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Abstract

It has been conjectured that at a stationary point of the tachyon potential for the
D-brane of bosonic string theory, the negative energy density exactly cancels the D-brane
tension. We evaluate this tachyon potential by off-shell calculations in open string field
theory. Surprisingly, the condensation of the tachyon mode alone into the stationary
point of its cubic potential is found to cancel about 70% of the D-brane tension. Keeping
relevant scalars up to four mass levels above the tachyon, the energy density at the shifted
stationary point cancels 99% of the D-brane tension.
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It has been argued on various general grounds that the classical tachyon potential on

a D-p brane of the bosonic string theory has a stationary point where the total negative

potential energy due to the tachyon exactly cancels the tension of the D-brane[1, 2]. At

this stationary point the configuration is indistinguishible from the vacuum where there

is no brane. A similar argument can be given for the tachyon potential on a D-brane

anti-D-brane system or a non-BPS D-brane of type II string theories [3, 4, 5, 6, 7, 8].

There is, however, no direct proof of these relations.

In this paper we demonstrate this phenomenon directly using string field theory. We

restrict ourselves to bosonic string theory and use Witten’s string field theory with cubic

action [9], although in principle the version of open string field theory suitable for off

shell inclusion of closed strings [10] could have been used as well. The analysis could be

performed for superstring theories as well using open superstring field theory[11]. The

background independent features of the tachyon potential noted in [12] make earlier stud-

ies of this potential in string field theory [13, 14, 15, 16, 17, 18]3 relevant to the problem of

D-brane annihilation. Indeed, in a very interesting paper, Kostelecky and Samuel [14] gave

evidence that the stationary point of the cubic tachyon potential survives with control-

lable corrections the inclusion of higher mass scalars of the string field expansion. Further

evidence to this effect was given in [18]. It is this non-perturbative vacuum that we focus

on in the present paper. Our present advantage is that we have an explicit conjecture

for the value of the potential at the stationary point we are looking for. Hence we can

compare the results obtained from string field theory with the conjectured value. As we

shall see, using a suitable approximation scheme, we can find a stationary point of string

field potential where the value of the potential is about 1% away from the conjectured

answer.4

The conjecture and the setup. Some general properties of the tachyon potential in string

field theory were analysed in [12], where it was shown that the tachyon potential on a

D-brane of bosonic string theory takes a universal form:

V (T ) = Mf(T ) , (1)

where M is the mass of the D-brane5 and f(T ) is a universal function independent of

3For studies of the tachyon potential in the first quantized formulation, see [19, 20].
4Our calculations appear to be consistent with the related computations of [14, 18].
5We are assuming that all the directions tangential to the brane are compact so that the brane has a

finite mass.
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the background in which the D-brane is embedded. The tachyon field T and the function

f(T ) are defined as follows[12]. Let H denote the space of states of ghost number one

of the two-dimensional conformal field theory of the (b, c) ghost system and a matter

system of central charge 26 on the upper half plane, and let |0〉 denote the SL(2,R)

invariant vacuum of this conformal field theory. Let H1 ⊂ H denote the space of states of

ghost number one obtained by acting on |0〉 with oscillators bn, cn, and matter Virasoro

generators Ln. The subspace H1 of H is a background independent subspace containing

the zero momentum tachyon state c1|0〉 and having the property that we can consistently

set the component of the string field along H − H1 to zero in looking for a solution of

the equations of motion. Since all fields in H1 may acquire expectation values, the real

problem is finding a stationary point of the string field potential V (T ) associated to the

string field |T 〉 corresponding to a general state in H1. This string field |T 〉, still called

here the tachyon field, includes an infinite collection of variables corresponding to the

coefficients of expansion of a state in H1 in some basis.6

The function f(T ) is given by the following string field theory expression:

f(T ) = 2π2
( 1

2
〈I ◦ T (0)QBT (0)〉 +

1

3
〈h1 ◦ T (0)h2 ◦ T (0)h3 ◦ T (0)〉

)
. (2)

Here QB is the BRST charge, and T (z) denotes the two dimensional field which creates

the state |T 〉 from the SL(2,R) invariant vacuum: |T 〉 = T (0)|0〉 . I, h1, h2 and h3 are a set

of familiar conformal transformations[21] whose expressions were reviewed in [12]. Given

any conformal transformation described by the function h(z), and a vertex operator Φ(z)

of the conformal field theory, h◦Φ(0) denotes the conformal transform of Φ(0) by h. Thus

for example if Φ denotes a dimension d primary field, then h◦Φ(0) = (h′(0))dΦ(h(0)). For

non-primary fields there will be extra terms involving higher derivatives of h. Finally 〈 〉
denotes the correlation function in the conformal field theory of matter and ghost fields,

normalized so that 〈c−1c0c1〉 = 1 .7,8

6Although we shall refer to these coefficients as fields, we should keep in mind that these represent
zero momentum modes of the fields corresponding to space-time independent field configurations.

7Note that this differs from the convention of ref.[12] by a factor of L, − the (infinite) length of the
time interval. This is due to the fact that we are writing down the expression for the potential instead
of the action. We can make these two notations consistent by choosing L = 1; in that case the potential
can be identified to the negative of the action. The final results of course are independent of L.

8The factor of 2π2 in eq.(2) arises as follows. With S(Φ) = − 1
g2

0

(
1
2 〈Φ, QBΦ〉+ · · ·

)
, the D-brane mass

is : M = 1/(2π2g2
0)[12]. Then V (T ) = −S(T ) = M · (2π2)

(
1
2 〈T, QBT 〉+ · · ·

)
= Mf(T ).

3



The conjecture of ref.[1] can now be restated as follows. In the space H1 there must

be a state |Tc〉 such that f(T ) has a stationary point at T = Tc, and

f(Tc) = −1 . (3)

The total D-brane mass at T = Tc vanishes: M + V (Tc) = M(1 + f(Tc)) = 0.

Zeroth Approximation. We proceed to verify this conjecture using a systematic approx-

imation scheme suggested by Kostelecky and Samuel[14]. In order to explain this proce-

dure, let us first consider setting all components of |T 〉 to zero except for the coefficient

of the state c1|0〉, a state that will be said to be of level zero. Thus we take

|T 〉 = t c1|0〉 . (4)

Substituting this into eq.(2) we get the zeroth approximation to the tachyon potential

f (0)(t) = 2π2
(
− 1

2
t2 +

1

3

t3

r3

)
, r =

4

3
√

3
. (5)

This has a local minimum at

t = tc ≡ r3 =
( 4

3
√

3

)3 ≃ 0.456 . (6)

At this minimum

f(tc) = −2π2 · 1

6
· r6 = −π2

3
·
( 4

3
√

3

)6
= − 4096

59049
π2 ≃ −0.684 . (7)

We found it very encouraging that this zeroth order approximation to the vacuum energy

at the stationary point gives essentially 70% of the expected value! In fact, the off-

shell choice of cubic string field theory (as opposed to string field theory with higher

order vertices) yields at this level the best possible approximation to the expected value.

Indeed, the constant r defined above is essentially the mapping radius of the disks defining

the three string vertex [16], and it is maximal for the vertex of the cubic theory. Thus

|f(tc)| is maximal for this choice.

Subsidiary conditions on T . In order to compute corrections to this result, we need to

include the higher level fields in our analysis. The analysis can be simplified by noting

that the potential (2) has a twist symmetry under which all coefficients of states at odd

levels above c1|0〉 change sign, whereas coefficients of states at even level above c1|0〉
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remain unchanged [14, 22].9 Thus coefficients of states at odd levels above c1|0〉 must

always enter the action in pairs, and we can trivially satisfy the equations of motion of

these fields by setting them to zero. Thus we look for solutions where |T 〉 contains only

even level states. With the state c1|0〉 defined to be at level zero, the additional fields we

must consider will be at levels two, four, and higher. At level two, for example, we find

three states, c−1|0〉, L−2c1|0〉 and b−2c0c1|0〉.
We can further simplify the expansion by using the Feynman-Siegel gauge:

b0|T 〉 = 0 . (8)

This gauge choice can be justified by first showing that such a gauge can be chosen at the

linearized level, and then assuming that the fields are small enough so that we can continue

to make this gauge choice even in the presence of interactions. The proof of validity of this

gauge at the linearized level proceeds as follows. Let |T (2n)〉 denote an arbitrary level 2n

state in H1. Let us define |Λ(2n)〉 = b0|T (2n)〉 . Then |T̃ (2n)〉 ≡ |T (2n)〉−(2n−1)−1QB|Λ(2n)〉
satisfies the desired gauge condition b0|T̃ (2n)〉 = 0.10 This shows that for n ≥ 1, it is

possible to gauge transform a general level 2n state |T (2n)〉 to a state |T̃ (2n)〉 satisfying

the Feynman-Siegel gauge.

The equations of motion in the Feynman-Siegel gauge are equivalent to the equations

of motion of the gauge invariant action if there are no residual gauge transformations

which act non-trivially and preserve the gauge, i.e. if there are no pure gauge directions

inside the subspace (8). Assume there is pure gauge direction |η(2n)〉 satisfying the gauge

condition (8). Then, QB|η(2n)〉 = 0, and together with the gauge condition (8), gives

Ltot
0 |η(2n)〉 = {QB, b0}|η(2n)〉 = 0. Since Ltot

0 |η(2n)〉 = (2n − 1)|η(2n)〉, we see that |η(2n)〉
must vanish, as we wanted to show. Hence the Feynman-Siegel gauge is a valid gauge

choice for sufficiently small field configurations.

Approximation with level two fields. Using the Feynman-Siegel gauge we have

|T 〉 = tc1|0〉 + uc−1|0〉 + v · 1√
13

L−2c1|0〉 , (9)

9The origin of this symmetry can be traced to the relations h1(−z) = Ĩ(h3(z)), h2(−z) = Ĩ(h2(z)),

and h3(−z) = Ĩ(h1(z)), where Ĩ(y) = 1/y is a combination of the SL(2,R) and world-sheet parity
transformations. In the restricted sector H1 the world-sheet parity as well as SL(2,R) is a symmetry of
the theory.

10In deriving the above equation we have used that (a) {QB, b0} = Ltot
0 , with Ltot

n denoting the
combined Virasoro generators of the matter and the ghost sectors, (b) b0|Λ(2n)〉 = 0 due to the relation
(b0)

2 = 0, and that (c) the Ltot
0 eigenvalue of a level 2n state is (2n − 1).
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which includes the two level two fields u and v. The (1/
√

13) factor in the last term

was chosen for convenience (Ln’s denote matter Virasoro generators.). At this stage we

can simply substitute (9) into (2) and find f(t, u, v), but there is a further approximation

which is possible[14]. For this let us define the level of a given term in f(T ) as the sum of

the levels of all the fields appearing in this term. We can now approximate the potential

f(T ) by keeping only terms up to a certain level. Since the quadratic terms involving

level two fields is already level four, it does not make sense to truncate the potential to

terms below level four once we have included the level two fields in our analysis. Thus

the next approximation to the potential, f (4), will be obtained by substituting in (2) the

expansion (9) and keeping only t3, t2u, t2v, tu2, tv2 and tuv interaction terms. Since we

cannot have fields appear in interactions before their quadratic terms appear, we define

the level 2n approximation f (2n) to contain all interaction terms up to level 2n built from

fields up to level n. Thus at level six, we do not include any new fields (odd level fields

are set to zero) but we need to include four new interactions: u3, v3, u2v and uv2.

Ref.[14] evaluated the potential up to level six and found that the stationary point of

the potential persists up to this level. Their result, when translated into the normalization

convention of this paper, is as follows.11 At level four the potential is given by

f (4)(T ) = 2π2
(
− 1

2
t2 +

33
√

3

26
t3

−1

2
u2 +

1

2
v2 +

11 · 3
√

3

26
t2 u − 5 · 3

√
39

26
t2 v

+
19

26
√

3
t u2 +

7 · 83

26 · 3
√

3
t v2 − 11 · 5

√
13

25 · 3
√

3
t u v

)
. (10)

f (4)(T ) has a stationary point12 at Tc (tc ≃ 0.542, uc ≃ 0.173, vc ≃ 0.187) at which

f(Tc) ≃ −0.949. This is about 95% of the expected answer −1!13

11In order to convert the result of ref.[14] to our convention, we need to set α′ = 1 and g = 2 in the
expressions given in ref.[14], and multiply their potential by a factor of 2π2. The fields t, u and v used in
our paper correspond to their fields φ, −β1 and B respectively.

12Strictly, this point is not a minimum of the potential, nor even a local minimum. This is not
necessarily problematic. The string field theory has ghost and auxiliary modes with negative mass
squared that are not physical tachyons. The field u appearing in (10) is an example of this. We still
expect physical stability of this stationary point.

13Since ref.[14] did not have a reference scale to compare with, they expressed the potential in units
of the string tension and the on-shell three tachyon coupling, and concluded that the potential is quite
shallow. On the other hand, using the mass of the D-brane as the reference scale, we see that the potential
is in fact quite deep. Already at this level it is about 95% of the mass of the D-brane.
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At level six the potential includes the level four interactions plus additional terms:

f (6) = f (4) + 2π2
( 1

26
√

3
u3 − 7 · 41 · 73

34 · 26
√

39
v3 − 5 · 19

√
13

26 33
√

3
u2 v +

11 · 7 · 83

26 · 34
√

3
u v2

)
.(11)

Solving the equations of motion that follows from the total level six potential f (6), one

finds that the location of Tc is shifted slightly (tc ≃ 0.544, uc ≃ 0.190, vc ≃ 0.202) with

f(Tc) ≃ −0.959. By including two modes in addition to the tachyon we have gone from

68% to 96% of the expected vacuum energy! This is certainly encouraging and leads us

to believe that the expansion converges rapidly to the expected answer.

Approximation with level eight interactions. To establish the convergence beyond reason-

able doubt, we now undertake the substantially more involved calculation of the potential

to level eight. For this we need to include all the level four fields. A general tachyon

field configuration in the Feynman-Siegel gauge, including fields up to level four, has the

form:14

|T 〉 = tc1|0〉 + uc−1|0〉 + v · 1√
13

L−2c1|0〉

+AL−4c1|0〉 + BL−2L−2c1|0〉 + Cc−3|0〉
+Db−3c−1c1|0〉 + Eb−2c−2c1|0〉 + FL−2c−1|0〉 . (12)

In order to construct the potential to level eight, we need to substitute (12) into (2), and

evaluate the action keeping terms up to level eight. We use two different methods to

compute the cubic interaction vertices. In the first approach we explicitly compute the

conformal transformation of all the vertex operators associated with the state (12) under

the conformal maps h1, h2 and h3, and compute the three point correlation functions of

the resulting operators. In the second approach we use a representation of the matter

Virasoro algebra in terms of 26 free bosonic fields, and use the Neumann function method

to compute the three string vertex [23]. Both approaches give the same results.

Besides the terms given in eqs.(10) and (11) (which we explicitly verify), there are

four different kinds of additional terms in the computation of f (8). These are

1. The quadratic term involving the level 4 fields. This is a level 8 contribution to the

potential, and is given by:

∆0f
(8) = 2π2

(
195 A2 + 663 B2 + 234 AB + 3 CD − 3

2
E2 − 39

2
F 2

)
. (13)

14Since we are using background independent modes, we have here less fields than in Refs.[14, 18], the
last of which cites a computation of the potential using level six fields.
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2. There are new level four interaction terms, originating from the coupling between

two level 0 and a level 4 field. These are given by,

∆f (4) = 2π2 1√
3

t2
( 585

32
A +

3523

96
B − 5

12
C +

5

4
D +

19

64
E − 715

192
F

)
. (14)

3. There are new level six interaction terms, originating from the coupling between a

level 0, a level 2 and a level 4 field. These are given by

∆f (6) =
2π2

√
3

t
[

u
( 715

48
A +

38753

1296
B − 25

54
C +

25

18
D +

3827

2592
E − 1235

864
F

)

+
√

13 v
(
− 7495

1296
A − 12101

432
B +

25

162
C − 25

54
D − 95

864
E +

6391

2592
F

)]
.(15)

4. There are cubic interaction terms of level 8. These involve coupling of two level 2

fields with a level 4 field, and also the coupling of two level 4 fields with a level 0

field. The 2-2-4 interaction terms are given by,

∆1f
(8) =

2π2

√
3

[
u2

(1235

864
A +

66937

23328
B − 5

108
C +

5

36
D +

124849

139968
E − 65

576
F

)

+
√

13 uv
(
−82445

34992
A − 133111

11664
B +

125

1458
C − 125

486
D − 19135

69984
E +

11039

23328
F

)

+ v2
( 254381

23328
A +

1598597

23328
B − 2905

8748
C +

2905

2916
D +

11039

46656
E − 230461

46656
F

)]
.

(16)

On the other hand, the 0-4-4 interaction terms are given by,

∆2f
(8) =

2π2

√
3

t
( 3539315

11664
A2 +

9440977

17496
AB +

4367233

3888
B2 − 325

81
AC − 17615

2187
BC

+
25

729
C2 +

325

27
AD +

17615

729
BD +

1598

2187
CD +

25

81
D2 +

1235

432
AE

+
66937

11664
BE +

665

1458
CE − 665

486
DE − 4061

5184
E2 − 1071785

34992
AF

− 1730443

11664
BF +

1625

1458
CF − 1625

486
DF − 248755

69984
EF +

143507

46656
F 2

)
.(17)
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The level 8 approximation to the full tachyon potential is obtained by combining the

contributions (10), (11) and (13)-(17):

f (8) = f (6) + ∆f (4) + ∆f (6) + ∆0f
(8) + ∆1f

(8) + ∆2f
(8) . (18)

Given this potential we can search for a stationary point of the potential.15 We find

that the equations of motion following from this potential are satisfied for16:

tc = 0.5482, uc = 0.2043, vc = 0.2045, Ac = −0.00495, Bc = −0.00056,

Cc = −0.0549, Dc = 0.0183, Ec = 0.0317, Fc = −0.0066 . (19)

The value of the potential at this stationary point is given by

f(Tc) = −0.9864 . (20)

This is about 1% away from the expected answer −1. Note the near equality of the values

of uc and vc. We suspect this to be an exact equality in the complete answer. This, in

turn, indicates that there might be a closed form expression for the state |Tc〉 describing

the stationary point, since otherwise it will be very difficult to explain the equality of

these coefficients.

Discussion. We shall end this paper by discussing the significance of our results and some

further investigations which these results suggest.

1. Our result indicates that the tachyonic vacuum of the bosonic D-brane, representing

its annihilation, is described by a string field dominated by the low lying modes of

the theory. This is certainly surprising since total brane disappearance is a highly

non-perturbative phenomenon and one could have expected non-trivial participation

of all the higher string modes. As we saw, however, condensation of states up to

level four account for 99% of the potential energy required to cancel the tension of

the D-brane. Our results show that string field theory captures non-perturbative

string dynamics. The string field |Tc > appears to be well-defined.

15The actual computations require use of symbolic manipulation programs Maple and Mathematica.
16This stationary point is closest to the one given earlier for level four and level six potentials, in

the sense that if we look for a numerical solution with the stationary point of the level four or level
six potential as the starting point, we arrive at the solution (19). There may be other solutions to the
equations of motion whose interpretation is not clear.
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2. Associated with the phenomenon of tachyon condensation on the D-brane is the

problem of the extra U(1) gauge field [24, 6, 25]. How does the U(1) gauge field

living on the brane disappear after the tachyon condenses and the brane annihilates?

Since the tachyon is neutral, the gauge field cannot acquire mass via the Higgs

mechanism. Also, how do open strings with one endpoint lying on the D-brane in

question disappear after tachyon condensation?

Ref.[26] proposed that at the extrema T = Tc, the action of the gauge field vanishes

identically. This explains the absence of a dynamical gauge field. In addition,

the path integral over the gauge field now sets to zero the charged currents, thus

explaining the absence of open strings with one endpoint on the brane in question.

Since our analysis shows that the tachyonic vacuum can be studied efficiently with

string field theory, one can ask if the above proposal can also be verified using string

field theory. In other words, can one study the fate of action involving the gauge

fields at the extremum T = Tc and show that its coefficient becomes small?

3. According to the conjecture of ref.[1, 2], a D(p−1) brane of the bosonic string theory

can be regarded as a lump solution on a Dp brane, where far away from the core

of the lump the tachyon condenses to the critical value Tc. Since the configuration

T = Tc seems to have a good description in string field theory, it is natural to ask

whether the lump also has a good description in string field theory.

4. Another question that arises from our analysis is: is it possible to write down a

closed form expression for the exact extremum |Tc〉 of the tachyon potential, and/or

of the lump solutions describing lower dimensional branes? As we have already

mentioned, the near equality of uc and vc in eq.(19) can be taken as an evidence

that there is a closed form expression for |Tc〉.

5. Finally, we can wonder about the existence of a stationary point in the tachyon

potential for the bosonic closed string field theory [27]. Could this vacuum, if it

exists, be a state of unbroken general coordinate invariance having no dynamical

graviton? While there appears to be no physical prediction for such hypothetical

stationary state, the methods discussed here may improve on earlier computations

[15, 16, 17] to give some new insight into this problem.
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