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Abstract

F-theory on K3 admits non-BPS states that are represented as string junctions extend-
ing between 7-branes. We classify the non-BPS states which are guaranteed to be stable
on account of charge conservation and the existence of a region of moduli space where
the 7-branes supporting the junction can be isolated from the rest of the branes. We find
three possibilities; the 7-brane configurations carrying: (i) the D1 algebra representing
a D7-brane near an orientifold O7-plane, whose stable non-BPS state was identified be-
fore, (ii) the exotic affine E1 algebra, whose stable non-BPS state seems to be genuinely
non-perturbative, and, (iii) the affine E2 algebra representing a D7-brane near a pair of
O7-planes. As a byproduct of our work we construct explicitly all 7-brane configurations
that can be isolated in a K3. These include non-collapsible configurations of affine type.
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1 Introduction and Summary

Many string theories contain in their spectrum states which are non-BPS but are never-

theless stable due to the fact that they carry certain charge, and there are no other BPS

or non-BPS states of lower mass carrying the same charge into which they can decay. A

particular class of examples consist of a configuration where a single D-p-brane is brought

close to an orientifold p-plane (O-p-plane). In this case the fundamental string stretched

between the D-brane and its image represents a non-BPS state. Furthermore it carries

charge under a U(1) gauge field living on the D-brane, and as long as there are no other

D-branes nearby, there is no BPS state of lower mass carrying this U(1) charge into which

this non-BPS state can decay. Thus it will represent a stable non-BPS state. Such con-

figurations arise in certain regions of the moduli space of the toroidal compactification of

type I string theory.

The special case of the D7-brane − O7-plane system was discussed in [1]. When non-

perturbative effects are taken into account, the O7-plane splits into a pair of 7-branes [2].

We shall use the language of ref.[3, 4] to refer to the original D7-brane as an A-type brane
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and to the other two 7-branes representing the O7-plane as B and C-type branes. In this

description the non-BPS state can be represented as a string junction2 j with its prongs

ending on the three 7-branes[3, 4].3 In the limit when the separation between these three

7-branes is large compared to the string length scale ls, the mass of the state j can be

computed by adding up the masses of all the strings forming the junction[1].

Such a configuration of 7-branes arises in the special limit of F-theory compactification

on elliptically fibered K3 [6] when the size of the base is large, and when the relative

distances between the three 7-branes representing the D7-brane O7-plane system are

much smaller than the distance between any of these three 7-branes and any of the other

twenty one 7-branes. The stability of this junction j can be argued as follows. First of

all, it is charged under a U(1) gauge field living on the ABC 7-brane system and carries

the minimal value of charge. Second, there are no BPS states on the ABC brane system

which carry this U(1) charge. Indeed, all states of the system carrying this U(1) charge,

are non-BPS, and are represented by junctions nj with n 6= 0. In the approximation

where the length of each segment of the junction is large compared to the string length

scale ls so that the mass of the junction is given by adding the masses of the strings,

the states with n = ±1 are expected to be the lowest mass ones, since in this limit the

state nj will be represented by n copies of the junction representing the state j. Thus j

cannot decay into a state living on the ABC system. In addition, since j carries a U(1)

charge originating from the three 7-brane system, it cannot decay into a state which lives

completely on the other 21 7-branes. If it were to decay, the decay products must include

a junction j′ with at least one prong extending from the ABC system all the way to one

of the 21 other 7-branes. Since all the 21 other 7-branes are far away, the mass of j′ is

necessarily much larger than that of j, and thus this decay is not possible due to energetic

reasons. This establishes the stability of j.

The above argument requires the relative distance between all the 7-branes to be large

compared to the string length scale ls so that the dominant contribution to the mass of

the state comes from the classical mass of the junction. However, this condition can be

relaxed a little. Suppose that the three special 7 branes are very close to each other, so

that their separations are of the order of, or are much smaller than ls. Then, since stringy

corrections could be of order l−1
s the computation of masses of the localized non-BPS

2Throughout this paper we shall refer to both string junctions and string networks, as junctions.
3String junctions have been used in [5] to construct non-BPS states on the 3-brane − 7-brane system.
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junctions living on the ABC brane system is difficult, and one may not be able to decide

which of the non-BPS junctions is the stable one against decay within this system.4 But

there will be at least one stable state, − the one with minimum mass carrying the U(1)

charge. Since this state has mass of order l−1
s , stringy corrections will not invalidate the

conclusion of stability against decay using the faraway branes as long as the distance

between the three isolated branes and every one of the twenty one other 7-branes is much

larger than ls. We will therefore have a stable non-BPS state.

In this paper we generalize this construction to other limits of F-theory compactifi-

cation on K3. The basic idea will be as follows. We first consider a limit of F-theory

compactification where a subset of (24−r) 7-branes are far away from a set of r 7-branes.

We shall call the latter a set of isolated 7-branes. In this case in analysing the stability

of any state which lives solely on the isolated branes, we can forget about the existence

of the other 7-branes, and study if the state can decay into other states living on the

isolated set of 7-branes.5 Then we study if this specific set of isolated branes contains a

non-BPS state subject to the condition that a) it carries a (set of) U(1) charge(s), and

b) there is no combination of BPS states living solely on the isolated branes which also

carries the same charge quantum number(s). In this case this isolated brane configuration

is guaranteed to contain a stable non-BPS state carrying charge under this U(1) gauge

field(s). It is of course possible to find a set of BPS states carrying same charge quantum

numbers if we include string junction configurations some of whose prongs end on the

other 7-branes, but these states are too heavy, and so it is not energetically possible for

the original non-BPS state to decay into such states.

This construction of course does not exhaust all possible ways of obtaining stable

non-BPS states in F-theory compactification on K3. In particular one may find examples

where there is a non-BPS state and a set of BPS states whose total charge quantum

numbers match that of this non-BPS state, but a detailed dynamical analysis involving

computation of the masses of each state shows that it is not energetically possible for a

non-BPS state to decay into the set of BPS states carrying the same set of chage quantum

numbers. We do not attempt to analyze these cases in this paper.

4Fortunately in the limit when the separation between the ABC branes are much smaller than ls, the
system can be described by a D7-brane O7-plane system which allows us to compute the masses, and
conclude that the state carrying the minimum U(1) charge is stable.

5Again this argument would require the distance between the isolated branes and the other branes to
be much larger than ls.
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Note that if we do not consider isolated 7-brane configurations of this kind, but consider

the full set of states in F-theory on K3, then for every state carrying some specific charge

quantum number there is a set of BPS states carrying the same charge quantum number,

and hence every state can in principle decay into a set of BPS states unless such decays

are forbidden due to energetic reasons. This can be seen by noting that the full lattice

of junctions for F-theory on K3 (or equivalently the Narain lattice[7] for heterotic string

theory on T 2) can be generated by a set of BPS states. Indeed, if one takes E8 × E8

heterotic string theory on T 2, then the E8×E8 part of the lattice is generated by the root

vectors of E8 × E8 which represent massless gauge bosons and are BPS states, whereas

the four dimensional lattice associated with T 2 is generated by BPS states carrying unit

winding or momentum along either of the two directions.

Our analysis proceeds in several steps. In section 2 we begin to classify 7-brane

configurations which can be isolated. We find two classes of 7-brane configurations of this

kind. The first class corresponds to a configuration of 7-branes where r of the 7-branes

are at finite distance of each other and the other 7-branes can be pushed all the way to

infinity.6 In this case we have a non-singular background describing only these r 7-branes;

and we call these properly isolated 7-brane configurations. The other class consists of 7-

brane configurations where r of the 7-branes are within a finite distance of each other,

and the other 7-branes are at a distance larger than L for some large number L. In this

case, however, we cannot take the L → ∞ limit and push the other branes all the way

to infinity, because in this limit the string coupling constant vanishes everywhere in the

region within finite distance of the isolated branes. We call these asymptotically isolated

7-branes. We find that the monodromy around a properly isolated brane configuration

must be an elliptic or a parabolic element of the SL(2,Z) S-duality group, whereas the

monodromy around an asymptotically isolated 7-brane must be a parabolic element. In

particular, we see that 7-brane configurations with hyperbolic monodromies cannot be

isolated.

In section 3 we look for explicit examples of isolated 7-brane configurations using the

list of 7-brane configurations found in ref.[8]. In this list we find that the 7-brane config-

urations E6, E7, E8, H0, H1, H2, Ên (1 ≤ n ≤ 9),
̂̃
E0,

̂̃
E1, and Dn (0 ≤ n ≤ 4) satisfy

the necessary conditions for being properly isolated 7-brane configurations, and we show

6Since in an F-theory background a constant rescaling of the metric does not destroy the solution, we
can start from this solution and go to other configuraions where the distance between the r 7-branes are
large or small compared to ls.
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that these conditions are also sufficient by explicitly constructing the properly isolated 7-

brane configurations of these types. The analysis is more complicated for asymptotically

isolated 7-brane configurations, and we have not attempted a thorough study of all the

configurations listed in ref.[8] to see which of them can be asymptotically isolated. How-

ever, we show the existence of 7-brane configurations of this kind based on An (n ≥ 0)

and Dn (n ≥ 5) type configurations.

In section 4 we examine each of the examples of isolated 7-brane configurations found

in section 3 and look for stable non-BPS states in this system. The basic idea has already

been explained before: we demand that we have one or more non-BPS junctions carrying

a (set of) U(1) charge(s), and that there is no combination of BPS states living on the

isolated brane system carrying the same (set of) U(1) charge(s). According to our previous

argument, this would guarantee that there is at least one stable non-BPS state on the

isolated 7-brane system as long as the faraway branes are much farther than ls away.

We find that there are three 7-brane configurations satisfying these constraints − D1,

Ê2 and
̂̃
E1. Of these D1 represents a D7-brane near an O7-plane, and Ê2 represents a

D7-brane near a pair of O7-planes. The existence of possible non-BPS states in these

configurations could be argued by working in the orientifold limit. On the other hand,
̂̃
E1

seems to represent a genuinely new example as it gives a non-BPS state with no simple

perturbative interpretation.

In section 5 we study the possibility of obtaining non-BPS states on non-isolable 7-

brane configurations. We construct several examples of 7-brane configurations containing

string junctions which are stable against decay within the given 7-brane configurations.

But since these 7-brane configurations are not isolable, there are other 7-branes nearby,

and these junctions could be unstable against decay into string junctions which have one

or more prongs ending on 7-branes outside this system.

As we were preparing to submit this paper, an interesting work by Y. Yamada and

S. K. Yang appeared [9] which also gives an explicit construction of the affine exceptional

brane configurations. This substantially overlaps with section 3.2.

2 Constraints on Isolated Configurations

Various configurations of (p, q) 7-branes were studied in refs. [10, 8]. In this section we

shall analyse the conditions under which a given set of 7-branes can be considered in
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isolation. This issue arises because we want to consider subsets of the configuration of

24 7-branes describing F-theory on K3 [6]. We try to take an appropriate limit in the

parameter space where a chosen set of 7-branes is far away from all the other 7-branes.

We shall say that the chosen set of 7-branes can be isolated if it is possible to consider

the limit in which the largest distance between any two members of the chosen set can

be made small compared to the distance between the chosen set and any of the other

7-branes. As discussed in the introduction, only for brane configurations that can be

considered in isolation we can reliably ascertain the existence of stable non-BPS states.

Our analysis of stability of non-BPS states is based on classical considerations, and

thus our results are valid in the limit when the size of the S2 base transverse to the seven

branes is taken to be large compared to the string length ls. In particular, with the help

of an overall rescaling of the metric, we choose the size of the base to be sufficiently large

so that the distance between the isolated branes and any of the other branes is large

compared to the string length ls. In this limit, as explained in the introduction, a stable

non-BPS state on the isolated 7-brane configuration cannot be rendered unstable by the

presence of the faraway branes.

Our analysis will consist of two steps. In the first step we find constraints on mon-

odromies that can appear around an isolated configuration by requiring that all other

7-branes are at large coordinate distance away from the isolated branes. In particular, we

find that hyperbolic monodromies are not allowed. Since large coordinate distance does

not always correspond to large distance measured in the relevant metric, in the second

step we impose the condition that when distances are measured in the appropriate metric,

the isolated configuration is still far away from the remaining branes.

2.1 Constraints on monodromies for isolated configurations

A configuration of 7-branes in F-theory is described by specifying a pair of polynomials f

and g in z, − the complex coordinate parametrizing the space transverse to the 7-brane.

f is a polynomial of degree 8 and g is a polynomial of degree 12. We define:

∆ = 4f 3 + 27g2 . (2.1)

Then the dependence of the axion-dilaton modulus τ(z) on the transverse coordinate z is

given by:

j(τ(z)) =
4 · (24f)3

∆
. (2.2)
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j(τ) blows up at the zeroes of ∆. These are the locations of the 7-branes.

We can now make more precise what we mean by isolating a set of branes. For this

note that f and g are labelled by a set of 22 parameters ξi. We shall consider the cases

where we can focus on a one dimensional subspace ξi(λ), parametrized by λ. We say that

we can isolate a set of branes if as we take the limit λ → 0 the parameters ξi(λ) of f and

g flow in such a way that a set of r roots of ∆ remain at finite points in the z plane, while

the others move off to infinity. In that case for a finite but sufficiently small λ, by using

scaling and translation in z, we can ensure that r of the zeroes of ∆, − which we shall

associate with the location of the isolated branes, − are within the unit disk centered at

the origin, and the faraway branes are outside a circle of radius L, also centered at the

origin, where L is some arbitrary but fixed large number.

The above definition will describe an isolated set of r 7-branes in the sense described

earlier if we can show that finite (infinite) coordinate distance in the z-plane corresponds

to finite (infinite) distance measured in the metric used for computing the mass of a (p, q)

string stretched along a geodesic[11, 12, 13]. This must be true for all possible values of

(p, q). This constraint will give additional restrictions on the form of f and g. We shall

derive these constraints in the next subsection.

Let zi denote the positions of the isolated branes and z̃i the position of the faraway

branes. By using the additional freedom of simultaneously rescaling f and g by constants

γ2 and γ3 respectively, we can bring ∆ to the form:

∆ =
r∏

i=1

(z − zi)
24−r∏

i=1

(1 − z

z̃i

) (2.3)

As mentioned before, for sufficiently small λ we have |zi| < 1 for all i = 1, · · · r and

|z̃i| > L for all i = 1, · · · , 24− r. As we travel (in the clockwise direction) around the set

of isolated branes, the modulus τ undergoes an SL(2, Z) transformation:

τ → aτ + b

cτ + d
. (2.4)

We shall call the matrix
(

a b
c d

)
the monodromy matrix K around the isolated set of

7-branes. Our first task will be to compute the possible monodromy matrices K around

the isolated branes.7 For computing K we can use any contour surrounding the isolated

branes but not enclosing any faraway brane.
7Throughout this and the next section we shall determine the monodromy matrix only up to an

SL(2,Z) conjugation, unless mentioned otherwise.
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We now examine the behavior of f(z) and g(z). We shall call a parameter in f or

g small, finite or large, if taking λ to zero requires the parameter to go to zero, remain

bounded within a circle of finite radius in the complex plane, or grow indefinitely, respec-

tively. We write f and g in the form

f(z) = F
df∏

i=1

(z − ui)
8−df∏

i=1

(1 − z

ũi
) , (2.5)

g(z) = G
dg∏

i=1

(z − vi)
12−dg∏

i=1

(1 − z

ṽi
) , (2.6)

where we have introduced parameters ui, ũi, vi, ṽi, entering as zeroes of f and g, and

parameters F, G entering as overall coefficients. The parameters ui (1 ≤ i ≤ df) are

assumed to be either small or finite, while the ũi (1 ≤ i ≤ (8 − df)) are assumed to

be large. Similarly, vi (1 ≤ i ≤ dg) are small or finite, and ṽi (1 ≤ i ≤ (12 − dg)) are

large. The above expressions for f and g are completely general. Our analysis will require

investigating the nature of the parameters F and G. Note that having used scaling to fix

the distribution of branes implicit in ∆ and the overall normalization of ∆, we no longer

have any further scaling freedom to set F and/or G to specific values. The parameters F

and G can be small, finite or large. The numbers df and dg indicate the degrees of f and

g respectively, when we use only the factors associated with the small and finite roots.

We shall now introduce two contours that will help in the analysis. Since we have a

bounded number of small and finite roots one can define a finite length R/2 which is the

magnitude of the largest finite root (of f , g or ∆) in the limit λ → 0. It then follows that,

for sufficiently small λ, the circle C of finite radius R contains all small and finite roots.

Moreover, this circle is at a finite distance from all the small and finite roots of f , g and

from all the isolated branes. In addition, if L̃ denotes the magnitude of the smallest large

root of f , g or ∆, then for sufficiently small λ we can choose another circle C′, of radius

R′ such that R′/R and L̃/R′ are arbitrarily large. This circle is both far outside the finite

and small roots, and far inside the large roots and the faraway branes. As mentioned

before we can calculate the monodromy K using C or C′, since each of them only encloses

the isolated branes (note that crossing zeroes of f and g does not affect the monodromy;

however in deforming C to C′ we do not cross any zero of f or g).

By construction ∆ takes finite values on C (see (2.3)). In addition, on C, we have

f ∼ F and g ∼ G, by which we mean that f/F and g/G are both finite and nonzero.
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Since ∆ = 4f 3 + 27g2, we see that both F and G cannot be small parameters. If F is

large G also must be large and vice versa. Thus we need to consider the following cases

separately: 1) F small, G finite 2) F finite, G small 3) F and G both finite, and 4) F and

G both large.

1. F small, G finite: In this case on the contour C, ∆ ≃ 27g2, and hence from (2.1),

(2.2) we see that j(τ) ≃ 0. This gives τ ≃ e2iπ/3 up to an SL(2,Z) conjugation. The

monodromy K around C must leave this value of τ fixed. This gives K = ±(ST )±1

or K = ±1, where we define:

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (2.7)

2. F finite, G small: Now ∆ ≃ 4f 3 along C. This gives j(τ) ≃ (24)3, and τ ≃ i along C.

The monodromy around C which must leave this value of τ fixed is either K = ±S

or K = ±1.

3. F and G finite: In this case we shall compute K using the contour C′. On C′

the functions f and g are well approximated by their overall coefficients F and G

together with the factors containing the small and finite roots. There are several

subcases to be considered:

(a) 3df 6= 2dg: Depending on whether 3df > 2dg or 3df < 2dg, f or g will be the

dominant contribution to ∆. In the first case τ ≃ i on C′, and K = ±S or

K = ±1. In the second case τ ≃ e2πi/3 on C′ and K = ±(ST )±1 or K = ±1.

(b) 3df = 2dg. In this case there are two possibilities: r < 3df and r = 3df . Since

∆ = 4f 3 + 27g2, and f and g are approximated by polynomials of degree df

and dg respectively, the approximation to ∆ is a polynomial of degree at most

3df(= 2dq). Hence r > 3df is not possible.

i. r < 3df : In this case on C′ we have

j(τ) = 4(24f)3/∆ ∼ z3df−r . (2.8)

Since j(τ) is large on C′, we can use

j(τ) ∼ e−2πiτ , (2.9)
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to conclude that

τ ≃ −(3df − r)
1

2πi
ln z + constant . (2.10)

This implies K = ±T 3df−r. Note that the power of T is positive.

ii. r = 3df : In this case f 3/∆ goes to some constant on C′. Thus τ goes to

a constant. Since f 3/∆ and g2/∆ are both non-vanishing and finite on

C′, the constant τ is not (an SL(2,Z) conjugate of) i, e2πi/3 or i∞. The

monodromy along C′ must leave fixed this constant value of τ . The only

possibility is K = ±1. This case is identical to (several copies of) the D4

case [2].

4. F and G large. In this case along C the function f is large but ∆ is finite. Thus

we can use eq.(2.9) to conclude that Im(τ) must be large along C. The monodromy

around C must preserve this condition. This gives K = ±T k for some integer k

(−∞ < k < ∞).

Note that in cases 1, 2 and 3, the functions f , g and ∆ remain well defined in the

λ → 0 limit, since they all approach finite values for finite z in the λ → 0 limit, and each

of them only has a finite number of isolated zeroes in the finite z plane. In these cases

even when we set λ = 0, τ(z) is well defined in the sense that it is finite (with Im(τ) > 0)

for finite z except at isolated points which are the locations of the 7-branes. On the other

hand, in case 4, f and g do not approach a finite value for finite z as λ → 0, since the

multiplicative factors F and G blow up in this limit. Since j(τ) ∼ f 3/∆ and ∆ is bounded

for any finite z, for λ = 0 we will have Im(τ) = ∞ at every finite point in the z plane

except at the zeroes of f . Since the string coupling constant is given by the inverse of the

imaginary part of τ , we see that in this case the string coupling approaches zero at every

finite point in the z plane except at the zeroes of f . This is a singular configuration. But

since in order to get 7-brane configurations admitting stable non-BPS states we do not

need to actually set λ = 0, but only need to take λ sufficiently small, even these kind

of 7-brane configurations are potentially good candidates for admitting stable non-BPS

states in their spectrum.
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2.2 Constraints from large distance separation

Let us now study the constraints coming from the requirement that finite (large) separa-

tion in the coordinate z correspond to finite (large) separation measured in the appropriate

metric used in computing the mass of a string junction living on the 7-brane system. Up

to an arbitrary constant multiplicative factor, this metric used in computing the mass of

a (p, q) string is given by [11]:

dsp,q = |p + qτ ||η(τ)|2
r∏

i=1

|z − zi|−
1

12 |dz| , (2.11)

where zi, as before, denote the locations of the isolated 7-branes. First let us consider

the cases 1-3 discussed above. In these cases we can set λ = 0 from the beginning. Now

τ is finite everywhere in the z-plane except at the locations of the 7-branes, and possibly

at z = ∞. The metric of a (p, q)-string is known to be finite near a (p, q)-seven brane.

Thus it is finite at all finite points in the z-plane, and hence finite coordinate distance

will correspond to finite distance measured in the metric (2.11).8 Thus if we can show

that infinite coordinate distance corresponds to infinite distance when measured in the

metric (2.11), for any (p, q) values, we would have shown that finite (large) separation in

the z-coordinate system corresponds to finite (large) separation in the metric (2.11). The

main issue here is whether the point z = ∞ is infinite or finite distance away from finite

points in the z-plane. For this we note that for large |z|, (2.11) reduces to

dsp,q ≃ |p + qτ ||η(τ)|2 |z|− r
12 |dz| . (2.12)

In cases 1, 2, 3(a) and 3(b)(ii), τ approaches a finite value as |z| → ∞. From eq.(2.12)

we see that in this case the point z = ∞ is infinite distance away for9

r ≤ 12 . (2.13)

In case 3(b)(i) the monodromy is ±T k with k ≡ (3df − r) > 0. In this case τ → i∞ as

|z| → ∞. More precisely,

j(τ) ∼ e−2πiτ ∼ zk . (2.14)

This gives, for large |z|,
η(τ) ∼ e2πiτ/24 ∼ z−

k
24 . (2.15)

8The metric of a (p, q)-string may have mild divergence near a (p′, q′) 7-brane for (p, q) 6= (p′, q′), but
we can always choose contours which avoid such points.

9Similar results were obtained in ref.[11].
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Thus (2.12) takes the form:

dsp,q = |p + qτ ||z|− r+k
12 |dz| . (2.16)

Since |p+ qτ | either approaches a finite value or grows logarithmically as |z| → ∞, we see

that the point z = ∞ is at infinite distance measured in the metric (2.16) if

r + k ≡ 3df ≤ 12 . (2.17)

Finally we turn to case 4. In this case Im(τ) is large for finite z, and hence

j(τ) ∼ e−2πiτ ∼ F 3
df∏

i=1

(z − ui)
3

r∏

i=1

(z − zi)
−1 . (2.18)

This gives

η(τ) ∼ e2πiτ/24 ∼ F− 1

8

df∏

i=1

(z − ui)
− 1

8

r∏

i=1

(z − zi)
1

24 . (2.19)

Hence

dsp,q ∼ |p + qτ ||F |− 1

4

df∏

i=1

|z − ui|−
1

4 |dz| . (2.20)

Since τ ≃ − 3
2πi

ln F is almost constant, we see from eq.(2.20) that the distance between

two finite points in the z plane is small compared to the distance between a finite point

and a point at large |z| << L̃ provided

df ≤ 4 . (2.21)

In the next section we shall look for 7-brane configurations satisfying all the constraints

found in this section. For this analysis it will be useful to divide the possible set of isolable

7-brane configurations into two classes. Since in cases 1, 2 and 3, we can actually set

λ = 0 and get a well defined function τ(z), we shall call these configurations properly

isolated 7-brane configurations. On the other hand in case 4 we only get isolated 7-brane

configurations for small but non-zero λ. If we try to push all the other 7-branes all the

way to infinity by taking the λ → 0 limit, Im(τ) blows up for all finite z except at

isolated points. We shall refer to these configurations as asymptotically isolated 7-brane

configurations. As discussed earlier, both kinds of isolated 7-brane configurations are

potentially relevant for finding stable non-BPS states.
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3 Constructing the Isolated Configurations

Our analysis so far gives constraints on monodromies for isolated 7-brane configurations,

but does not guarantee that given a 7-brane configuration with one of these monodromies,

it can always be isolated. We can now use Table 5 of [8] to identify the brane configurations

giving such monodromies. Brane configurations were classified by their monodromy matri-

ces K into elliptic (|Tr(K)| < 2), parabolic (|Tr(K)| = 2) and hyperbolic (|Tr(K)| > 2)

type. ±S and ±(ST )±1 are examples of elliptic monodromy, whereas ±T k for any integer

k are examples of parabolic monodromy. From our analysis we see that only 7-brane

configurations with elliptic and parabolic monodromies can be possibly isolated.

Let us first consider 7-brane configurations which can be properly isolated. In this

case we can have elliptic monodromies coming from cases 1, 2 or 3(a), and parabolic

monodromies coming from cases 1, 2, 3(a) or 3(b) of section 2.1. In the elliptic cases

equation (2.13) must be satisfied. From table 5 of ref.[8] we see that with fewer than 12

7-branes we have the configurations: E6, E7, E8, H0, H1, and H2. Parabolic cases coming

from cases 1, 2, 3(a) and 3(b) have monodromy ±T k with k ≥ 0. Furthermore, we need

to satisfy (2.17). In this class we find ÊN (9 ≥ N ≥ 1),
̂̃
E1,

̂̃
E0, and DN (4 ≥ N ≥ 0). We

shall explicitly construct f and g for each of these elliptic and parabolic configurations,

thereby proving that all these configurations can be properly isolated. Of these, the ones

with elliptic monodromy, and the D4 configuration can be collapsed to a single point, but

none of the other configurations with parabolic monodromy can be collapsed to a single

point.

Asymptotically isolated configurations originating from case 4 in section 2.1 can have

monodromy ±T k where k is any integer. There are several configurations with mon-

odromies of this form. For example, after excluding the properly isolated configurations,

we have An (n ≥ 0), Dn (n > 4), Ên (n > 9), three copies of D0 etc.10 But in this

case a complete analysis of which of these configurations can actually be isolated is more

difficult, since these configurations can be reached only as a limit. However, we do give

proof of existence of a class of such configurations based on resolutions of DN (N ≥ 5)

and AN (N ≥ 0) singularities.

We begin our analysis with the properly isolated configurations.

10Two copies of D0 is equivalent to Ê1[8].
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3.1 Elliptic cases

We now consider the configurations with elliptic monodromies having less than twelve

seven-branes. These all correspond to Kodaira singularities and we will see that they

can be isolated. The constraints given below on the polynomials f and g were listed

in [14], which also extended the work of [15] on the construction of curves for N = 2

supersymmetric four dimensional gauge theories with global exceptional symmetries.

E6: This contains eight 7-branes and has monodromy −(ST )−1.11 The fact that there

are eight 7-branes means that for a properly isolated 7-brane configuration of this type,

∆ is a polynomial of degree 8. The monodromy matrix leaves fixed the point τ = e2iπ/3.

Hence far away from the seven brane configuration τ must approach e2iπ/3, and j(τ) must

vanish. This shows that f 3 must be a polynomial of degree < 8. This gives the following

constraints:

deg(f) ≤ 2, deg(g) = 4 . (3.22)

There are no further constraints on f and g. In order to prove that this really describes

an E6 configuration we note that since the parameter space is connected, it is enough

to show that any one point in the parameter space describes an E6 configuration. If we

consider the special case where f = 0 and g = z4, then this describes an E6 singularity,

and hence certainly represents an E6 type 7-brane configuration. Thus any pair of f and

g satisfying (3.22) gives a properly isolated 7-brane configuration of E6 type. This shows

that the E6 configuration can be isolated.

E7: This contains nine 7-branes, and has monodromy S. Thus ∆ is a polynomial of

degree 9, and τ approaches i far away from the 7-branes. The latter condition tells us

that g2/∆ must vanish sufficiently far away from the 7-branes, and hence g2 must have

degree < 9. This gives the following necessary conditions for a properly isolated 7-brane

configuration of E7 type:

deg(f) = 3, deg(g) ≤ 4 . (3.23)

Taking f(z) = z3 and g(z) = 0 we get a collapsed configuration with E7 singularity. This

shows that eqs.(3.23) are also sufficient for getting an E7 configuration.

E8: This has ten 7-branes and has monodromy (ST ). Following the same analysis

as the E6 case we find that the necessary and sufficient condition for having a properly

11Again in this section we continue to use monodromies that are only fixed up to SL(2,Z).
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isolated 7-brane configuration of this type is:

deg(f) ≤ 3, deg(g) = 5 . (3.24)

H0: This has two 7-branes and has monodromy (ST )−1. Following the same analysis

as the E6 case we find,

deg(f) ≤ 0, deg(g) = 1 . (3.25)

Here deg(f) ≤ 0 means that f can be either a constant or zero.

H1: This has three 7-branes and has monodromy (S)−1. Following the same analysis

as the E7 case we find,

deg(f) = 1, deg(g) ≤ 1 . (3.26)

H2: This has four 7-branes and has monodromy −(ST ). Following the same analysis

as the E6 case we find,

deg(f) ≤ 1, deg(g) = 2 . (3.27)

This finishes all the elliptic cases. We now turn to the parabolic cases.

3.2 Properly isolated parabolic cases

Here we must deal with two series of configurations. One series carries affine exceptional

algebras and the other series carries orthogonal algebras. We begin with:

3.2.1 The exceptional series Ên

Ê9: This has twelve 7-branes and its monodromy is the identity. This corresponds to

deg(f) ≤ 4, deg(g) ≤ 6 , deg(∆) = 12. (3.28)

Indeed, choosing arbitrary fourth order and sixth order polynomials for f and g respec-

tively, it is clear that for large z we can get arbitrary constant values of τ . Only K = ±1

can leave such values invariant. On the other hand, it follows from the arguments of

ref.[8], section 4 that twelve 7-branes cannot produce K = −1. We must therefore have

K = 1. This configuration arises from two copies of the D4 case discussed in [2].

If we define the coefficients fk, gk and dk through the relations:

f(z) ≡ −(4)1/3f(z) =
4∑

k=0

fkz
k
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g(z) ≡ (27)1/2g(z) =
6∑

k=0

gkz
k

∆ ≡ −f
3
+ g 2 =

12∑

k=0

dkz
k , (3.29)

then, in order to get Ê9 one must have d12 6= 0, which requires g2
6 − f 3

4 to be non-zero.

Ên (2 ≤ n ≤ 8),
̂̃
E1,

̂̃
E0: The Ên configuration has (n + 3) seven branes, and has

monodromy T 9−n. Thus for a properly isolated brane configuration of this kind, ∆ is a

polynomial of degree (n + 3), and j(τ) for large but finite z behaves as

j(τ) ∼ z9−n . (3.30)

Using (2.1), (2.2) we see that f 3 ∼ z12, and g2 ∼ z12 for large |z|. Thus f is a polynomial

of degree 4 and g is a polynomial of degree 6. Let us introduce the coefficients of expansion

fk, gk through the relations (3.29). Using the freedom of shifting z, and the freedom of

scaling f and g by γ2 and γ3 respectively for any complex number γ, we set

f0 = 0, f4 = 1 . (3.31)

This still leaves a residual rescaling freedom where we scale g by −1 and leave f unchanged;

we shall use this later. We are also left with the freedom of scaling z by a complex number

K together with a compensating scaling f → K−4f , g → K−6g so as to preserve the f4 = 1

condition. We shall also make use of this later.

In order to get the Ên configuration, we need to ensure that the coefficients dk defined

in eq.(3.29) vanish for k ≥ (n + 4), and that dn+3 does not vanish. We shall begin by

describing the solution for Ê2. First of all, requiring the coefficient d12 to vanish we get

g6 = ±1. We can now use the residual scaling freedom g → −g, f → f to set,

g6 = 1 ≡ ĝ6 . (3.32)

Now by equating the coefficients of d11, . . . d6 to 0, we get12:

d11 = 0 : g5 =
3

2
f3 ≡ ĝ5 , (3.33)

12This calculation is straightforward but complicated, and has been done with the help of the algebraic
manipulator programme MAPLE.
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d10 = 0 : g4 =
1

2
(3f2 + 3f 2

3 − g2
5)

=
3

2
f2 +

3

8
f 2

3 ≡ ĝ4 . (3.34)

d9 = 0 : g3 =
1

2
(3f1 + 6f3f2 + f 3

3 − 2g4g5)

=
3

2
f1 +

3

4
f2f3 −

1

16
f 3

3 ≡ ĝ3 . (3.35)

d8 = 0 : g2 =
1

2
(6f1f3 + 3f 2

2 + 3f 2
3 f2 − 2g3g5 − g2

4)

=
3

8
f 2

2 − 3

16
f2f

2
3 +

3

4
f1f3 +

3

128
f 4

3 ≡ ĝ2 (3.36)

d7 = 0 : g1 =
1

2
(6f1f2 + 3f1f

2
3 + 3f3f

2
2 − 2g2g5 − 2g3g4)

=
3

4
f1f2 −

3

16
f 2

2 f3 +
3

32
f2f

3
3 − 3

16
f1f

2
3 − 3

256
f 5

3 ≡ ĝ1 . (3.37)

d6 = 0 : g0 =
1

2
(3f 2

1 + 6f1f2f3 + f 3
2 − 2g1g5 − 2g2g4 − g2

3)

=
3

8
f 2

1 − 3

8
f1f2f3 −

1

16
f 3

2 +
9

64
f 2

2 f 2
3 − 15

256
f2f

4
3

+
3

32
f1f

3
3 +

7

1024
f 6

3 ≡ ĝ0 . (3.38)

This determines the parameters gi in terms of three independent parameters f1, f2, f3. In

order to have an Ê2 configuration we must also require d5 to be non-zero. A straightfor-

ward computation gives:

d5 =
3

1024
(8f1 − 4f2f3 + f 3

3 )(16f 2
2 + 16f1f3 − 16f2f

2
3 + 3f 4

3 ) . (3.39)

Thus the most general properly isolated Ê2 configuration is labelled by three parameters

f1, . . . f3 satisfying the inequality d5 6= 0. Of these three parameters one is redundant

due to the freedom of scaling of z. Using this freedom, we can require the d5 given in

(3.39) to be equal to (3/1024). This gives a two parameter family of Ê2 configurations.

In summary

Ê2 : f(z) = f1z + f2z
2 + f3z

3 + z4 ,

g(z) =
6∑

k=0

ĝkz
k ,

(8f1 − 4f2f3 + f 3
3 )(16f 2

2 + 16f1f3 − 16f2f
2
3 + 3f 4

3 ) = 1 . (3.40)
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The construction of properly isolated Ên configurations with 2 < n < 9 follows triv-

ially. In this case we require dk to vanish for k ≥ (n + 4), and dn+3 to be non-zero. Thus

we need to satisfy the first (9 − n) of the equations (3.32)-(3.38), and also require that

the left hand side minus the right hand side of the (10 − n)th equation (gn−3 − ĝn−3) be

non-zero, which we can set equal to (+1) by using the freedom of rescaling z. Thus the

general solution is parametrized by (n+1) parameters f1, . . . f3, g0, . . . gn−3 subject to one

‘gauge fixing condition’, which determines gn−3 in terms of the other parameters. Using

the gauge fixing condition gn−3 − ĝn−3 = 1, the explicit solution is given by

Ê9>n>2 : f(z) = f1z + f2z
2 + f3z

3 + z4 ,

g(z) = ĝ6 z6 + · · ·+ ĝn−2z
n−2 + (1 + ĝn−3)z

n−3 +
n−4∑

k=0

gkz
k , (3.41)

where ĝ6 = 1, and the other ĝn are given in (3.33)-(3.38). g0, . . . gn−4 are arbitrary.

Let us now turn to the case of Ê1. In this case we need to satisfy eqs.(3.32)-(3.38),

together with d5 = 0. It follows from (3.39) that we need

(8f1 − 4f2f3 + f 3
3 )(16f 2

2 + 16f1f3 − 16f2f
2
3 + 3f 4

3 ) = 0 . (3.42)

Note that this equation contains two factors. Furthermore, it is straightforward to see

that if we require both factors to vanish simultaneously, then ∆ vanishes identically, and

hence we have an unphysical solution.

Thus it appears that in the parameter space labelled by f1, f2, and f3, there are two

physically disconnected regions which give properly isolated 7-brane configurations with

the same number of 7-branes and the same monodromy as the Ê1 configuration:

(8f1 − 4f2f3 + f 3
3 ) = 0 , (3.43)

or

(16f 2
2 + 16f1f3 − 16f2f

2
3 + 3f 4

3 ) = 0 . (3.44)

It turns out that among the configurations of 7-branes listed in table 5 of [8] there is

precisely one more configuration with the same monodromy and the same number of 7-

branes as the Ê1 configuration, namely the
̂̃
E1 configuration. Thus we expect to identify

one of the branches of (3.42) with
̂̃
E1, and the other branch with Ê1. Let us begin with

the first branch, given by equation (3.43) which we can use to solve for f1 as

f1 = −1

8
f 3

3 +
1

2
f2f3 . (3.45)
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With this value of f1 we can now find

d4 = − 3

16384
(4f2 − f 2

3 )4 . (3.46)

We have two parameters f2 and f3. It is convenient at this stage to introduce a new

parameter s through the relation f2 = 1
4
sf 2

3 , and then set f3 = 4 as a gauge condition.13

We then have d4 = −12(s − 1)4, and therefore we should get the desired configuration

when s 6= 1. At this stage we can write every coefficient in terms of s. As we will explain

shortly, this is Ê1. We then have

Ê1 : f(z) = z4 + 4z3 + 4s z2 + 8(s − 1) z , s 6= 1

g(z) = z6 + 6z5 + 6(s + 1)z4 + (24s − 16) z3 (3.47)

+6(s + 3)(s − 1)z2 + 12(s − 1)2 z − 4(s − 1)3 .

From this one finds

∆(Ê1) = 4(s − 1)4
(
−3z4 − 12z3 − 12s z2 − 24(s − 1) z + 4(s − 1)2

)
(3.48)

Let us now confirm that this is Ê1. To this end we recall that the Ê1 brane configuration

is BCBC and either the B or the C branes can be brought together to define an A1

singularity. Indeed, we found that letting

z = −1 + y , s = −1

2
−

√
3 (3.49)

equations (3.47) and (3.48) become

f(y) = (7 + 4
√

3) − (8 + 4
√

3)y2 + y4

g(y) = (26 + 15
√

3) + (30
√

3 +
105

2
) y2 − (12 + 6

√
3) y4 + y6 (3.50)

∆(y) = −27

4
(97 + 56

√
3) y2 (y2 − 4

√
3 − 8) .

This is an A1 singularity at y = 0; indeed, at this point we have ord(f) = ord(g) = 0,

and ord(∆) = 2.

This confirms that we are dealing with Ê1. We can perform another check. It should

not be possible to decouple a brane in this configuration, since removing any single brane

13Note that this gauge condition is valid for all (f2, f3) as long as f3 6= 0, i.e. s 6= ∞. If f3 vanishes,
then we need to choose a different gauge.
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from Ê1 will leave a configuration with hyperbolic monodromy [8] and such configuration

(by our earlier arguments) cannot be isolated. Indeed, to make the coefficient of z4 in ∆

vanish, we must take s = 1, but this makes ∆ vanish identically, and therefore this is not

a physical solution.14

We now begin the exploration of the second branch, indicated in (3.44). In here we

must set:

f1 = −f 2
2

f3

+ f2f3 −
3

16
f 3

3 . (3.51)

With this condition, we now examine the resulting value of d4 which turns out to be

d4 =
3

16384

(8f2 − 3f 2
3 )(4f2 − f 2

3 )4

f 2
3

. (3.52)

We have two parameters f2 and f3. It is convenient at this stage to relate them via

another parameter. We put f2 = 1
4
sf 2

3 , and then to set f3 = 4 as a gauge condition.15 We

then find

̂̃
E1 : f(z) = z4 + 4z3 + 4sz2 − 4(s − 1)(s − 3)z , s 6= 1

g(z) = z6 + 6z5 + 6(1 + s)z4 + (−22 + 36s − 6s2)z3

−6(s − 1)(s − 5)z2 − 12(s − 2)(s − 1)2 z

+2(3s − 5)(s − 1)3 . (3.53)

and one can confirm that

∆(
̂̃
E1) = (s − 1)4

(
12(2s − 3) z4 − 8(s2 − 14s + 19) z3

+24(3s2 − 4s − 1) z2 − 48(3s − 5)(s − 2)(s − 1) z (3.54)

+4(3s − 5)2(s − 1)2
)

This is the one-parameter presentation of
̂̃
E1. To confirm this end we recall that

̂̃
E1

is described as AX[2,−1]CX[4,1], and the A and C branes, for example, can be brought

together at z = 0. For this one must have f ∼ z and g ∼ z. Since f ∼ z in the above, we

must see if it is possible to set to zero the z-independent term in g. Indeed, we see two

14We also need to make sure that the special point s = ∞, where our gauge choice breaks down, does
not correspond to a decoupled brane configuration. To see this we go back to eq.(3.46) and set f3 = 0.
Requiring d4 to vanish will now require f2 to vanish. This, in turn, makes f1 and all the coefficients gk

for 0 ≤ k ≤ 5 to vanish. Thus we get f̄ = z4, and ḡ = z6. This makes ∆ = ḡ2 − f̄3 vanish identically.
15Again, this gauge condition breaks down if f3 = 0.
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possibilities. The first one, s = 1 is ruled out, since then ∆ vanishes identically. On the

other hand we can take s = 5/3. This gives

f(z) = z4 + 4z3 +
20

3
z2 +

32

9
z ,

g(z) = z6 + 6z5 + 16z4 +
64

3
z3 +

40

3
z2 +

16

9
z (3.55)

∆ =
64

81
z2

(
z2 +

28

9
z + 4

)
(3.56)

This is indeed
̂̃
E1 with an H0 singularity at z = 0.

Finally, we can identify the configuration
̂̃
E0 which has three 7-branes, by decoupling

a brane from
̂̃
E1. It is clear that we must set to zero the coefficient of z4 in ∆ as given in

(3.54). Taking s = 1 is clearly illegal, so we must take s = 3/2. In this case we find

f(z) = z4 + 4z3 + 6z2 + 3z , (3.57)

g(z) = z6 + 6z5 + 15z4 +
37

2
z3 +

21

2
z2 +

3

2
z − 1

8
. (3.58)

This can be simplified by letting z → z − 1. One then obtains:

̂̃
E0 : f(z) = z4 − z ,

g(z) = z6 − 3

2
z3 +

3

8
(3.59)

∆ = −1

8
z3 +

9

64
. (3.60)

The same shift z → z − 1 would also simplify somewhat the presentations of Ê1 and
̂̃
E1

given earlier. This concludes our proof that all the Ên (1 ≤ n ≤ 9) and
̂̃
En (n = 0, 1)

configurations can be properly isolated.

3.2.2 The orthogonal series Dn (0 ≤ n ≤ 4)

The Dn configuration has monodromy −T 4−n and has (n + 2) 7-branes. The appropriate

f and g in these cases coincide with the corresponding functions found in ref.[16] for

N = 2 supersymmetric SU(2) gauge theories with n hypermultiplets in the fundamental

representation [2]. However for completeness we shall construct these functions explicitly

here, as it does not require any extra effort.

Proceeding in the same way as in the Ên case, we conclude that the Dn configuration

for n ≤ 4 is described by polynomials f and g of degree 2 and 3 respectively, subject to
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the condition that ∆ is a polynomial of degree (n + 2). We introduce the coefficients fk,

gk and dk through the equations:

f̄(z) ≡ −(4)1/3f(z) =
2∑

k=0

fkz
k

ḡ(z) ≡ (27)1/2g(z) =
3∑

k=0

gkz
k

∆ ≡ −f̄ 3 + ḡ2 =
6∑

k=0

dkz
k . (3.61)

Then for D4 the only requirement on the coefficients is that g2
3 6= f 3

2 . In other words:

deg(f) ≤ 2, deg(g) ≤ 3 , deg(∆) = 6. (3.62)

In order to get a Dn configuration for n ≤ 3, dk must vanish for k ≥ (n + 3), and dn+2

should be non-zero. This gives constraints on the coefficients fn and gn. As in the Ên

case, by using the freedom of shifting z and rescaling f and g we set

f0 = 0 , f2 = 1 . (3.63)

Instead of discussing the case of each of the Dn’s separately, it is most convenient to start

with D0. By equating the coefficients of d6, d5, d4 and d3 to zero we find the following

constraints:

d6 = 0 : g3 = 1 ≡ ĝ3 , (3.64)

d5 = 0 : g2 =
3

2
f1 ≡ ĝ2 , (3.65)

d4 = 0 : g1 =
1

2
(3f 2

1 − g2
2) =

3

8
f 2

1 ≡ ĝ1 , (3.66)

d3 = 0 : g0 =
1

2
(f 3

1 − 2g1g2) = − 1

16
f 3

1 = ĝ0 . (3.67)

These equations determine the coefficients gk in terms of the single parameter f1. Using

eqs.(3.63)-(3.67) we get d2 = − 3
64

f 4
1 . This term must not vanish, and therefore f1 6= 0. We

can use z-scaling together with compensating f and g scalings (as before) to fix f1 = 4,

while preserving f4 = 1. We then have for D0

D0 : f(z) = z2 + 4z ,

g(z) = z3 + 6z2 + 6z − 4 ,

∆(z) = −12z2 − 48z + 16. (3.68)
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The solution for Dn for all other n ≤ 3 is now easily obtained. For this the coefficients

gn need to satisfy the first (4 − n) equations in eq.(3.64)-(3.67), and should not satisfy

the (5− n)th of these equations. This determines the parameters gn, gn+1, . . . g3 in terms

of f1, and gives a strict inequality for gn−1. As in the Ên case, we can use the freedom

of scaling z to ensure that the difference between the left and the right hand side of the

(5 − n)th equation is 1. This gauge fixing condition determines gn−1. Thus the general

solution is parametrized by n parameters f1, g0, . . . gn−2. Explicitly, the answer is:

D̂n>0 : f(z) = z2 + f1z ,

g(z) = ĝ3 z3 + · · ·+ ĝnzn + (1 + ĝn−1)z
n−1 +

n−2∑

k=0

gkz
k (3.69)

where ĝ3 = 1, the other ĝn are given in (3.65)-(3.67), and g0, . . . gn−2 are arbitrary.

This finishes explicit construction of all the properly isolated 7-brane configurations.

3.3 Examples of asymptotically isolated 7-brane configurations

We now turn to the asymptotically isolated 7-brane configurations. As stated earlier,

we shall not attempt to completely classify or to give explicit constructions of all such

7-brane configurations. But we shall consider two examples.

Dn (n > 4): In this case the monodromy, −T 4−n, is proportional to a negative power

of T . From our analysis in the last section we see that the only way such a monodromy

can be obtained is in case 4, where the overall coefficients in the functions f and g blow

up in the λ → 0 limit. Thus these configurations cannot be properly isolated. Indeed,

for these configurations the string coupling (Im(τ))−1 grows at large distance, and in

order to prevent it from blowing up at a finite value of z (which would represent other

7-branes), the string coupling at finite points in the z plane must be made smaller and

smaller as λ approaches zero. We shall not attempt to give an explicit construction of

these configurations here. However, the existence of such configurations can be proved as

follows. We start with a collapsed Dn configuration at z = 0 which is known to exist for

n ≥ 4, and resolve the singularity slightly so that the branes in the Dn configuration are

located at z ∼ ǫ for some small number ǫ. Now we can rescale z by (1/ǫ) to put these

branes at finite values of z. This takes all the other branes to large values of z.

In order to verify that these configurations satisfy condition (2.21), we note that at a

Dn singularity f(z) has a double zero. Thus, after resolving the singularity and rescaling,
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f(z) has two zeroes at finite z. This gives df = 2, which satisfies the inequality (2.21).

This proves the existence of asymptotically isolated Dn configurations for n > 4.

An: This configuration has (n + 1) 7-branes and has monodromy T−(n+1). Thus it

also belongs to the class of 7-branes which can only be asymptotically isolated. Again

we shall not discuss explicit construction of these configurations. The existence of such

configurations can be proved in the same way as the Dn case for n > 4 by resolving a

configuration with An singularity, followed by a scaling of z. For an An singularity f(z)

has no zeroes at the location of the singularity. Thus after resolution of the singularity

and appropriate rescaling, there will be no zero of f at a finite value of z. This gives

df = 0, which satisfies (2.21).

4 Brane Configurations with Stable non-BPS states

In the present section we investigate which 7-brane configurations support stable non-BPS

states. Such states take the form of string junctions extending between the seven branes.16

We will focus on brane configurations that can be isolated in the sense discussed in the

previous sections. Unless the brane configuration can be isolated we cannot reliably

ascertain the stability of the candidate states. In a later section we will discuss some

aspects of non-isolable configurations and their potentially stable non-BPS states.

Once we focus on a particular brane configuration, we only examine string junctions

joining 7-branes of that configuration. We call these localized junctions, since they do not

carry away charge to some remote 3-brane or to another set of 7-branes. We now claim

that a string junction J on such 7-brane configuration corresponds to a possibly stable

non-BPS state if:

(i) The associated homology cycle J satisfies J2 < −2.

(ii) J 6= ∑
i niji, where ji are homology cycles satisfying j2i ≥ −2 and ni are arbitrary

integers.

Let us first examine the first condition. Recall that in F-theory on an elliptically fibered

K3 over base S2, a string junction joining type IIB seven-branes on S2 can be associated

to a two cycle in K3. This cycle, being boundaryless, corresponds to an element of the

16When we refer to a junction corresponding to a specific vector in the junction lattice, it corresponds
to the minimal mass configuration among a whole set of junctions which can be continuously deformed
to each other by manipulations of the form discussed in [3] and [4].
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second homology class of K3. We use the symbol J to denote interchangeably the junction

and the associated homology cycle. We also denote by J2 the self-intersection number

of the cycle. It is well-known that in K3 any cycle with J2 = 2g − 2 (g ≥ 0) has a

holomorphic representative of genus g. That representative defines a BPS junction. On

the other hand, when J2 < −2 the cycle has no holomorphic representative, and the

associated junction is never BPS. Thus the first condition guarantees that the state is not

BPS.17

Let us now consider the second condition. Suppose J =
∑

i niji, where ji are homology

cycles satisfying j2i ≥ −2 and ni are some integers. The equality of homology cycles implies

that whatever charges J carries they are also carried by the total set of states associated

to the right hand side. Since all states in the right hand side are BPS ( j2i ≥ −2) the

decay of J into stable BPS states cannot be ruled out by charge conservation. Therefore,

condition (ii) ensures that the state cannot decay into stable BPS states. Of course, even

if condition (ii) is not satisfied, the non-BPS state will be stable if its mass is lower than

the sum of the masses of the possible product states. But this requires a detailed study

of the masses of various states. We do not attempt to carry out such analysis here.

In general, a brane configuration will admit many or infinite number of possibly stable

non-BPS states, namely states satisfying conditions (i) and (ii). Such states may decay

into each other, but there will be at least one state − the lightest of the possibly non-BPS

stable states − or perhaps more that will be genuinely stable non-BPS state(s). Which

particular states are stable, and the number of such states, may vary as we change the

parameters labelling the isolated 7-brane configuration.

Given a 7-brane configuration with (N +2) branes, the fact that the junction does not

carry away charge imposes two conditions (unless all branes are mutually local) − one

corresponding to the D-string charge and another corresponding to the fundamental string

charge − and therefore the set of localized junctions is spanned by N linearly independent

junctions. If one identifies a semisimple algebra of rank N on this brane configuration

there cannot be stable non-BPS states. Indeed, having identified a rank N semisimple

algebra means having identified a set of N linearly independent localized BPS junctions

representing the simple roots of the algebra[10, 8]. This is therefore a basis for the set of

17This can also be seen in the dual heterotic string theory on T 2 as follows. In the heterotic description
J corresponds to a vector on the Narain lattice[7] and J

2 corresponds to its squared norm. Since in the
heterotic string theory there are no BPS states with J

2 < −2, we see string junctions with J
2 < −2

cannot be BPS.
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all localized junctions, and therefore any junction can be written as some integral linear

combination of junctions that are BPS, in violation of condition (ii). What one needs is

u(1) factors in the algebra carried by the branes. Such factors arise when holomorphic

junctions do not span the lattice of localized junctions.

We shall first examine the basic realizations of the (extended) A, D, E, Ê and H

series and find the cases that can give rise to possibly stable non-BPS states. We follow

the convention of refs.[10, 8] of denoting by Xp,q the (p, q) 7-brane with monodromy K =(
1 + pq −p2

−q2 1 − pq

)
, and define special 7-branes A, B and C as A = X[1,0], B = X[1,−1]

and C = X[1,1]. The monodromy of a brane configuration containing a product of Xp,q’s

is obtained by multiplying the individual monodromy matrices in opposite order.

• The AN series (N ≥ 1). These configurations are special in that all branes are mutually

local; the configuration is produced by (N + 1) A branes. With just one charge conser-

vation condition corresponding to the fundamental string charge, localized junctions are

spanned by N basis elements. The N junctions joining Ai to Ai+1 represent the su(n+1)

roots and span the lattice of localized junctions. Thus (ii) cannot be satisfied.

• The DN series (N ≥ 0). These brane configurations are DN = ANBC. For the case

D0, which only has two branes, there are no localized junctions. The configuration D1

carries a u(1) algebra only and thus has a candidate non-BPS state. On the other hand

for DN≥2 the algebra is semisimple and therefore there are no possibly stable non-BPS

states.

• The HN (N ≥ 0). Only HN≤3 can be isolated. (H3 = D3). This series is realized as

HN = AN+1C and the algebra is semisimple for all N ≥ 1. The remaining case, H0, has

no localized junctions.

• The EN series. Here we have the two realizations EN = AN−1BCC or ẼN = ANX[2,−1]C,

which are equivalent for N ≥ 2. Here E5(= D5), E6,E7,E8 and E9 = Ê8 can be isolated.

On the other hand all these give semisimple algebras so (ii) is not satisfied.

• The ÊN series. Once more we have the two realizations ÊN = AN−1BCCX[3,1] (N ≥
1) and

̂̃
EN = ANX[2,−1]CX[4,1] (N ≥ 0), which are again equivalent for N ≥ 2. All

these configurations can be isolated at least for N ≤ 9, and correspond to parabolic

monodromies. For N ≥ 3 one identifies semisimple affine algebras and thus no possibly

stable non-BPS states. Both Ê2 and
̂̃
E1 carry affine u(1) factors and thus are candidates

for having possibly stable non-BPS states.
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In conclusion, the conditions of isolation, plus (i) and (ii) have restricted the list to the

cases of D1,
̂̃
E1, and Ê2. We will now examine these cases in detail and confirm that they

have collections of possibly stable non-BPS states, and therefore some genuinely stable

non-BPS states.

4.1 Case of D1.

The configuration here is ABC and having mutually nonlocal branes the lattice of

localized junctions is one dimensional. This case is identical to a D7-brane O7-plane

system analyzed in ref.[1]. Using the conditions of charge conservation one readily finds

that this lattice is spanned by the minimal proper junction J = 2a− b− c. Here we are

following the convention of [10, 8] that a junction x[p,q] denotes a (p, q) string departing

from the X[p,q] 7-brane and going to ∞. We can easily verify that J satisfies conditions (i)

and (ii). Indeed, using the rule[17] that each elementary junction x[p,q] has self-intersection

−1, and that the intersection number of a junction x[p,q] with another junction x[p′,q′] to

its right is 1
2
(pq′ − qp′), we get J2 = −4, and therefore condition (i) is satisfied. (The

junction J corresponds to two strings departing the A brane and meeting after going

around the B and C branes. In this picture the self-intersection is manifestly (−4).)

Since any localized junction must be a multiple of the minimal junction J, any junction

must satisfy condition (i) and therefore there are no BPS junctions in this configuration.

As a consequence condition (ii) is also satisfied. The states (nJ), for n 6= 0 are all possibly

stable non-BPS states. In the limit when the separations between the 7-branes are large

compared to the string length scale, the mass of a string junction can be computed reliably

by integrating the tension along the various segments of the junction. In this classical

limit the minimal mass configuration in the class of nJ corresponds to n copies of the

minimal mass junction in the class of J. Thus the mass of the former is approximately

n times the mass of the latter. Thus the minimal charged states ±J are genuinely stable

non-BPS. These were identified in [1].

4.2 Case of
̂̃
E1

This is the brane configuration having the following four seven branes (ref.[8], eqn.(3.10))

̂̃
E1 = AX[2,−1]CX[4,1] = A

̂̃
E0 = Ẽ1X[4,1] (4.1)
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We have written it in two ways; as an enhancement of
̂̃
E0, and as an affinization of Ẽ1.

Given that we have four seven-branes we must have two junctions spanning the lattice of

localized junctions. We claim that the following is a basis for localized junctions of
̂̃
E1:

J̄ = 3a− x[2,−1] − c , J̄2 = −8 (4.2)

δ = x[2,−1] + 2c − x[4,1] , δ2 = 0 , δ · J̄ = 0 . (4.3)

Linear independence is manifest, J̄ is supported on the A brane while δ is not, δ is

supported on the X[4,1] brane, while J̄ is not. After imposing the constraint that no D- or

fundamental string charge flows to infinity, any arbitrary junction pa+qx[2,−1]+rc+sx[4,1],

with integers p, q, r, s, can be expressed as −(r + 2s)J̄ − sδ. This establishes that (J̄, δ)

form a basis for the localized junctions of
̂̃
E1.

The physical interpretation of these junctions can be found by considering the subcon-

figurations. Indeed, the localized junctions of Ẽ1 = AX[2,−1]C make a one-dimensional

lattice spanned by J̄. On the other hand the junction δ can be presented as string loop

of charge (p, q) = (−1, 0) surrounding the configuration
̂̃
E0 (ref.[8], eqn.(3.11)). This

picture makes it manifest that δ2 = 0, a fact that guarantees that this junction arises

from a holomorphic cycle of genus one and is therefore BPS [18]. Having charge (−1, 0)

the junction δ can be moved across the remaining A brane and be presented as a loop

surrounding the complete
̂̃
E1 configuration.18 This makes J̄ · δ = 0 manifest.

Since the arbitrary junction JQ,ℓ = QJ̄ + ℓδ satisfies J2
Q,ℓ = −8Q2, no junction with

support on the A brane can be BPS. δ is the basis of BPS junctions. Thus the junctions

JQ,ℓ with Q 6= 0 are all possibly stable non-BPS states. Among all such states there will be

at least one lowest mass state JQ0,ℓ0 that is a genuinely stable non-BPS state. The precise

value of (Q0, ℓ0), however, is not determined by this argument. In fact, as we change

the parameters labelling the isolated
̂̃
E1 configuration, the values of (Q0, ℓ0) can undergo

discrete jumps. Note that for a fixed Q the non-BPS states JQ,ℓ for all values of ℓ generate

a (level zero) representation of the û(1) algebra carried by the
̂̃
E1 configuration. Since

this configuration is non-collapsible the affine symmetry is only spectrum generating, and

states with different values of ℓ will typically have different masses and different stability

properties.

18In fact such loop is the loop of the ̂̃
EN configuration for all N .
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4.3 Case of Ê2

This is the configuration described in ref.[8], eqn.(3.7):

Ê2 = ABCCX[3,1] = E2X[3,1] = ABCBC (4.4)

expressed also as the enhancement of E2. Given that we have 5 seven-branes we expect

three junctions to span the lattice of localized junctions. We claim that the basis of three

junctions can be chosen to be

j = c1 − c2 , (4.5)

J− = 2a− b− c1 , (4.6)

δ′ = b + c1 + c2 − x[3,1] , (4.7)

with

j2 = −2, J2
− = −4, (δ′)2 = 0, j · J− = 1, j · δ′ = J− · δ′ = 0 . (4.8)

To see that this is a basis, we note that an arbitrary junction of the form pa+ qb+ rc1 +

sc2 + tx[3,1], with integers p, q, r, s, t, and satisfying the condition for D- and fundamental

string charge localization, can be expressed as −(r + s + 2t)J− − (s + t)j − tδ′.

The set of localized junctions of the E2 sub-configuration is spanned by J− and j. This

carries an su(2)× u(1). j corresponds to the root of the su(2) factor and J− is associated

to the u(1) factor. We also introduce J+ = 2a− b− c2. The states J± form a doublet of

the su(2) satisfying

J± · j = ∓1 , J2
± = −4 (4.9)

The δ′ junction is a (−1, 0) loop surrounding the configuration (ref.[8], eqn.(3.9)). This

explains why j · δ′ = J− · δ′ = 0.

We now claim that no junction in Ê2 with support in the A brane can be BPS. Indeed,

with

Jn,m,ℓ = nJ−+mj+ℓδ′ → J2 = −4n2−2m2 +2mn = −(m−n)2 −3n2−m2 . (4.10)

Thus J2 < −2 for any non-zero integer n. Thus junctions in Ê2 with support on the

A brane satisfy (i) and (ii), and are possibly stable non-BPS states. The u(1) charge is

measured by the number of prongs on the A brane.

The su(2) symmetry is exact when the two C branes coincide. In this case J± would

make a doublet of possibly stable non-BPS states. The possibly non-BPS su(2) singlet
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of minimal u(1) charge is readily shown to be the junction J0 = 2J− + j + ℓδ′ = 4a −
2b − c1 − c2 + ℓδ′. It carries twice the u(1) charge of any member of the doublet. We

can construct possibly non-BPS states in higher representations of SU(2) in a similar

manner. From the structure of the lattice it is easy to see that odd values of the u(1)

charge must be associated to su(2) representations in the conjugacy of the doublet, while

even u(1) charges must be associated to su(2) representations in the conjugacy class of

the adjoint. Once we fix a u(1) and an su(2) representation, the states Jn,m,ℓ for all values

of ℓ generate a (level zero) representation of the affine (Â1 ⊕ û(1)/ ∼) algebra of the Ê2

configuration. Which of these configurations represent genuinely stable non-BPS state is

a detailed dynamical question which we shall not address.

Finally we note that this configuration represents a single D7-brane near a pair of

O7-planes. This is seen in the last presentation given in (4.4). The A brane represents a

D7-brane, while each of the BC factors represents an O7-plane.

5 Non-BPS states on Non-isolable Configurations

The strategy that we have used so far in our search for stable non-BPS states consists of

two steps. First we need a subset of 7-branes in F-theory on K3 such that there are non-

BPS junctions living on this subset of branes which are stable against decay into other

states living inside the same subsystem. Second, we need to ensure that these states are

also stable against decay into junctions with one or more prongs on the 7-branes external

to this subsystem.

The second condition requires that this subset of branes can be isolated and was

the subject of study in sections 2 and 3. In this section we shall search for 7-brane

configurations which satisfy the first condition and not the second. This would ensure

that the non-BPS states living on this subsystem are stable against decay into BPS states

living on the same subsystem, but could be unstable against decay into junctions with

prongs on the external 7-branes. At present the significance of such brane configurations

is not totally clear. However these configurations could be the starting point in our search

for 7-brane configurations which admit non-BPS states which are stable due to dynamical

reasons, namely that their mass is smaller (but not much smaller) than the possible decay

products.

We shall begin by discussing two examples which we already encountered in section
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4. The first example will be that of an Ẽ1 configuration. This is generated by J̄ defined

in eq.(4.2). Since J̄2 = −8, any state of the form nJ is non-BPS. The minimum mass

state in this family will be stable against decay into other states living solely inside the Ẽ1

brane system. When the relative separation between the branes is large, this corresponds

to the junction ±J̄. From [10] we know that for Ẽ1, Tr(K) = −6. Since the monodromy

is hyperbolic, the Ẽ1 configuration cannot be isolated.

The second example is that of E2. This is generated by the junctions J− and j defined

in eq.(4.5). Any junction of the form Jm,n = nJ−+mj has J2 = −(m−n)2−3n2−m2 < −2

for n 6= 0. Thus there should be at least one non-BPS state on this system with component

along J− which is stable against decay into other states living solely inside E2. Again we

see from ref.[10] that in this case Tr(K) = −5, and hence this configuration cannot be

isolated.

We shall consider two more examples. The first example will be an arbitrary configura-

tion of three seven branes. The second example will be that of a four 7-brane configuration

carrying a u(1) × u(1) algebra.

Non-BPS states on three 7-branes By an SL(2,Z) transformation, any three 7-brane con-

figuration can be put in the form AXX′ where X is a [p, q] brane, and X′ is a [p′, q′]

brane. We also require q 6= 0 and q′ 6= 0, as well as [p, q] 6= [p′, q′], for otherwise we have

at least two mutually local branes and there will be BPS states carrying this U(1) charge

into which a possible non-BPS state can decay. Without loss of generality we can also

assume that both q and q′ are positive. Define

∆ = pq′ − qp′ . (5.1)

The general junction is

J = QAa + Qx + Q′x′ , (5.2)

and using charge conservation to solve for QA and Q′ in terms of Q, we find

J = −Q∆

q′
a + Qx − Qq

q′
x′ . (5.3)

Since Q∆/q′ and Qq/q′ could be fractional, this junction is not necessarily proper. To

address this issue, let us define ℓ = gcd(q, q′) and let q′ = ℓq0. One must then choose

Q = q0 to get the minimal proper junction. Indeed, this gives Q/q′ = 1/ℓ and we get

J =
1

ℓ

(
−∆ a + q′x − q x′

)
. (5.4)

32



The self-intersection is readily found to be

J2 = − 1

ℓ2

(
∆2 + q′2 + q2 + qq′∆

)
, ℓ = gcd(q, q′), ∆ = pq′ − qp′ . (5.5)

Each of the terms contributing to J2 is now an integer. We can easily choose p, q, p′, q′

such that J2 given above is < −2, so that all charged states living on this brane system

are non-BPS states. The lightest of them will be stable against decay into other states

within this system.

It is useful to write this in a more symmetric form. Let zi denote as usual the ele-

mentary junction joining the i-th 7-brane to ∞. Using the notation of [10], sect.2.1, we

define zij = zi × zj = (piqj − qipj), where (pi, qi) denotes the i-th 7-brane. Thus we have,

in the present case, z12 = q, z23 = ∆, z31 = −q′, and moreover ℓ = gcd(z12, z23, z31). We

thus have

J2 = − 1

ℓ2

(
z2

12 + z2
23 + z2

31 − z12z23z31

)
. (5.6)

Eqn. (2.7) of [10] for three 7-branes gives:

TrK = 2 − z2
12 − z2

23 − z2
31 + z12z23z31 . (5.7)

From this we see that

J2 =
1

ℓ2

(
TrK − 2

)
. (5.8)

Since in order to get a non-BPS junction we need J2 < −2, we must have

TrK < 2(1 − ℓ2) . (5.9)

Thus we see that except when ℓ = 1, all three 7-brane configurations with stable non-BPS

states will have TrK < −2, and thus have negative hyperbolic monodromies. When ℓ = 1,

one must have TrK < 0. As table 5 of [8] indicates, there is no three 7-brane configuration

with TrK = −1, − a fact that is not hard to prove. The isolable configuration D1

corresponds to the case TrK = −2. The non-isolable three 7-brane configuration Ẽ1

corresponds to the case TrK = −6.

A case with u(1) × u(1) While refs. [10, 8] mostly searched for configurations with large

symmetry algebras, it is clearly possible to put together many branes and still fail to find

any enlarged semi-simple algebra. In such cases we must get u(1) factors. We illustrate

this by considering a brane configuration with four 7-branes, which has no charged BPS

states. The brane configuration is

X[1,2] ABC , (5.10)

33



which is obtained by adding the X[1,2] brane to the D1 configuration. Since the lattice

of localized junctions should be two-dimensional we expect to find two u(1)’s. One can

show that the following is a basis for localized junctions:

J1 = −2a + b + c (5.11)

J2 = −a + b− c + x (5.12)

These satisfy

J2
1 = −4 , J2

2 = −4 , J1 · J2 = 0 , (5.13)

and therefore there are no BPS states on this brane configuration carrying either of these

U(1) charges. This shows that this brane configuration has non-BPS junctions which

are stable against decay within this brane system. The general localized junction on this

brane configuration would be J = Q1J1+Q2J2, where Q1 and Q2 are the two u(1) charges

of the junction. For this configuration TrK = −14, confirming that it cannot be isolated.
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