1), a,b,−; c9〉RR;T

)
,

(3.15)

where

|B(p+ 1), a,b, η〉NSNS;U = M
∫ 
 ∏

µ∈Dc

dkµeik·a






8∏

j=6

∑

mj∈ZZ

eimjbj/Rj




∑

n9∈ZZ

̂|B(p+ 1),k,m, n9, η〉NSNS;U

|B(p+ 1), a,b, η〉RR;U = 4iM
∫ 
 ∏

µ∈Dc

dkµeik·a






8∏

j=6

∑

mj∈ZZ

eimjbj/Rj




∑

n9∈ZZ

̂|B(p+ 1),k,m, n9, η〉RR;U

|B(p+ 1), a,b, η; c9〉NSNS;T = 2M̃
∫ 
 ∏

µ∈Dc

dkµeik·a


 ̂|B(p+ 1),k,b, η; c9〉NSNS;T

|B(p+ 1), a,b, η; c9〉RR;T = 2iM̃
∫ 
 ∏

µ∈Dc

dkµeik·a


 ̂|B(p+ 1),k,b, η; c9〉RR;T .
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(3.16)

c9 in Eq. (3.16) takes values 0 or πR9, and corresponds to twisted sector states associated

to the fixed points (b, 0) and (b, πR9), respectively. n9 labels the winding number along

x9, and Dc is defined as before. The coherent momentum (and winding) eigenstates
̂|B(p+ 1),k,m, n9, η〉 (in the case of the untwisted sectors) and ̂|B(p+ 1),k,b, η; c9〉 (in

the case of the twisted sectors) are again given by the same formula as in (3.5), the only

difference being that now C contains also µ = 9 and D̂ does not. Furthermore the moding

of the fermions in the untwisted RR sector is opposite to that in the untwisted NSNS

sector, and that in the twisted NSNS sector is opposite to that in the twisted RR sector

discussed below (3.5).

The normalisation constants M and M̃ can be determined from the tree level diagram

that describes the exchange of closed string states between two such branes. We take them

to be located at the same point in the compact space (say at b = 0), but at different

points a1 and a2 in the non-compact space. We also take them to carry the same twisted

sector RR charges. The relevant term describing the interaction between a pair of branes

of this type is

∫ ∞

0
dl 〈D(p+ 1), a1,b1 = 0, ǫ1, κ|e−lHc|D(p+ 1), a2,b2 = 0, ǫ2, κ〉 (3.17)

which can be evaluated to give

1

4

∫ ∞

0
dl l−

5−p

2 e−
(a1−a2)2

4πl


M2


 ∑

n9∈ZZ

e−lπR2
9n2

9






8∏

i=6

∑

mi∈ZZ

e−lπm2
i /R2

i




×f
8
3 (q) − f 8

4 (q) − ǫ1ǫ2f
8
2 (q)

f 8
1 (q)

−M̃2 f
4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)
(1 − ǫ1ǫ2)

]
. (3.18)

ǫj = ± distinguishes between brane or anti-brane for the branes localised at aj , j = 1, 2.

Again q = e−2πl, and the first two lines come from the untwisted NSNS and RR sector,

whereas the last line combines the contributions from the two twisted NSNS and RR

sectors at x9 = 0 and x9 = πR9. Using (2.13) it is clear that the amplitude vanishes

identically if the system preserves supersymmetry, i.e. for ǫ1 = ǫ2.

We can rewrite the amplitude again in terms of open string coordinates by setting
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t = 1/2l. Then (3.18) becomes

1

4

∫ ∞

0

dt

2t
q̃

(a1−a2)2

2π2 t−
p+1
2


M22(9−p)/2R6R7R8

R9


 ∑

m9∈ZZ

q̃2m2
9/R2

9




×



8∏

i=6

∑

ni∈ZZ

q̃2n2
i
R2

i


 f 8

3 (q̃) − f 8
2 (q̃) − ǫ1ǫ2f

8
4 (q̃)

f 8
1 (q̃)

−M̃22(5−p)/2 f
4
4 (q̃)f 4

3 (q̃)

f 4
1 (q̃)f 4

2 (q̃)
(1 − ǫ1ǫ2)

]
, (3.19)

where we have again used (3.9) and (3.10). For ǫ1 = −ǫ2 this agrees with (2.27) provided

that

32
R6R7R8

R9
M2 =

A

(2π)p+1
, 2M̃2 =

A

(2π)p+1
. (3.20)

Now that we have determined the constants, (3.18) becomes

1

8

A

(2π)p+1

∫ ∞

0
dl l−

5−p

2 e−
(a1−a2)2

4πl


 1

16

R9

R6R7R8


 ∑

n9∈ZZ

e−lπR2
9n2

9






8∏

i=6

∑

mi∈ZZ

e−lπm2
i
/R2

i




f 8
3 (q) − f 8

4 (q) − ǫ1ǫ2f
8
2 (q)

f 8
1 (q)

− f 4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)
(1 − ǫ1ǫ2)

]
. (3.21)

For ǫ1 = −ǫ2, using (2.13), the integrand simplifies to

1

4

A

(2π)p+1
l−

5−p

2 e−
(a1−a2)2

4πl


 R9

16R6R7R8


 ∑

n9∈ZZ

e−lπR2
9n2

9






8∏

i=6

∑

mi∈ZZ

e−lπm2
i
/R2

i


 f 8

2 (q)

f 8
1 (q)

−f
4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)

]
. (3.22)

At the critical radius, R6 = R7 = R8 = 1/
√

2, R9 =
√

2, the momentum and winding

sums simplify as before using (2.18), and (3.22) vanishes.

From the point of view of the closed string calculation, the first term in the integrand

of (3.21) contains the gravitational interaction and the interaction due to the exchange

of the untwisted RR fields. In the case of the brane-anti-brane pair, the two branes have

opposite charge with respect to the untwisted RR fields, and therefore both interactions

are attractive. Indeed, for ǫ1 = −ǫ2 the last factor in the first term in (3.21) is 2f 8
2 /f

8
1 ,

and so the first term is strictly positive. The second term contains the interaction due to

the states in the twisted sectors. For the case of brane-anti-brane pair (without Wilson

line) the interactions at both fixed points of T 4/g are equal and repulsive. This is due to
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the fact that the two states under consideration carry the opposite twisted NSNS and the

same twisted RR charge at each fixed point; both lead to a repulsive force. At the critical

point the attractive interaction due to the untwisted sector fields cancels the repulsive

interaction due to the twisted sector fields at all distance scales.

3.3 Example 3: A pair of BPS D-branes wrapped on non-super-

symmetric cycles of K3

The theory under consideration is again type IIB/IIA on T 4 modded out by I4 · (−1)FL.

We shall take a pair of non-BPS Dp-branes of the type described in section 3.1, one at

(a,b=0) and the other at (a,b=(0, 0, 0, πR9)). Note that we have taken the locations of

the two branes in the non-compact directions to be identical. In the dual type IIA/IIB

string theory on T 4/I4, this describes a system containing a pair of non-BPS branes, cor-

responding to BPS D-branes wrapped on two homologically distinct non-supersymmetric

2-cycles, situated at the same location in the non-compact space-time. The boundary

state describing this system is given by:

|D̃p1, D̃p2〉 = |D̃p, a,b = 0, ǫ1〉 + |D̃p, a,b = (0, 0, 0, πR9), ǫ2〉 , (3.23)

where the boundary states appearing on the right hand side of this equation are identical

to the ones defined in section 3.1. The amplitude of interest is
∫ ∞

0
dl 〈D̃p1, D̃p2|e−lHc|D̃p1, D̃p2〉 . (3.24)

This can be computed easily using the expression for the boundary states given in section

3.1, Eqs. (3.1)−(3.5), and is given by

1

2

∫ ∞

0
dl l−

5−p

2

[
4N 2

( 8∏

i=6

∑

mi∈ZZ

e−lπm2
i
/R2

i

)( ∑

m9∈2ZZ

e−lπm2
9/R2

9

)f 8
3 (q) − f 8

4 (q)

f 8
1 (q)

−2Ñ 2f
4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)

]
, (3.25)

where N and Ñ have been defined in (3.12). Using these, (3.25) can be rewritten as

1

2

A

(2π)p+1

∫ ∞

0
dl l−

5−p

2


 1

8R6R7R8R9

( 8∏

i=6

∑

mi∈ZZ

e−lπm2
i
/R2

i

)( ∑

m9∈2ZZ

e−lπm2
9/R2

9

)f 8
3 (q) − f 8

4 (q)

f 8
1 (q)

− f 4
2 (q)f 4

3 (q)

f 4
1 (q)f 4

4 (q)


 .

(3.26)
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By the same identities used in section 3.1 we see that this vanishes exactly at

R6 = R7 = R8 =
1√
2
, R9 =

√
2 . (3.27)

Thus at this critical point the spectrum of open string states on this system develops

exact Bose-Fermi degeneracy.

Note that at this critical radius there is an exact marginal deformation which takes

this system to the system discussed in section 3.2 [15, 17]. Thus it is natural to ask if the

bose-fermi degeneracy of the spectrum survives all along this line of marginal deformation.

This is however not the case. From the arguments in Ref. [17] it is easy to see that

the spectrum in the Ramond sector does not change during this marginal deformation,

whereas the spectrum in the NS sector certainly does. Thus the bose-fermi degeneracy in

the spectrum can only appear at special points along this critical line.

3.4 Example 4: A pair of BPS D-branes wrapped on supersym-

metric cycles of K3

This example will involve a system similar to that discussed in section 3.2, − the only

difference being that instead of taking a pair of anti-parallel BPS D(p+1) branes in type

IIB/IIA on T 4 modded out by (−1)FL · I4, we shall consider a pair of ‘orthogonal’ BPS

D(p+1) branes.6 In particular we shall take both D-branes to span the same non-compact

directions, but take the first D-brane to lie along x9 at b ≡ (x6 = 0, x7 = 0, x8 = 0), and

the second D-brane to lie along x8 at b′ ≡ (x6 = 0, x7 = 0, x9 = 0). If κ denotes the sign of

the twisted RR charge of the first D-brane at the fixed points (0, 0, 0, 0) and (0, 0, 0, πR9),

and κ′ denotes the sign of the twisted RR charge of the second D-brane at the fixed points

(0, 0, 0, 0) and (0, 0, πR8, 0), a and a′ denote their locations in the non-compact directions,

and ǫ, ǫ′ denote the sign of the untwisted sector RR charges, then the boundary state of

the combined system is given by

|D(p+ 1), a,b, ǫ, κ〉 + |D(p+ 1), a′,b′, ǫ′, κ′〉′ , (3.28)

where |D(p + 1), a,b, ǫ, κ〉 is the boundary state defined in section 3.2, and |D(p +

1), a′,b′, ǫ′, κ′〉′ is related to the boundary state defined in section 3.2 by exchanging the

8th and the 9th coordinates everywhere.

6Some aspects of tachyon condensation on D-branes at angles have been recently discussed in [27].
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In computing the amplitude describing the emission and reabsorption of closed strings

from this system, we note that since each system is individually BPS the amplitude for

emission and reabsorption of a closed string by the same D-brane will vanish identically.

Thus the relevant amplitude which needs to be analysed is
∫ ∞

0
dl 〈D(p+ 1), a,b, ǫ, κ|e−lHc|D(p+ 1), a′,b′, ǫ′, κ′〉′ . (3.29)

Each of the boundary states in this expression has components in the untwisted NSNS

and RR sectors, as well as the twisted NSNS and RR sectors. The calculation can be

simplified by noting that in any sector which contains zero modes of the fermion fields

ψ8, ψ9, ψ̃8, ψ̃9, the two Fock vacua appearing in the expression for the two boundary

states in Eq. (3.29) are orthogonal since they satisfy different constraints coming from

the fermionic zero modes in the analogue of Eq. (3.2). Thus the contribution to (3.29)

from these sectors vanishes. This leaves us with the untwisted NSNS and the twisted RR

sectors. Furthermore, among the various twisted sector RR states appearing in (3.28),

only the sector that is localised at x6 = x7 = x8 = x9 = 0 contributes to (3.29), since this

is the only sector that is shared by both boundary states. The contribution can be easily

evaluated, and gives

1

4

∫
dl e−

(a−a
′)2

4πl l−
5−p

2

[
2MM′

( ∑

m6,m7∈ZZ

e−lπ((m6/R6)2+(m7/R7)2)
)

×f3(q)
6f4(q)

2 − f4(q)
6f3(q)

2

f1(q)6f2(q)2
− 1

2
κκ′M̃M̃′f2(q)

4f3(q)
2f4(q)

2

f1(q)4f4(q)2f3(q)2

]
, (3.30)

where M, M̃ are given as in (3.20), and M′, M̃′ are obtained from Eq. (3.20) by ex-

changing 8 ↔ 9:

M2 =
A

(2π)p+1

R9

32R6R7R8
M′2 =

A

(2π)p+1

R8

32R6R7R9
, (3.31)

and

M̃2 = M̃′2 =
A

2(2π)p+1
. (3.32)

The integral (3.30) then becomes

I =
1

16

A

(2π)p+1

∫ ∞

0
dl e−

(a−a
′)2

4πl l−
5−p

2

[
1

4R6R7

( ∑

m6,m7

e−lπ((m6/R6)2+(m7/R7)2)
)f3(q)

6f4(q)
2 − f4(q)

6f3(q)
2

f1(q)6f2(q)2
− κκ′

f2(q)
4

f1(q)4

]
.

(3.33)

23



At the ‘critical radius’ R6 = R7 = 1/2, the sums over m6, m7 give

∑

m6,m7

e−lπ((m6/R6)2+(m7/R7)2) =

(∑

n

q2n2

)2

. (3.34)

This can be re-expressed in terms of the Jacobi ϑ-function ϑ3(0|τ) that we considered

before in Eq. (2.16), and the Jacobi ϑ-function ϑ4(0|τ), whose sum and product represen-

tation is [21]

ϑ4(0|τ) =
∑

n∈ZZ

qn2

(−1)n =
∞∏

n=1

(1 − q2n)(1 + q2n−1)2 = f1(q)f
2
4 (q) . (3.35)

Indeed, using (2.16) and (3.35), we find

ϑ2
3(0|τ) + ϑ2

4(0|τ) =
∑

n,l

qn2+l2 +
∑

n,l

(−1)n+lqn2+l2

=
∑

n,l

(1 + (−1)n+l) q
1
2 [(n+l)2+(n−l)2]

= 2
∑

r,s even

q
1
2 [r

2+s2]

= 2

(∑

m

q2m2

)2

, (3.36)

where we have set r = n+ l and s = n− l, and observed that if r = n+ l is even, then so

is s = n− l. Thus (3.34) can be rewritten as

(∑

n

q2n2

)2

=
1

2
f1(q)

2(f3(q)
4 + f4(q)

4) , (3.37)

and the integrand in (3.33) becomes, apart from the overall factor of 1
16

A
(2π)p+1 e

−(a−a
′)2

4πl l−
5−p

2

and for κκ′ = 1,

[
1

2

f3(q)
2f4(q)

2(f3(q)
4 − f4(q)

4)(f3(q)
4 + f4(q)

4)

f1(q)4f2(q)2
− f2(q)

4

f1(q)4

]

=
1

f1(q)4f2(q)2

[
1

2
f3(q)

2f4(q)
2(f3(q)

8 − f4(q)
8) − f2(q)

6
]

=
f2(q)

6

f1(q)4f2(q)2

[
1

2
(f3(q)

2f4(q)
2f2(q)

2) − 1
]

= 0 , (3.38)

where we have used the identity (2.17) in the last line.
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The radius R6 = R7 = 1/2 is critical in the sense that for Ri < 1/2, i = 6, 7, the

open string that begins on one D(p+ 1)-brane and ends on the other contains a tachyon.

Indeed, in this case the Co in Eq. (2.2) is equal to −(1/4), and the energy of the winding

states with winding number (n6, n7) along the 6th and the 7th directions is given by

− π

4
+ π(n6R6)

2 + π(n7R7)
2 . (3.39)

The n6 = n7 = 0 mode is projected out, but appropriate linear combinations of the states

with (n6, n7) = (±1, 0) or (n6, n7) = (0,±1) survive. At least one of them is tachyonic

whenever R6 or R7 is below (1/2), and the system is therefore unstable in this regime.

For generic values of the radii R8 and R9 there does not seem to be any simple system

of D-branes into which this system can decay. This leads us to suspect that below the

critical values of R6 and/or R7 the system forms a bound state which cannot be described

by a solvable boundary conformal field theory of a system of D-branes.
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