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Abstract
Using string field theory, we argue that the tachyon potential on a D-brane anti-

D-brane system in type II string theory in arbitrary background has a universal form,
independent of the boundary conformal field theory describing the brane. This implies
that if at the minimum of the tachyon potential the total energy of the brane antibrane
system vanishes in a particular background, then it vanishes in any other background.
Similar result holds for the tachyon potential of the non-BPS D-branes of type II string
theory, and the D-branes of bosonic string theory.
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1 Introduction and Summary

It has been argued on various general grounds that the condensation of the tachyon living

on a configuration of coincident D-brane anti-D-brane pair produces a configuration which

is indistinguishible from the vacuum where there are no branes[1, 2, 3, 4, 5]. This requires

that the sum of the tensions of the brane and the antibrane is exactly cancelled by the

(negative) value of the tachyon potential at the minimum of the potential. There is

however no direct evidence of this phenomenon, since there is no explicit knowledge of the

tachyon potential, except that it has a maximum at the origin corresponding to negative

mass2 of the tachyon. The difficulty in studying the tachyon potential can be traced to

the fact that the zero momentum tachyon is far off-shell, and hence is outside the scope

of study of first quantized string theory which deals with only on-shell S-matrix elements.

In this paper we shall study some general properties of the tachyon potential using

open string field theory, − a formalism particularly suited for the study of off-shell string

theory[6, 7]. In particular we show that the tachyon potential on the brane antibrane sys-

tem is universal, independent of the particular boundary conformal field theory describing

the D-brane, except for an overall multiplicative factor which is proportional to the tension

of the brane-antibrane pair before tachyon condensation. Thus for example, the potential

will be the same for flat D-branes, D-branes wrapped on various cycles of internal compact

manifold, or D-branes in the presence of background metric and anti-symmetric tensor

fields. A similar result holds for the tachyon potential on a single D-brane of bosonic

string theory, or a single unstable non-BPS D-brane of type II string theory[8, 9, 10, 5].

Although this does not prove the conjecture that at the minimum of the potential the

tension of the brane antibrane system is exactly cancelled by the tachyon potential, this
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shows that if the conjecture is valid for D-brane anti-D-brane system in one background,

then it is also valid for D-brane anti-D-brane system in any other background.

Let us now be more specific about the analysis and the result of the paper. Section 2 of

the paper is devoted to the analysis of the tachyon potential using open string field theory.

As already mentioned, we shall be interested in a configuration containing a single D-brane

in bosonic string theory, or a D-brane anti-D-brane pair or a single non-BPS D-brane in

type II string theory. Some of the tangential directions of the D-brane(s) may be wrapped

on some non-trivial cycles of an internal space. In general such a system of D-branes is

described by a non-trivial boundary conformal field theory. In order to give a uniform

treatment of all systems of this kind, we shall assume that all directions tangential to

the D-brane are compact; this can be easily achieved by compactifying the non-compact

directions tangential to the brane on a torus of large radii. Thus the resulting configuration

can be viewed as a particle like object in the remaining non-compact directions, which

we shall take to be a Minkowski space2 of dimension (n+ 1). If we denote the space-like

non-compact directions by X i (1 ≤ i ≤ n), and the time direction by X0, then the total

world-sheet theory will contain a set of free fields X0, X1, . . .Xn with Neumann boundary

condition on X0 and Dirichlet boundary condition on X1, . . .Xn, together with a non-

trivial boundary conformal field theory (BCFT) of central charge (25− n) describing the

dynamics of the coordinates in the compact direction. The main objective of the paper

will be to show that the tachyon potential is independent of this BCFT.

For simplicity we shall focus our attention on D-branes of bosonic string theory during

most of the paper; so let us explain our results first in this context. We shall show that

tachyon potential has the form:3

V (T ) = Mf(T ) , (1.1)

where f(T ) is a universal function of the tachyon field T independent of the BCFT

describing the D-brane, and M is the mass of the D-brane at T = 0, which can depend

on the BCFT under consideration.4 During this analysis we shall also arrive at a precise

2This restriction is due to a technical reason. We shall identify the mass of the D-brane as the
coefficient of the 1

2
(Ẋ i)2 term in the action, and for this purpose we need some directions in which the

space-time is an ordinary Minkowski space-time.
3Throughout this paper all masses and energies will be measured in the closed string metric.
4In the convention that we shall choose, the mass of the D-brane is also independent of the BCFT.

However it depends on the open string coupling constant, whose relation to the closed string coupling
constant may depend on the details of the BCFT.
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definition of the tachyonic mode(s) and the tachyon potential. We choose the additive

constant in V (T ) such that it vanishes at T = 0. Thus the total energy of the D-brane

for a given value of T will be given by

M + V (T ) = M{1 + f(T )} . (1.2)

According to the conjecture of [11, 12], at some extremum T0 of the tachyon potential the

negative contribution of the tachyon potential exactly cancels the mass of the D-brane.

Thus according to this conjecture

1 + f(T0) = 0 . (1.3)

Although our analysis does not provide a proof of this relation, the universality of the

function f(T ) shows that if the relation holds for any of the D-branes of the bosonic

string theory (say the D0-brane of the bosonic string theory in 26 dimensional Minkowski

space), then it must hold for all D-branes in all possible compactifications of bosonic

string theory.

An exactly similar result holds for the brane antibrane system of type II string theory.

In this case M denotes the total mass of the brane-antibrane system under consideration.

The function f(T ) differs from the corresponding function in the bosonic string theory,

but it is again universal in the sense that it does not depend on the details of the BCFT

describing the brane antibrane system. The conjecture of ref.[1, 2] again requires {1 +

f(T )} to vanish at an extremum T0 of f(T ). This time, however, supersymmetry of the

background space-time requires that T0 satisfying eq.(1.3) represents a global minimum

of the potential.

Finally the result also holds for the non-BPS D-brane of type II string theory, with

M now representing the mass of the non-BPS D-brane.

According to the conjecture of [1, 2, 10, 11], at T = T0 the D-brane of bosonic string

theory, the brane antibrane system of type II string theory, or the non-BPS D-brane of

type II string theory, is indistinguishible from the vacuum where there is no D-brane.

Since the tachyon is neutral under the ‘center of mass’ U(1) gauge field living on the

brane (brane antibrane system), a vev of the tachyon field does not break this U(1)

gauge symmetry. On the other hand the vacuum without any D-brane does not contain

such a U(1) gauge field. This poses a puzzle[13, 4, 14]. In section 3 we show that the

results of section 2 points to a possible way out of this puzzle. Using the universality
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of the tachyon potential, and the fact that (1 + f(T0)) vanishes at T0, we argue that

at T = T0, the effective action involving the center of mass U(1) gauge field does not

contain any term without derivative of the gauge field strength. In particular it implies

that the standard gauge kinetic term is absent. We conjecture that the effective action

at T = T0 is altogether independent of the gauge field, so that the gauge field behaves

as an auxiliary field. This would explain the absence of a dynamical U(1) gauge field at

T = T0. Its equations of motion forces all states carrying the U(1) charge to disappear

from the spectrum.5

Finally in section 4 we discuss generalization of our results to closed bosonic string

theory. We show that arguments similar to the one given in section 2 can be used to

establish the universality of the tachyon potential in any compactification of the bosonic

string theory. However, since there is no compelling reason to believe that there is a stable

minimum of this potential, the significance of this result is not entirely clear.

Although our analysis establishes the universality of the tachyon potential, it does not

tell us what this universal function is. Explicit analysis of the tachyon potential in open

string theory with all Neumann boundary conditions was carried out in ref.[16]. Some

properties of the tachyon potential on the brane antibrane system have been analyzed

previously in refs.[17, 18, 19]. Attempts at deriving the explicit form of the tachyon

potential using open string field theory have been made earlier in refs.[20]. Similar anal-

ysis for closed string tachyons were carried out in refs.[21, 22, 23]. Some aspects of the

universality of the tachyon potential have been addressed earlier in ref.[24].

2 Tachyon potential from open string field theory on

the D-branes

We shall use Witten’s open string field theory[6, 7] to analyse the tachyon potential, but

any other formulation of covariant open string field theory will also suffice[25]. Although

the original version of this theory was formulated for open strings in flat space-time with

Neumann boundary conditions in all directions, it can be easily generalized to describe

open strings living on a D-brane. We use the language of [26], as reformulated in [27] for

describing string field theory in arbitrary background field. We shall begin our discussion

with open strings living on a D-brane in bosonic string theory; and later generalise it to

5The argument given in this section is an expanded version of the analysis already presented in [15].
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brane-antibrane system or non-BPS D-branes in superstring theories.

As mentioned in the introduction, we compactify all the spatial directions tangential to

the D-brane. Thus we are dealing with the dynamics of a particle with infinite number of

degrees of freedom, described by a (0+1) dimensional string field theory. Since string field

theory corresponds to second quantized string theory, a point in the classical configuration

space of string field theory corresponds to a specific quantum state of the first quantized

theory. As was shown in [6], in order to describe a gauge invariant string field theory

we must include the full Hilbert space of states of the first quantized open string theory

including the b and c ghost fields, subject to the condition that the state must carry ghost

number 1. Here we are using the convention that b carries ghost number −1, c carries

ghost number 1, and the SL(2,R) invariant vacuum |0〉 carries ghost number 0. We shall

denote by H the subspace of the full Hilbert space carrying ghost number 1. Let |Φ〉 be

an arbitrary state in H, and Φ(x) be the local field (vertex operator) in the conformal

field theory which creates this state |Φ〉 out of the SL(2,R) invariant vacuum:

|Φ〉 = Φ(0)|0〉 . (2.1)

Since we are dealing with open string theory, Φ(x) lives on the boundary of the world

sheet. We shall choose the convention that the world-sheet is the upper half plane, and

its boundary is the real axis labelled by x.

The open string field theory action, which is a map from H to the space of real

numbers, is given by

S = − 1

g2
o

(
1

2
〈Φ|QB|Φ〉 +

1

3
〈f1 ◦ Φ(0)f2 ◦ Φ(0)f3 ◦ Φ(0)〉

)
. (2.2)

Here go is a constant denoting the open string coupling constant, QB is the BRST charge

constructed out of the ghost oscillators and the matter stress tensor, and 〈 〉 denotes

correlation functions in the combined matter and ghost conformal field theory. The overall

− sign in front of the action is a reflection of the fact that we are using Minkowski metric

with signature (−+ + . . .+). f1, f2 and f3 are three conformal transformations given by,

f1(z) = −e−iπ/3
[(

1 − iz

1 + iz

)2/3

− 1
]/[(

1 − iz

1 + iz

)2/3

+ eiπ/3
]
,

f2(z) = F (f1(z)), f3(z) = F (f2(z)) , (2.3)

where F is an SL(2,R) transformation

F (u) = − 1

1 + u
. (2.4)
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fi ◦Φ(0) denotes the conformal transform of Φ(0) by fi. Thus for example if Φ denotes a

dimension h primary field, then fi ◦Φ(0) = (f ′

i(0))hΦ(f(0)). For non-primary fields there

will be extra terms involving higher derivatives of fi. The inner product appearing in the

first term of the action is defined as

〈Φ|Ψ〉 = 〈I ◦ Φ(0)Ψ(0)〉 (2.5)

where I denotes the SL(2,R) transformation I(z) = −(1/z). We shall choose the conven-

tion where α′ = 1, and the SL(2,R) invariant vacuum |0〉 is normalized as

〈0|c−1c0c1|0〉 = L , (2.6)

L being the (infinite) length of the time interval over which the action is evaluated.

(For the purpose of normalization we shall pretend that the time direction is compact

with radius L/2π.) cn are the modes of the ghost field c(z) defined through the relation

c(z) =
∑
cnz

−n+1. In general we normalize the Fock vacuum |k0〉 ≡ exp (ik0X
0(0))|0〉

with X0 momentum k0 as

〈k0|c−1c0c1|k′0〉 = 2πδ(k0 + k′0) , (2.7)

with the understanding that δ(0) is defined to be L/2π.

The equations of motion of string field theory are obtained by demanding that the

variation of S with respect to |Φ〉 vanishes. We can get the component form of the

equations by decomposing |Φ〉 in a complete set of basis states in H, and setting to zero

the variation of S with respect to each coefficient in this expansion.

The zero momentum tachyonic state of open string theory can be identified as

c1|0〉 , (2.8)

created by the vertex operator c(0) acting on |0〉. It is however clear that due to the

cubic coupling in the string field theory action (2.2), once we switch on tachyon vacuum

expectation value (vev), various other fields must also be switched on in order to satisfy

the string field theory equations of motion. However, not all the fields need to be switched

on. Suppose we can decompose H into two subspaces H1 and H2 such that S is always

quadratic or higher order in the components of |Φ〉 along the basis vectors of H2. If we

now take |Φ〉 to lie solely in H1, then all the equations of motion obtained by varying S
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with respect to the components of |Φ〉 along H2 are automatically satisfied. Thus we can

obtain a consistent truncation of the theory by restricting |Φ〉 to H1 and evaluating S for

this |Φ〉. A solution of the equations of motion obtained by varying the truncated action

with respect to comoponents of |Φ〉 along H1 can automatically be regarded as a solution

of the equations of motion of the full string field theory.

We shall now describe such a decomposition of H. We include in H1 all states of

ghost number 1, obtained from the SL(2,R) invariant vacuum by the action of the ghost

oscillators bn and cn, and the Virasoro generators of the entire matter conformal field

theory. In the language of vertex operators this will amount to including those vertex

operators which can be obtained as products of (derivatives of) b(x), c(x), and the matter

stress tensor T (matter)(x). H2 will contain all states of ghost number 1 carrying non-zero

k0, and also all states with k0 = 0 which are obtained by the action of bn, cn and the

matter Virasoro generators on primary states of dimension > 0 of the matter conformal

field theory. Since the BRST operator QB is constructed from the ghost oscillators and

matter Virasoro generators, the kinetic term of the action (2.2) does not mix a state in

H1 with a state in H2. A conformal transformation takes a state in H1 (H2) to a state in

H1 (H2), and furthermore, the three point correlation function of two vertex operators in

H1 and a vertex operator in H2 vanishes. Thus restricting the string field configuration

to H1 will give a consistent truncation of the string field theory.

Since the zero momentum tachyon state described by eq.(2.8) belongs to H1, we see

that switching on this tachyonic mode does not take us outside the subspace H1. In

particular the tachyonic ground state will correspond to a state |Φ0〉 with no component

along H2, and satisfying the equations of motion derived from the truncated action.

Since integrating out all the modes in H1 other than c1|0〉 may not lead to a meaningful

approximation,6 we denote by the single symbol T the set of all the modes of H1, and

by S̃(T ) the truncated string field theory action, with the string field configuration |Φ〉
restricted to H1. Since H1 involves only those states which carry zero X0 momentum, the

inner product as well the three point function appearing in eq.(2.2) will contain a δ(0)

term, representing the infinite contribution from the time integral of a time independent

lagrangian. Thus the lagrangian L̃(T ) for this configuration can be identified as the action

S̃(T ) with this volume factor L = 2πδ(0) removed. Once L̃ has been constructed this

way, the tachyonic potential V (T ) can be identified with −L̃(T ).

6Indeed, the true ground state may not have any component along c1|0〉.
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Computation of V (T ) only involves correlation functions involving the ghost fields and

the matter energy momentum tensor with central charge 26. These correlation functions

are completely universal. In particular, they are insensitive to all the details of the internal

BCFT. As a result, V (T ) has a universal form for all internal BCFT except for the overall

multiplicative factor g−2
o in front of the action (2.2). Thus the tachyon potential has the

form:

V (T ) =
1

g2
o

h(T ) , (2.9)

where h(T ) is some universal function independent of the choice of the internal BCFT.

We shall now show that at T = 0 the mass of the D-brane described by the action (2.2)

is related to g−2
o . To see this let us consider the kinetic term in (2.2) involving the mode

∫
dk0φ

i(k0)c1α
i
−1|k0〉. Here αi

n denotes the oscillator of the free world-sheet scalar field

X i, and |k0〉 denotes the state exp(ik0X
0(0))|0〉. Only the c0L

matter
0 term of the BRST

charge QB contributes to the k0 dependent part of the kinetic term involving this mode,

and the result is given by

2π
1

2
(go)

−2
∫
dk0(k0)

2φi(k0)φ
i(−k0) , (2.10)

in the α′ = 1 unit. If ψi(t) ≡ ∫
dk0e

ik0tφi(k0) denotes the Fourier transform of φi(k0),

then the above action can be rewritten as

1

2
(go)

−2
∫
dt∂tψ

i∂tψ
i , (2.11)

where t denotes the time variable conjugate to k0. Up to an overall normalization factor, ψi

has the interpretation of the location of the D-brane in the xi direction. This normalization

factor may be determined as follows. Instead of taking a single D-brane, let us take a pair

of identical D-branes, separated by a distance bi along the X i direction. Then each state

in the open string Hilbert space carries a 2 × 2 Chan Paton factor, and states with off

diagonal Chan Paton factors, representing open strings stretched between the two branes,

are forced to carry an amount of winding charge bi along X i. If we now move one of the

branes by an amount Y i along X i, the change in the (mass)2 of the open string with Chan

Paton factors
(

0 1
0 0

)
and

(
0 0
1 0

)
should be given by:

1

(2π)2
{(~b+ ~Y )2 −~b2} =

1

2π2
~b · ~Y +O(~Y 2) . (2.12)
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In the above equation we have used the fact that with our choice of units, the string tension

is equal to (1/2π). On the other hand, since ψi denotes the mode which translates the

brane, moving one of the branes along X i will correspond to switching on a constant ψi.

This is represented by a string field background

ψic1α
i
−1|0〉 ⊗

(
1 0
0 0

)
. (2.13)

We can now explicitly use the string field theory action (2.2) to calculate the change of

the (mass)2 of states with Chan Paton factors
(

0 1
0 0

)
and

(
0 0
1 0

)
due to the presence

of this background string field. The result is

1√
2π
~b · ~ψ +O(~ψ2) . (2.14)

Comparing eqs.(2.12) and (2.14) we get

ψi =
Y i

√
2π

. (2.15)

Once we have determined the relative normalization between ψi and Y i, we can return to

the system containing a single brane.7 Substituting eq.(2.15) into eq.(2.11), we get,

1

2
(go)

−2(2π2)−1
∫
dt∂tY

i∂tY
i . (2.16)

This contribution to the D-brane world-volume action can be interpreted as due to the

kinetic energy associated with the collective motion of the D-brane in the non-compact

transverse directions. This allows us to identify the D-brane mass as

M = (2π2)−1(go)
−2 . (2.17)

Thus eq.(2.9) can be rewritten as

V (T ) = Mf(T ) . (2.18)

where f(T ) ≡ 2π2h(T ) is another universal function. This proves eq.(1.1) for the tachyon

potential on a single bosonic D-brane.

7This can be done, for example, by moving the other brane infinite distance away by taking the limit
|~b| → ∞.
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Let us now consider the case of tachyon condensation on a brane-antibrane pair in

type II string theory. Since the analysis is very similar to the case discussed above, we

shall only point out the essential differences. Open string field theory with cubic action

has been constructed in [7]. The string field contains two separate components, one from

the Neveu-Schwarz (NS) sector and the other from the Ramond (R) sector; but for the

study of tachyon potential we can set to zero the R sector fields. A generic NS sector

string field configuration is a state in the Hilbert space H of the form Φ(0)|0〉, where |0〉
denotes the SL(2,R) invariant vacuum, and Φ(x) is the product of e−φ(x) with an arbitrary

operator O(x) of ghost number 1, made from products of (derivatives of) b, c, the bosonic

ghost fields β, γ, and matter operators. The ghost charge is defined such that b and β

carry ghost number −1 and c and γ carry ghost number 1. φ denotes the scalar field

obtained by ‘bosonizing’ the β − γ system[28]. In the left hand side of the normalization

condition (2.6) we now need to include an additional factor of e−2φ(0) besides the c−1c0c1

factor. There is a further subtlety due to the fact that H contains four sectors labelled

by the 2 × 2 Chan Paton (CP) factor. We shall take the identity matrix I and three

Pauli matrices σi to be the four independent CP factors. States in the CP sector I and

σ3 satisfy the conventional GSO projection rules according to which |0〉 is even, and e−φ,

β, γ are odd. States in the CP sector σ1 and σ2 satisfy the opposite GSO projection

rules according to which |0〉 is odd. The tachyon field is complex, but we shall restrict

to configurations with real tachyon background. The zero momentum tachyon field then

corresponds to the state created by the vertex operator c(0)e−φ(0) ⊗ σ1 on |0〉.
The string field theory action has a form very similar to (2.2), with the difference that

the cubic interaction vertex also contains an insertion of the picture changing operator[28]

in the correlation function. Since this operator involves only ghost fields and the super-

stress tensor of the matter fields, it is independent of the choice of BCFT describing the

brane antibrane pair and will not affect our argument. As in the case of bosonic open

string field theory, we can obtain a consistent truncation of the string field theory action

by restricting |Φ〉 to states for which the corresponding vertex operator Φ(x) is built

from products of (derivatives of) the ghost fields, and the matter super stress tensor.

This includes the energy momentum tensor T (matter)(x) and the supercurrent G(matter)(x).

Furthermore since (σ1)
2 is the identity matrix I, we can restrict ourselves to states with

CP factors I and σ1 only, with the usual GSO projection on the states with CP factor I,

and opposite GSO projection on the states with CP factor σ1. The resulting truncated
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action is again universal, and in particular insensitive to the details of the internal BCFT.

This shows that the tachyon potential has the form (2.9) for some universal function h(T ).

(This of course is different from the universal function which appears in bosonic string

theory.) Furthermore the mass of the D-brane is still given by an equation similar to

(2.17). Thus V (T ) has the form given in eq.(2.18).

One of the crucial assumptions in our argument is that the BCFT describing the

D-brane anti-D-brane system has a factorized form so that the conformal field theory

describing the open strings is identical in each of the four CP sectors (except for opposite

GSO projections in sectors σ1 and σ2). In particular, e−φ(0)c(0)|0〉⊗σ1 must be an allowed

state in the theory. Formally this can be achieved if the antibrane is always defined to

be the configuration obtained from the brane by the operation of (−1)FL, where (−1)FL

denotes the transformation which changes the sign of all the R-R and R-NS sector closed

string states. In the language of boundary states this means that the antibrane is defined

to have the same boundary state as the brane, except that the sign of all the RR states

is reversed. However we should keep in mind that it is certainly possible to construct

brane-antibrane system which does not fall into this category. A simple example would

be brane-antibrane pair separated by a distance b in a direction transverse to the brane.

In this case the states in the CP sector σ1 and σ2 are forced to carry non-zero string

winding charge proportional to b, and hence the string field configuration describing a

zero momentum tachyon background is no longer of the form c(0)e−φ(0)|0〉 ⊗ σ1. Instead

it corresponds to a state built from a non-trivial primary state of the BCFT. Thus our

argument for the universility of the tachyon potential is no longer valid in this case. A

similar situation arises, for example, if either the brane or the antibrane (but not both)

carries a Wilson line or a magnetic field tangential to its world volume.

A very similar argument can be given for the universality of the tachyon potential on a

non-BPS D-brane of type II string theory. In fact, since the non-BPS D-brane of type IIB

(IIA) string theory can be regarded as the result of modding out a brane-antibrane pair

of type IIA (IIB) string theory by (−1)FL[10], the universality of the tachyon potential on

a brane-antibrane system of type II string theory automatically implies the universality

of the tachyon potential on a non-BPS D-brane of type II string theory.

The analysis of this section indicates that it should be possible to describe the string

field configuration corresponding to T = T0 as a universal state in H1. This state should

represent a solution of the classical equations of motion of string field theory, and should
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have the property that when we analyze small fluctuations of string field around this

solution, the spectrum should not contain any physical states. (This is necessary if we

are to interprete the configuration T = T0 as the vacuum without any brane.) We should

caution the reader however that our arguments are quite formal, since a priori there is

no reason to expect that the T = T0 configuration can be represented as a normalizable

state in H1. Nevertheless, formal solutions of string field theory equations of motion have

provided valuable insight in the past[29, 30]. In fact, ref.[30] does contain examples of

such formal solutions which do not have any physical excitations. Finding a (formal)

solution of the string field theory equations of motion which satisfies eq.(1.3), and hence

represents the vacuum state, remains an open problem.

We end this section by noting that the result of this section has been implicitly used in

ref.[4] in classifying D-branes via K-theory. Universality of the tachyon potential, together

with eq.(1.3), shows that a brane and an antibrane can always annihilate via tachyon

condensation as long as their boundary states differ from each other just by a change

of sign of the Ramond-Ramond states. This requires that they carry the same gauge

bundle, i.e. that only gauge fields with CP factor I are excited. Such brane-antibrane

annihilation forms a crucial ingredient in establishing one to one correspondence between

stable D-branes and elements of the K-group.

3 Fate of the U(1) gauge field under tachyon conden-

sation

In this section we shall use the results of the previous section to discuss the fate of the

U(1) gauge field on the D-brane under tachyon condensation. The salient points of this

analysis were already given in [15].

Let us begin with the bosonic D-brane. There is a U(1) gauge field living on the D-

brane. The tachyon is neutral under the gauge group; hence our intuitions from quantum

field theory will tell us that the gauge fields will remain massless even when the tachyon

condenses. On the other hand if T = T0 corresponds to the vacuum without any D-

branes, as has been conjectured, then clearly there cannot be a U(1) gauge field living on

the brane after tachyon condensation. How do we resolve this apparent contradiction? A

related question is as follows. If we consider a pair of D-branes (not necessarily of the

same kind) separated by a distance, then there is an open string state with one end on
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each brane. If we now let the tachyon on one of the branes condense, then what happens

to this open string state? If the T = T0 configuration really represents the vacuum, then

there cannot be an open string ending at the original location of the brane after tachyon

condensation.

The resolution that we propose is as follows. We conjecture that at T = T0 the action

of the U(1) gauge field on the D-brane world volume is independent of the gauge field.

In fact, we conjecture that the action is independent of all the massless fields living on

the D-brane world volume. Thus the gauge field is no longer dynamical, but acts as

an auxiliary field which forces the corresponding U(1) current to vanish identically. In

particular this means that open strings with one end on this brane and another end on

some other brane, being charged under the U(1), is no longer a physical state. Physically

this can be explained by saying that since effectively the U(1) gauge coupling becomes

infinite, any state charged under this U(1) becomes infinitely massive and hence decouples

from the spectrum.8

Although we have no general proof of this statement, we shall now show that our

analysis of the previous section can be used to lend support to this conjecture. For this,

let us start with a D-p-brane of the bosonic string theory, and compactify all directions

tangential to the brane on a torus T p of large radii. Let ~y denote the directions tangential

to the brane, {ϕa(~y)} denote an arbitrary time independent configuration of all massless

fields living on the brane world-volume, and T denote the tachyonic mode(s) discussed

in the last section. We denote by L({ϕa(~y)}, T ) the effective lagrangian of the brane

obtained by integrating out all other modes. Note that T correspond to mode(s) carrying

zero momentum along the world-volume direction, whereas the massless fields {ϕa(~y)}
are allowed arbitrary dependence on the world-volume coordinates. All other modes have

been integrated out. This would typically give an effective lagrangian which is non-local

on the D-brane world-volume, but this will not affect our discussion.

At this point we need to make some further remark about the choice of the coordinate

T in the configuration space. Let {ϕcl
a (~y)} denote some particular classical solution of

the equations of motion at T = 0. We assume that for every such classical solution there

is a BCFT describing open string propagation in this background {ϕcl
a }. In that case,

we can formulate string field theory around this new background and define a tachyonic

mode around this background using the prescription of the last section. We shall choose

8This interpretation makes contact with the conjecture of ref.[14] that this U(1) gauge field is confined.
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T

T=T0

φa{ (y)}

Figure 1: This diagram schematically illustrates the choice of coordinate system in the
configuration space. The horizontal axis denotes the set of all time independent configura-
tions of massless fields, and the vertical axis denotes the tachyonic mode(s) T . The black
dots on the horizontal axis are the classical solutions of the equations of motion involving
massless fields only. The vertical line originating from a black dot represents the effect
of switching on the tachyonic mode(s) of the string field theory formulated around the
BCFT associated with the particular black dot.

the coordinate T appearing in L({ϕa(~y)}, T ) in such a way that around every classical

solution, keeping {ϕa(~y)} fixed at {ϕcl
a (~y)} and changing T corresponds to switching on

the tachyonic mode(s) of the string field theory formulated in the background {ϕcl
a (~y)}.

This has been schematically illustrated in Fig.1. In principle there could be obstruction

to such a choice of coordinates; we shall assume that there is no such obstruction.

Since ϕa(~y) = 0 denotes a trivial classical solution representing the original D-brane,

we have, according to eq.(1.1)

L(ϕa = 0, T ) = −M0f(T ) , (3.1)

where M0 denotes the mass of the brane for ϕa = 0. We have chosen the additive constant

in L such that L vanishes at ϕa(~y) = 0, T = 0.9 Let ϕcl
a denote a non-trivial classical

9This is natural from the point of view of string field theory formulated in the background BCFT
corresponding to ϕa = 0, T = 0. On the other hand, from the point of view of the effective action, it
is often more natural to choose this additive constant in such a way that L(ϕa = 0, T = 0) is equal to

15



solution of the equations of motion representing a new BCFT, and M denote the mass

of the D-brane described by this new BCFT.10 According to the result of the previous

section, the effective lagrangian of T , formulated around the new background, should be

given by −Mf(T ). This gives,

L(ϕcl
a , T ) = −Mf(T ) +K , (3.2)

where K is an additive constant. The origin of this constant may be understood as follows.

In defining effective lagrangian L, we have fixed the additive constant in the action in such

a way that the lagrangian vanishes when all the fields are set to zero. In this convention,

if {ϕcl
a } denotes a time independent classical solution of the equations of motion reflecting

a new BCFT, then the value of the lagrangian of the original string field theory, evaluated

at ϕa = ϕcl
a , will reflect the difference between the potential energies of the initial and the

final configurations. On the other hand the effective lagrangian obtained by integrating

out the degress of freedom of the string field theory action formulated directly around the

new BCFT will have zero value when all the fields in this new string field theory action

are set to zero. Thus the two effective lagrangians must differ by an additive constant K.

It is fixed by demanding that

L(ϕcl
a , T = 0) −L(ϕa = 0, T = 0) = −(M −M0) . (3.3)

Since f(0) = 0, this gives, using eqs.(3.1) and (3.2)

K = M0 −M . (3.4)

Hence

L(ϕcl
a , T ) = −M(1 + f(T )) +M0 . (3.5)

Using eqs.(3.5) and (1.3) we see that,

L(ϕcl
a , T0) = M0 . (3.6)

−M0, − the negative of the mass of the original D-brane. This is what is done, for example, in writing
the action in the Born-Infeld form.

10If we consider a new BCFT with the open string coupling constant fixed, then the mass of the D-
brane does not depend on the BCFT. But it is more natural to keep the closed string coupling constant
(dilaton) fixed as we change the open string background. Since the relationship between the closed and
the open string coupling constant does depend on the BCFT[33], the D-brane in the new background can
have a different mass.
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In other words the lagrangian at T = T0 has the same value M0 for all {ϕcl
a (~y)} which

correspond to solutions of the equations of motion at T = 0. Although this does not prove

that L(ϕa, T0) is independent of ϕa (and hence in particular of the U(1) gauge fields) for

all ϕa, it certainly lends support to this conjecture.

In the specific context of the U(1) gauge field, note that if Fmn denote the components

of the U(1) gauge field strength on the D-brane, then since constant Fmn is a solution of

the equations of motion and describes a BCFT, the lagrangian at T = T0 is independent

of Fmn at least for constant Fmn. Thus at T = T0, L can at most contain terms involving

derivatives of Fmn. This establishes that L(Fmn, T0) does not contain the standard gauge

kinetic term since it vanishes for constant Fmn, and hence even if L is not completely

independent of Fmn at T = T0, it does not represent a standard gauge theory.

The fact that L(Fmn, T0) does not depend on Fmn for constant Fmn can also be seen via

a T-duality transformation, starting with the assumption that at Fmn = 0 the mass of the

brane, −L+M0, vanishes at the extremum T0 of the tachyon potential. For this let x1 and

x2 denote two of the directions tangential to the D-brane which have been compactified.

For Fmn = 0, an R → (1/R) duality transformation along the x2 direction converts

this D-brane to a D-brane with Dirichlet boundary condition along the x2 direction, and

Neumann boundary condition along the x1 direction. Since the mass of the brane does

not change under T-duality, the mass of the T-dualized brane, and hence also its tension,

vanishes at the extremum T0 of the tachyon potential. Now if we switch on the constant

field strength F12 in the original D-brane, it corresponds to putting Dirichlet boundary

condition on some linear combination of x1 and x2 in the T-dual description. Thus we

effectively change the orientation of the brane in the T-dual description. But if the tension

of this D-brane vanishes at some extremum of the tachyon potential, it continues to vanish

even if we change the orientation of the brane, and hence the total mass of the brane still

vanishes. But this is equal to the mass of the original brane at constant F12 and T = T0,

i.e. to −L(F12, T0)+M0. Thus we see that L(F12, T0) = M0, i.e. it is independent of F12.

This analysis can be easily generalized to the case of the brane-antibrane system and

the non-BPS D-brane of type II string theories. In carrying out this analysis one should

keep in mind that for the brane-antibrane system, the U(1) which must be switched on is

the diagonal combination of the two U(1)’s on the brane and the antibrane (corresponding

to CP sector I) so that the new BCFT satisfies the conditions for validity of our analysis.

It is only for this U(1) that we conjecture that the action is independent of the gauge field
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at the minimum of the tachyon potential. The other U(1) gauge symmetry is broken due

to Higgs mechanism in the presence of a non-vanishing vev of the tachyon field.

4 Tachyon potential in closed bosonic string theory

We can repeat our analysis for the tachyon of closed bosonic string theory in arbitrary

conformal field theory background. In this case a string field configuration is represented

by an arbitrary state |Φ〉 in the closed string Hilbert space carrying ghost number 2, and

satisfying the condition

(b0 − b̄0)|Φ〉 = 0, (L0 − L̄0)|Φ〉 = 0 . (4.1)

There is an action similar to (2.2) for the closed string field theory, with the difference

that the action is non-polynomial[31, 32], involving quartic and higher order vertices.

However, each of these vertices are constructed from conformal field theory correlation

functions in a manner analogous to (2.2). Thus we can find a consistent truncation of the

theory by restricting the string field configuration to a subspace H1 built from |0〉 by the

action of the ghost oscillators and the matter Virasoro generators.

The zero momentum tachyon corresponds to the state c1c̄1|0〉, and hence is an element

of H1. Thus starting from the truncated action and integrating out the other fields we

can recover the tachyon potential.11 This is insensitive to the details of the conformal

field theory on which the bosonic string theory is based, and thus is universal. However,

unlike in the case of open string tachyons, in this case there is no compelling reason to

believe that there exists a non-trivial classical solution of the string field theory equations

of motion in this truncated theory; hence the physical significance of the tachyon potential

obtained this way is not entirely obvious.

Acknowledgement: I wish to thank A. Dabholkar and B. Zwiebach for useful dis-

cussions.
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