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Abstract

It has been conjectured that the tachyonic lump solution of the open bosonic string
field theory describing a D-brane represents a D-brane of one lower dimension. We place
the lump on a circle of finite radius and develop a variant of the level expansion scheme
that allows systematic account of all higher derivative terms in the string field theory
action, and gives a calculational scheme that can be carried to arbitrary accuracy.
Using this approach we obtain lump masses that agree with expected D-brane masses
to an accuracy of about 1%. We find convincing evidence that in string field theory the
lump representing a D-brane is an extended object with a definite profile. A gaussian
fit to the lump gives a 6-sigma size of 9.3

√
α′. The level truncation scheme developed

here naturally gives rise to an infrared and ultraviolet cut-off, and may be useful in the
study of quantum string field theory.
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1 Introduction and Summary

The 26-dimensional critical bosonic string theory admits Dirichlet p-branes (D-p-branes)

for all p ≤ 26. Each of these D-p-branes admits a tachyonic mode T of mass2 = −1,

in units where the tension of the fundamental string is equal to (2π)−1 (α′ = 1). It

has been conjectured that the potential for the tachyon field has a non-trivial trans-

lationally invariant (local) minimum at some value Tvac where the sum of the tachyon

potential and the tension of the original brane vanishes [1]. Thus at T = Tvac the total

energy density vanishes, and hence this configuration can be identified as the vacuum

of the closed string theory without any D-branes. It has also been conjectured that al-

though this vacuum does not have any perturbative open string excitations, it contains

lump-like soliton configurations which approach the vacuum T = Tvac asymptotically

far away from the core of the soliton and represent D-branes of lower dimension [2, 1].
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Similar conjectures have also been made involving the tachyon living on the coincident

D-brane anti-D-brane pair, or on a non-BPS D-brane of type IIA and IIB superstring

theories [3, 4, 5, 6, 7, 8].

Various pieces of evidence for these conjectures have been found in both the first [2,

1, 3, 4, 5], and second [9, 10, 11, 12, 13, 14, 15, 16, 17] quantized string theory, and

also using AdS/CFT correspondence [18, 19]. The first quantized description has been

successful in verifying the conjectures relating the tachyonic solitons to lower dimen-

sional D-branes, but it can only supply indirect evidence for the equivalence between

the (local) minimum of the tachyon potential and the vacuum without a D-brane. On

the other hand, the second quantized description − open string field theory [20] −
can provide direct evidence for this conjecture by explicitly computing the (negative)

value of the tachyon potential at the minimum and comparing it with the tension of

the original D-brane system. Although open string field theory contains infinite num-

ber of fields, and the problem of finding a translationally invariant stationary point of

the potential involves solving the equations of motion of the infinite number of zero

momentum modes of these fields, the calculations are made feasible by using the level

expansion scheme proposed by Kostelecky and Samuel [21]. The procedure is as fol-

lows. Using the correspondence between the modes of the string field and states in

the conformal field theory describing the first quantized string, we define the level of a

mode of the string field as the difference between the N̂ eigenvalue of the first quantized

string state representing this mode, and the N̂ eigenvalue of the state representing the

zero momentum tachyon, where N̂ is the total ‘number operator’ of the matter and

ghost system. The level truncation scheme to order (M,N) then corresponds to an ap-

proximation in which we keep in the string field theory action all modes of level ≤ M ,

and all interaction terms for which the sum of the levels of all the modes appearing in

the term is ≤ N . This gives a potential (which, for a static field configuration, is just

the negative of the action up to a normalization constant) with finite number of fields

and a finite number of terms. Thus we can find its extremum and calculate its value

at the extremum. The larger the values of (M,N), the larger is the number of modes

and the number of terms in the potential, and the better is the accuracy.

The calculation of ref. [21] for the tachyon potential was revisited and extended in [9]

in terms of background independent fields. It was shown there that the total negative
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potential energy at the stationary point cancels the energy of the D-brane represented

by the string field theory to an accuracy of<1.5% at the level (4,8) approximation. This

calculation was extended in ref. [11] to level (10,20). At this level the contribution from

the tachyon potential was found to cancel the tension of the D-brane to an accuracy

of about .1%. Similar calculations have also been performed [14, 15, 16, 17] in open

superstring field theory [22, 23, 24]. At the level (2,4) approximation the tachyon

potential has been shown to cancel about 90% of the tension of the original brane

configuration.1

The success of string field theory in verifying the conjecture relating the transla-

tionally invariant stationary point of the tachyon potential and the vacuum without

any D-brane encourages one to ask whether string field theory can also be used in

studying the conjectured relation between the tachyonic lump solutions and lower di-

mensional D-branes. This study was initiated by Harvey and Kraus [12]. In this paper

they started with the level (0,0) contribution to the tachyon potential in open bosonic

string field theory on a D-p-brane, and identified a ‘bounce solution’ in this field theory

as the D-(p−1) brane. At this level the tension associated with this solution turns out

to be about 78% of the known value of the D-(p−1)-brane tension. This result receives

correction not only from the higher level fields, but also from the momentum depen-

dence of the interaction terms which were neglected in the initial analysis. While there

is no systematic expansion scheme for taking into account these momentum dependent

corrections, a naive expansion of the interaction term in powers of momentum, keeping

only the zeroth and first order terms, reduced the tension of the soliton to about 70%

of the conjectured answer. On the other hand, taking into account the correction to

the potential to level (2,4) increased the answer back to about 82% of the conjectured

answer. A systematic method for taking into account the momentum dependent terms

in the interaction was suggested in ref. [13], but this procedure did not give rise to an

appreciable change in the tension of the lump. A similar analysis has also been carried

out for solitons in the open superstring field theory [15, 25, 26]. Although the answer

turns out to be close to the expected answer, it is likely to be an accidental result,

as there is no reason to assume that the corrections due to the momentum dependent

terms are small in this case.

1At present there seems to be some disagreement between refs. [16] and [17] about the level (2,4)
results.
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The purpose of this paper will be to develop a systematic approximation scheme

for studying these solitons in string field theory and calculating their tension. We shall

focus on the codimension one lump on a Dp-brane of the bosonic string theory − which

is conjectured to be equivalent to a D-(p−1)-brane − but it will become clear that the

scheme is general enough to be applicable to the study of higher codimension solitons,

as well as to solitons in superstring field theory. In the case of a codimension one

soliton, we are dealing with a field configuration on the Dp brane which depends on

only one of the spatial coordinates (say x) on the brane, and is independent of time, as

well as the other (p− 1) spatial coordinates. We study this problem by compactifying

the coordinate x on a circle of radius R instead of letting it span the whole real line. In

this case, since all field configurations must be periodic in x, we can decompose all fields

into modes carrying discrete momenta along x in units of (1/R), and the solitonic field

configuration that we are looking for must be obtained as an appropriate superposition

of these modes. We can now define the level of any such mode as the difference between

the L0 eigenvalue of the first quantized string state representing this mode, and that

of the zero momentum tachyon state, where L0 denotes the zeroth component of the

Virasoro generator of the combined matter ghost system.2 This allows us to define

a level (M,N) approximation to the potential exactly as before. Working with the

potential up to a given level, we can now look for x dependent solutions of the string

field equations by extremizing the potential with respect to the modes appearing in

the potential to this level.

This is precisely the procedure we follow in this paper for studying the tachyonic

lump solution on a D-p-brane.3 We study this problem for various radii at various

levels of approximation, and compare the tension of the lump with the tension of a

D-(p−1)-brane. The results for the tension of the lump turn out to be remarkably close

to the known tension of the D-(p− 1)-brane. Whereas for R =
√

3 and
√

15/2 we are

able to get a lump tension within 1% of the tension of the D-(p− 1)-brane, for larger

radii (R =
√

12 and
√

35/2) we get answers within 3% of the expected answer. We also

compare the profile of the tachyon field corresponding to the lump for different values

2Since for the zero momentum states the eigenvalue of the number operator is the same as the L0

eigenvalue of the state, the two prescriptions agree for these states.
3The discretization of the momentum is reminiscent of the procedure followed in ref. [13], although

the precise relationship between these two approaches is not clear.
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of R, − obtained by superposition of cos(nx/R) for integer n − and find remarkable

agreement between the profiles for different values of R.

At this point we should note that the problem of formation of the tachyonic lump

on a circle was addressed using the first quantized approach in ref. [27]. There a renor-

malization group analysis was used to show that the mass of the tachyonic lump on a

D-p-brane is indeed equal to that of a D-(p−1)-brane.4 In view of this result one might

ask whether the string field theory analysis carried out in this paper gives any new in-

sight into this problem. To this end, we note, first of all, that the relationship between

the renormalization group analysis in the first quantized approach, and the string field

theory analysis based on the level truncation scheme, is as yet quite unclear, and hence

it is certainly illuminating to independently verify the equivalence of the D-(p − 1)-

brane, and the tachyonic lump on the D-p-brane in string field theory. Furthermore,

string field theory provides us with a definite picture of the tachyon profile as super-

position of cos(nx/R) for different n with definite coefficients. In contrast the analysis

based on the renormalization group flow only tells us that a perturbation by the lead-

ing relevant operator cos(x/R) takes the original D-p-brane to a D-(p− 1)-brane, and

does not tell us how the higher harmonics mix with cos(x/R) to produce the soliton.

Indeed most of the higher harmonics correspond to irrelevant perturbation, and hence

their coefficients vanish in the infra-red.5 Furthermore, the rigorous results of ref.[28]

have not yet been generalized to superstring theory. Thus we believe that despite the

exact results based on the renormalization group analysis of the first quantized theory,

the present analysis throws new light on the tachyonic soliton solutions.

The rest of the paper is organized as follows. In section 2 we outline the general

procedure of level expansion scheme of the string field theory, discuss the possibility of

restricting the string field to a background independent subspace for studying the lump

solution, and give details of computation of a few terms in the potential. In section 3

we give in detail the results for the potential, the lump solution and its energy for a

specific radius R =
√

3. We also compare the profile of the lump at different levels

of approximation. In section 4 we give the results for several other radii, both larger

4This followed earlier work of ref. [28] on the renormalization group flow of the two dimensional
field theory under a perturbation corresponding to switching on a tachyon background proportional
to cos(x/R).

5Presumably if we could determine the exact location of the infrared fixed point in the space of
coupling constants, then the shape of the lump will be determined in this approach.
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(
√

15/2,
√

12 and
√

35/2) and smaller (
√

11/10) than
√

3, and compare the profile

of the lump for each radii with the profile at R =
√

3. We conclude in section 5 by

discussing possible generalization of this analysis and some speculations.

2 Level Expansion and the String Field

In this section we will set up a variant of the level expansion method to deal with

the problem of finding the profile and mass of the tachyon lump in string field theory.

As reviewed in the introduction, such method is desirable as previous computations

of lump masses in string field theory have not been very accurate. After explaining

this method we will discuss the background independent expansion of the string field

suitable for the problem. Then we discuss two methods for estimating the lump mass.

We conclude by showing a few samples of typical calculations needed to evaluate the

string field action for the lump.

2.1 Modified level expansion

When calculating the tachyon potential in search for a spacetime independent vacuum

state, all spacetime fields are set to constants, and the evaluation of the string field

action does not require the inclusion of terms with spacetime derivatives. The string

field is at zero momentum and is thus built by a superposition of zero momentum

states times constants representing the zero momentum modes of the spacetime fields.

The states are built by acting on a zero-momentum vacuum with oscillators of the

relevant conformal field theory (CFT). In this case the level expansion was defined as

follows [21]. Let N̂ be the number operator, representing the contribution to L0 from

the system of matter and ghost oscillators. Let N0 (=−1) denote the eigenvalue of N̂

for the zero momentum tachyon: N̂ |T0〉 = N0 |T0〉. For a given state |Φi〉, with number

eigenvalue Ni (N̂ |Φi〉 = Ni |Φi〉) we define the level l(Φi) of the state |Φi〉 as

l(Φi) ≡ Ni −N0 . (2.1)

As defined, level is a dimensionless number. For the case of bosonic string theory the

levels are all integers while for NS superstrings they can also be half integral. We now

define the level (M,N) approximation to the action as follows:
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• We keep only those fields with level ≤M .

• We keep only those terms in the action for which the sum of the levels of all the

fields in the term is ≤ N .

In order that the quadratic term of all fields with level ≤ M are kept in the action,

we must have N ≥ 2M . While variants are possible, it seems most effective when

calculating any physical object to use its level (M, 2M) approximation, as experience

shows that increasing the number of terms in the potential keeping the number of

fields fixed does not improve the results very much. While there is yet no theoretical

explanation for the convergence of the level expansion, the numerical evidence collected

thus far is impressive.

Consider now the problem at hand. While all of our discussion applies to soliton

solutions on non-BPS D-branes, and D-brane anti- D-brane pairs of superstring theory,

we will consider here explicitly only the case of the unstable D-branes of bosonic string

theory. Consider therefore, an unstable bosonic D-brane extending over a number

of spatial dimensions. We now wish to select one of these dimensions, call it x and

construct a tachyon lump such that the solution depends only on the x-coordinate.

(Again our discussion applies to lumps depending on more than one coordinates, but

we shall not analyze these cases here.) As the lump is not invariant under translation

along x, we now need to include x-momentum modes in the string field expansion and

x-derivatives, or x-momentum dependent terms in the string field action. In order to

do this systematically we compactify x over a circle of radius R, namely x ∼ x+ 2πR.

This quantizes the x-momentum as px = n/R for integer n. For each of the zero

momentum states |Φi〉 we had before, we now have discrete states of the type |Φi,n〉
that only differ by the fact that they are built on vacua having x-momentum n/R.

For such states there is a natural generalization of the level. This is the difference

between the L0 eigenvalue of the state and that of the zero momentum tachyon, where

{Ln} denote the Virasoro generators of the combined matter and ghost system. This

is because (with α′ = 1) we have that L0 = p2
x + N̂ . For zero momentum this is just

the previous definition. Still denoting by Ni the number eigenvalue of |Φi,n〉 we have

l(Φi,n) = L0(Φi,n) − L0(T0) =
n2

R2
+Ni −N0 . (2.2)
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The level is still a dimensionless number as R here is measured in units of
√
α′ (which

has been set to one). We can now define the level (M,N) approximation for the action

exactly as before. Since the L0 eigenvalue of a state plays a crucial role in the conformal

map that inserts the state into the disk representing the interaction terms in the action,

this is a natural generalization of the level truncation scheme of ref. [21]. This paper

will present evidence that this modified version of the level truncation scheme also

works very well.

In calculating in this setup in the level (M, 2M) approximation for any given radius

we will have to include states |Φi〉 ≡ |Φi,0〉 and “harmonics” |Φi,n〉, and clearly the

condition l(Φi,n) ≤ M will give an upper bound on n for each i. This also requires

l(Φi,0) ≤ M , and thus we have a finite number of modes to be included at a given level

of approximation. Each term in the action including modes whose sum of levels does

not exceed 2M is computed exactly. It is manifest that in a cubic string field theory

the level (M, 2M) approximation will only require a finite number of computations6.

2.2 Background Independent String Field

The general setup required to study a lump is similar to that developed in [29] to study

the mass of the D-brane. To begin with, we assume that the background space-time

is the product of a (2+1) dimensional flat space-time, labelled by a pair of space-like

coordinates (x, y) and a time like coordinate x0, and an arbitrary Euclidean manifold

M described by a conformal field theory of central charge 23. We take the spatial

direction y to be non-compact, but x to be compact with radius R. We let X, Y

and X0 denote the three scalar fields on the string world-sheet associated with the

coordinates x, y and x0.

We now consider a D-brane with the following properties. For an open string ending

on the D-brane we put Neumann boundary condition on the fields X and X0 and

Dirichlet boundary condition on the field Y .7 We leave the boundary condition on the

fields associated with the coordinates on M arbitrary, with the only restriction that all

the fields on which we put Neumann boundary condition are associated with compact

6This will also be the case for the NS superstring field theory discussed in ref. [14, 15, 16, 17]
7As in ref. [29], the extra non-compact direction y with Dirichlet boundary condition provides a

direction along which the brane can move, and we can calculate the tension of the brane by studying
its motion in this direction.
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coordinates. This means that all directions tangential to the D-brane are compact,

and hence the D-brane has finite mass. From the point of view of the full space-time,

this D-brane describes a D-p brane for some p ≥ 1, with (p− 1) directions wrapped on

an internal (p − 1) cycle of M, and one direction wrapped on the circle of radius R

labelled by x. On the other hand from the point of view of an observer who only sees

the (2+1) dimensional space-time labelled by (x, y, x0), this system corresponds to a

D1-brane wrapped on a circle of radius R. From now on we shall refer to this system

as the D1-brane or the D-string; with its tension defined as the total energy per unit

length along x. Of course, an ordinary D-string will be a special case of this system,

obtained by putting Dirichlet boundary condition on all the fields associated with the

coordinates on M.

The dynamics of an open string with ends on this D-brane is described by a bound-

ary conformal field theory of central charge 26, which is a direct sum of the boundary

conformal field theories associated with the fields X, Y , X0 and the manifold M. We

shall denote by CFT(X), CFT(Y ) and CFT(X0) the boundary conformal field theories

(each with central charge 1) associated with the fields X, Y and X0 respectively, and

by CFT(M) the boundary conformal field theory with central charge 23 associated

with the manifold M. We also define

CFT′ = CFT(Y ) ⊕ CFT(X0) ⊕ CFT(M) , (2.3)

so that CFT′ has central charge 25. We denote by LX
n and L′

n the Virasoro generators

of CFT(X) and CFT′ respectively. If we denote by Lghost
n the Virasoro generators of

the ghost system, then the total Virasoro generators of the system will be given by

Ln = Lghost
n + LX

n + L′
n.

The compact direction x corresponds to the direction in which we shall eventually

form the lump. If we follow the normalization convention of ref.[9], then the tension

T1 of the D-string described above is related to the coupling constant go of the open

string field theory describing the wrapped D-string by the relation:

2πRT1 =
1

2π2g2
o

. (2.4)

In this normalization convention, a time independent string field configuration repre-

sented by a state |Φ〉 = Φ(0)|0〉 in the Hilbert space of first quantized string theory,
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will have a potential

Potential = −S(Φ) =
1

g2
o

V(Φ) = 2πRT1 · 2π2V(Φ) , (2.5)

where

V(Φ) =
1

2
〈Φ, QΦ 〉 +

1

3
〈Φ,Φ ∗ Φ 〉 . (2.6)

Here Q denotes the BRST charge, 〈, 〉 denotes BPZ inner product between two states,

and ∗ denotes the ∗-product of Witten’s open bosonic string field theory [20].

A basis of states in CFT(X) is obtained by acting on einX/R(0)|0〉 with the oscillators

αX
−m of X. It follows by a simple counting argument that an alternate basis can be

formed out of the Verma module, containing states obtained by acting on einX/R(0)|0〉
with the operators LX

−m, as long as these states are all linearly independent. This is

the case if there are no null states in the spectrum. The condition for the appearance

of a null state is given by [30],

n2

R2
=

(p− q)2

4
→ n

R
=

(p− q)

2
, (2.7)

where p and q are integers. Since n is an integer, we can avoid null states for n 6= 0

with an appropriate choice of R. Even if we work with a value of R for which there

are null states, the choice of basis described above is good below the level where the

first null state appears. From now on we shall restrict our analysis to situations where

this choice of basis based on Verma module is good. In fact our explicit work in later

sections will be based on R values that are not rational, and thus there will be no null

states for n 6= 0.

For n = 0, however, there are null states and hence the basis of states obtained by

applying LX
−m on |0〉 is not complete. For example, LX

−1|0〉 is null, and this requires us to

explicitly include the primary state αX
−1|0〉 in the basis. There are further null states in

the Verma module over αX
−1|0〉, and hence there are new primary states at higher level

which must be explicitly included in the basis. Let us denote by {|ϕi
e〉 = ϕi

e(0)|0〉X} and

{|ϕi
o〉 = ϕi

o(0)|0〉X} the set of zero momentum primary states which are respectively

even and odd under the reflection X → −X. The complete basis of zero momentum

states in CFT(X) is obtained by acting on {|ϕi
e〉} and {|ϕi

o〉} with LX
−n’s, and removing

the null states.
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A generic string field configuration is represented by an arbitrary state in the Hilbert

space H of ghost number one in the combined matter, ghost conformal field theory.

We now claim that in order to discuss a lump along the x coordinate, we can restrict

the string field |Φ〉 to a subspace Ĥ of H, built by acting with the oscillators

{LX
−1, L

X
−2, · · · ;L′

−2, L
′
−3, · · · ; c1, c−1, c−2, · · · ; b−2, b−3, · · ·} (2.8)

on the following primary states:

• The zero momentum even primaries ϕi
e(0)|0〉 (and removing the null states), and,

• The Fock vacuum states of the form

cos
(
n

R
X(0)

)
|0〉 =

1

2

(
einX(0)/R + e−inX(0)/R

)
|0〉 =

1

2

( ∣∣∣∣
n

R

〉
+

∣∣∣∣−
n

R

〉)
n 6= 0 ,

(2.9)

where |0〉 is the SL(2,R) vacuum of the combined matter, ghost conformal field theory.

A few points should be made. The Virasoro operator L′
−1 is not required for it kills

the above primary states (this is not the case for LX
−1). b−1 and b0 also annihilate the

vacuum |0〉, and hence have been omitted from the list. We have not included the

oscillator c0 because we work in the Siegel gauge, where all states must be annihilated

by b0. Finally we can restrict ourselves to states of even twist [31]. This simply

requires that the eigenvalue of the number operator N̂ must be odd (same as that for

the tachyon).

In order to show that the above is a consistent truncation of the string field, one

must show that there is no term in the action that couples a single state in (H − Ĥ)

to a state in Ĥ via the quadratic term, or to a pair of states in Ĥ via the interaction

term. This is readily done by listing the states in (H − Ĥ). We carry along all ghost

oscillators and classify the states by their behavior under the matter operators. In this

way we get the following disjoint sets:

• States with nonzero momentum k0 along X0.

• States obtained by acting with the oscillators in (2.8) on Fock vacua of the type

sin(nX(0)
R

) |0〉, or on a state of the form ϕi
o(0)|0〉.
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• States obtained by acting with (2.8) on states that (i) have k0 = 0, (ii) are non-

trivial primaries of CFT′ (of dimension greater than zero, by unitarity), and (iii)

are CFT(X) primaries.

It is manifest by momentum conservation that a state in the first set cannot couple to

states in Ĥ. The symmetry X → −X of CFT(X) insures that a state in the second

set also cannot couple to states in Ĥ. The same is true for the last set as Virasoro

Ward identities can be used to show that a correlator involving two states in Ĥ and

a state in the last set is proportional to the one point function of the CFT′ primary

in question. Since this primary must have dimension greater than zero, its one point

function vanishes. This completes our justification for the use of Ĥ.

Since the choice of basis described above requires the use of the basis {|ϕi
e〉}, it will

be useful to determine at which level the first zero momentum primary (other than the

vacuum state) appears. For this we can compare the full partition function of CFT(X)

for states even under X → −X

Zeven(q) ≡ Treven(qLX

0 − 1
24 ) =

1

2
q−

1
24

( ∞∏

n=1

1

1 − qn
+

∞∏

n=1

1

1 + qn

)
(2.10)

with the Virasoro character for (c = 1, h = 0) [30],

χc=1,h=0(q) = q−
1
24

∏

n≥2

1

1 − qn
. (2.11)

It can be easily checked that

Zeven(q) − χc=1,h=0(q) = q−
1
24 (q4 +O(q5)) . (2.12)

Thus the first non-trivial primary |ϕ1
e〉 even under X → −X appears at level four.

Indeed, the available descendents at this level, LX
−4 |0〉 , LX

−2L
X
−2 |0〉, do not suffice to

represent the nonvanishing X-even states αX
−3α

X
−1 |0〉 , αX

−2α
X
−2 |0〉 , (αX

−1)
4 |0〉.

2.3 Mass of the lump

To begin with, the wrapped D-p brane, which we have been calling a D-1 brane wrapped

on a circle of radius R, has mass 2πRT1, where T1, as defined earlier, is the tension of

this D1-brane. We want to compute the mass of the system in a situation where the
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tachyon field on this D1-brane develops a lump along a circle of radius R (this direction

is represented by the world sheet field X). If we denote by ~T the multicomponent string

field configuration on the D1 brane, restricted to Ĥ, then, using eq.(2.5), the rest mass

energy plus potential energy of the D1 brane stretched on the circle can be written as

E(D1) = T1(2πR) (1 + 2π2V(~T )) (2.13)

where V has been defined in eq.(2.6). Before condensation, ~T = 0 and V(~T ) = 0, and

thus the energy formula correctly reproduces the mass of the D1-brane. Recall that for

the nontrivial translationally invariant vacuum ~Tvac, one expects V(~Tvac) = −1/(2π2)

and the energy formula correctly gives zero (as the D1 brane has disappeared). Using

V(~Tvac) = −1/(2π2) we can write the energy formula as

E(D1) = T1 2πR · 2π2 (V(~T ) − V(~Tvac)) (2.14)

The mass of the tachyonic lump solution, represented by the configuration ~Tlump, is

obtained by replacing ~T by ~Tlump on the right hand sides of eqs.(2.13) or (2.14). This

tachyonic lump on the D-string (wrapped D-p-brane) is conjectured to be equivalent

to a D0-brane (a wrapped D-(p− 1)-brane) of mass T0. With α′ = 1, the ratio of the

tension of a D-p brane and a D-(p− 1)-brane is 1/(2π); using this we get,

T0 = 2πT1 . (2.15)

This gives

r ≡ Elump

T0

= 2π2R (V(~Tlump) − V(~Tvac)) . (2.16)

The predicted answer for this ratio is 1.

This prediction can be tested for various values of R, and independently of the

chosen value we must obtain unity, since the mass of a D0-brane on a circle of radius

R does not depend on R. At fixed R and at any level of approximation in the level

expansion it is possible to use (2.16) in two ways. We can use that 2π2V(~Tvac) at the

exact vacuum is indeed −1 and thus we check how accurately

r(1) ≡ R (2π2V(M,N)(~Tlump) + 1) (2.17)

approaches unity. Here V(M,N) is the potential calculated at the specified level of

approximation. Alternatively we can use the translationally invariant vacuum that is
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obtained with the same level of approximation used to compute the lump.8 This gives

r(2) ≡ R (2π2V(M,N)(~Tlump) − 2π2V(M,N)(~Tvac)) (2.18)

We will find that r(1) approaches unity monotonically from above as we increase the

level of approximation. On the other hand r(2) provides a more accurate answer.

2.4 Setup and Sample Computations

Let us now describe explicitly the string field we will be using to analyze the bosonic

string lump. The zero momentum tachyon |T0〉 = c1 |0〉 now becomes the lowest in a

family of states

|Tn〉 = c1 cos
(
n

R
X(0)

)
|0〉 , l(Tn) =

n2

R2
(2.19)

where l(Tn) denotes the level of Tn. For any given computation only a finite number

of tachyon modes are required. In the zero-momentum computation the next modes

that contribute are |U0〉 = c−1 |0〉 and |V0〉 = Lmatt
−2 |0〉 . In view of our remarks around

(2.9) these states actually give rise to three towers

|Un〉 = c−1 cos
(
n

R
X(0)

)
|0〉 , l(Un) = 2 +

n2

R2
,

|Vn〉 = c1L
X
−2 cos

(
n

R
X(0)

)
|0〉 , l(Vn) = 2 +

n2

R2
,

|Wn〉 = c1L
′
−2 cos

(
n

R
X(0)

)
|0〉 , l(Wn) = 2 +

n2

R2
. (2.20)

In addition to these three towers there is one more, where the n = 0 state happens to

vanish:

|Zn〉 = c1 L
X
−1L

X
−1 cos

(
n

R
X(0)

)
|0〉 , n ≥ 1, l(Zn) = 2 +

n2

R2
. (2.21)

No new fields or towers arise until level four, and for the purposes of the present paper

we shall not carry computations that far. Therefore we will use the string field

∣∣∣~T
〉

= t0 |T0〉 + t1 |T1〉 + t2 |T2〉 + · · ·
8The value of V(M,N)(~Tvac) can be read from refs. [9, 11].
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+ u0 |U0〉 + u1 |U1〉 + · · · (2.22)

+ v0 |V0〉 + v1 |V1〉 + · · ·

+w0 |W0〉 + w1 |W1〉 + · · ·

+ z1 |Z1〉 + · · ·

Which fields and which interactions must be kept for any fixed level computation

depends on the chosen radius, and this will be discussed in the following sections. We

conclude here with some basic comments about the evaluation of the potential (or the

action) for a string field of the above type.

This is simply the evaluation of V(~T ) as given in (2.6)

V(~T ) =
1

2
〈 ~T ,Q~T 〉 +

1

3
〈 ~T , ~T ∗ ~T 〉 . (2.23)

We work in units where α′ = 1. The stress tensor for the compact coordinate X is

TX = −1
4
∂X ∂X with X(z)X(w) ∼ −2 ln(z − w), T (z)eip·X(w) ∼ p2

(z−w)2
eip·X(w) and

eip1·X(z)eip2·X(w) = (z − w)2p1·p2eip1·X(z)+ip2·X(w), where z and w are coordinates on the

real line with z > w. With these conventions L0 |p〉 = L0e
ip·X(0) |0〉 = p2 |p〉. In

addition, the inner product is normalized as
〈
n

R

∣∣∣∣ c−1c0c1

∣∣∣∣
m

R

〉
= δn,m (2.24)

Consider, for example contributions from the tachyon tower to the action. By mo-

mentum conservation all kinetic terms must be diagonal. Using (2.9) we see that the

contribution from tn (n ≥ 1) to V is

1

2

tn
2

tn
2

( 〈
− n

R

∣∣∣∣ +
〈
n

R

∣∣∣∣
)
c−1c0L0c1

( ∣∣∣∣
n

R

〉
+

∣∣∣∣−
n

R

〉)
(2.25)

By momentum conservation there are two cross terms that do not vanish and give

identical contributions. We thus get

1

4
t2n

〈
n

R

∣∣∣∣ c−1c0
(
−1 +

n2

R2

)
c1

∣∣∣∣
n

R

〉
= −1

4

(
1 − n2

R2

)
t2n (2.26)

For t0 the normalization factor differs by a factor of two. All this together gives us

that the quadratic terms are

V(t0, t1, t2, · · ·)(2) = −1

2
t20 −

1

4

∞∑

n=1

(
1 − n2

R2

)
t2n
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= −1

2
t20 −

1

4

(
1 − 1

R2

)
t21 −

1

4

(
1 − 4

R2

)
t22 + · · · (2.27)

We will use the first tachyon harmonic t1 to drive the unstable vacuum into the lump

solution. Note that t1 is tachyonic whenever R > 1. We will choose different values

of R > 1 to examine how the lump forms. As R increases, more and more tachyon

harmonics become tachyonic.

It is not difficult to compute the interactions of the various tachyon harmonics.

One can use the oscillator expressions for the states and contract them against the

3-string vertex bra 〈V123| [32]. Alternatively one can use the conformal field theory

definition [33]

〈~T , ~T ∗ ~T 〉 ≡ 〈h1 ◦ T (0)h2 ◦ T (0)h3 ◦ T (0)〉 . (2.28)

where T (0) denotes the vertex operator associated to the state
∣∣∣~T

〉
. Here h1, h2 and

h3 are a set of familiar conformal transformations reviewed in [29]. For illustration

purposes consider three tachyon harmonics tn, tm and tn+m, with n 6= m 6= 0. Such

fields contribute to V the following interaction

1

3
· 6 · tn

2
· tm

2
· tn+m

2
· 2 〈 h1 ◦ (ce

inX

R )(0) h2 ◦ (ce
imX

R )(0) h3 ◦ (ce
−i(n+m)X

R )(0)〉 (2.29)

The factor (1/3) is in the definition of V. The factor of 6 appears because this is the

number of ways three different fields can be assigned to the three punctures in the disk.

Then come the fields, and then a factor of two, as there are two momentum conserving

combinations giving equal contributions. Evaluation of the above gives

1

2
tn tm tn+m K

3− 1
R2 (n2+m2+(n+m)2) , K ≡ 3

√
3

4
(2.30)

Slightly different combinatorics are required for terms of the form t0t
2
n and t2nt2n. Com-

bining all such terms together we obtain

V(t0, t1, · · ·)(3) =
1

3
K3t30 +

1

2

∞∑

n=1

t0 t
2
n K

3− 2n
2

R2 +
1

4

∞∑

n=1

t2n t2n K
3− 6n

2

R2

+
1

2

∞∑

n≥1

∞∑

m>n

tn tm tn+m K
3− 2

R2 (n2+m2+nm) . (2.31)

Equations (2.27) and (2.31) give the complete potential for the tachyon tower.
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Level Fields

0 t0

1/3 t1

4/3 t2

2 u0, v0, w0

7/3 u1, v1, w1, z1

3 t3

Table 1: The list of fields appearing at various levels when R =
√

3.

3 Calculating the action in the Level Expansion for

R =
√

3

In this section we will consider different truncation levels to calculate the lump tension.

For this we will write explicitly the action at different levels. Though we will work with

a fixed radius R =
√

3, all our equations will contain R as a variable for further use.

Once we know the action we can solve the equations of motion numerically for the

one-lump solution by giving a nonzero initial value to t1. At the end of the section,

we will be able to study the convergence of our level truncation scheme by using both

(2.17) and (2.18).

We will do these calculations at levels (1/3, 2/3), (4/3, 8/3), (2, 4), (7/3, 14, 3) and

(3, 6). This will require the fields listed in Table 1 with their respective levels (using

(2.19), (2.20) and (2.21)). In order to study the truncation method at various levels,

we define V (m,n) to be the part of the whole potential satisfying the three following

conditions:

1. All terms in V (m,n) have level n.

2. All terms in V (m,n) contain only fields of level smaller than or equal to m.
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3. All terms in V (m,n) contain at least one field of level m.

This definition ensures that various V (m,n)’s are disjoint (i.e. V (m,n) and V (m′, n′)

don’t contain common terms for (m,n) 6= (m′, n′)). It now follows that the total po-

tential at level (M,N) is given by

V(M,N) =
∑

m≤M

∑

n≤N

V (m,n) (3.1)

We shall now compute V (m,n) for m ≤ 3 and n ≤ 6. Though here we will restrict

ourselves to levels (M,N) of the form (M, 2M), eq.(3.1) and the results for V (m,n)

given below can be used to construct the potential V(M,N) for arbitrary level (M,N)

as long as M ≤ 3 and N ≤ 6. We shall first list all possible terms appearing in each

V (m,n) consistent with momentum conservation, separating the quadratic and cubic

terms. We then use the methods described in section 2 to explicitly calculate the

coefficients of each possible term in the V (m,n)’s.

The list of interactions that must be computed is generated conveniently with the

help of the following function:

Z(x, y, s) ≡
∞∏

n=0

{(
1 − tnx(y

n + y−n)sn2/R2
)(

1 − unx(y
n + y−n)s2+n2/R2

)

(
1 − vnx(y

n + y−n)s2+n2/R2
)(

1 − wnx(y
n + y−n)s2+n2/R2

)

(
1 − zn+1x(y

n+1 + y−n−1)s2+(n+1)2/R2
)
· · ·

}−1
(3.2)

Here the formal variables x, y and s are used to count number of fields, momentum,

and level, respectively. If we write

Z(x, y, s) =
∑

m,n

Z(m,n, s) xmyn . (3.3)

The momentum conserving cubic interactions appear in Z(3, 0, s) and an expansion in

s gives

Z(3, 0, s) =
∑

l

Z(l) sl . (3.4)

Let {ψi} denote the complete set of modes (tn, un, · · ·). Then Z(l) has an expression of

the form Z(l) ∼ ∑
aijkψ

iψjψk where each aijk is an integer. If aijk 6= 0 the interaction

ψiψjψk must be included in the level l contribution to the potential. Thus Z(l) supplies
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the complete list of momentum conserving cubic interactions of level l. When useful,

we split by hand the terms in Z(l) to obtain the possible terms which appear in various

V (m, l)’s.

The list of all terms for the various V (m,n)’s with n ≤ 6 (and R =
√

3) are given

in Table 2.

3.1 The terms in the potential

The explicit interactions corresponding to the various terms appearing in the table will

be listed here. With K = 3
√

3
4

, as in eq.(2.30), we have at the lowest level:

V (0, 0) = −1

2
t20 +

1

3
K3t30 . (3.5)

At first nontrivial level we have:

V (1/3, 2/3) = −1

4

(
1 − 1

R2

)
t21 +

1

2
K3−2/R2

t0t
2
1 . (3.6)

At level 2 we have:

V (4/3, 2) =
1

4
K3−6/R2

t21t2

V (2, 2) =
K

32
t20

(
22 u0 − 5 (v0 + 25w0)

)
. (3.7)

At level 8/3 :

V (4/3, 8/3) = −1

4

(
1 − 4

R2

)
t22 +

1

2
K3−8/R2

t0t
2
2

V (2, 8/3) = K1−2/R2

t21
( 11

32
u0 +

1

2

(
1

R2
− 5

32

)
v0 −

125

64
w0

)

V (7/3, 8/3) =
1

32
K1−2/R2

t0t1

(
22u1 −

(
5 +

16

R2

)
v1 − 125w1 +

(−44

R2
+

32

R4

)
z1

)
.

(3.8)

At level 4:

V (2, 4) = −1

2
u2

0 +
1

4
(v2

0 + 25w2
0) +K

{
1

576
t0

(
76 u2

0 + 179 v2
0 + 9475w2

0

)
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Quadratic terms Cubic terms

V (0, 0) t20 t30

V (1/3, 2/3) t21 t0t
2
1

V (4/3, 2) t21t2

V (2, 2) t20u0, t
2
0v0, t

2
0w0

V (4/3, 8/3) t22 t0t
2
2

V (2, 8/3) t21u0, t
2
1v0, t

2
1w0

V (7/3, 8/3) t0t1u1, t0t1v1, t0t1w1, t0t1z1

V (2, 4) u2
0, v

2
0, w

2
0 t0u

2
0, t0v

2
0, t0w

2
0, t0u0v0, t0u0w0, t0v0w0

V (7/3, 4) t1t2u1, t1t2v1, t1t2w1, t1t2z1

V (2, 14/3) t22u0, t
2
2v0, t

2
2w0

V (7/3, 14/3) u2
1, v

2
1, w

2
1, z

2
1 , t0u

2
1, t0v

2
1, t0w

2
1, t0u1v1, t0u1w1, t0v1w1,

v1z1 t1u0u1, t1u0v1, t1u0w1, t1v0u1, t1v0v1,

t1v0w1, t1w0u1, t1w0v1, t1w0w1,

t0z
2
1 , t0u1z1, t0v1z1, t0w1z1,

t1u0z1, t1v0z1, t1w0z1

V (3, 14/3) t1t2t3

V (2, 6) u3
0, v

3
0 , w

3
0, u

2
0v0, u

2
0w0, u0v

2
0, u0w

2
0, v

2
0w0

v0w
2
0, u0v0w0,

V (7/3, 6) t2u
2
1, t2v

2
1, t2w

2
1, t2u1v1, t2u1w1, t2v1w1,

t2z
2
1 , t2u1z1, t2v1z1, t2w1z1

V (3, 6) t23 t0t
2
3

Table 2: Quadratic terms and interactions appearing at various levels when R =
√

3.
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+
625

864
t0v0w0 −

55

432
t0u0(v0 + 25w0)

}

V (7/3, 4) =
1

64
K1−6/R2

t1t2

(
22u1 −

(
5 − 48

R2

)
v1− 125w1 +

(
− 44

R2
+

288

R4

)
z1

)
.

(3.9)

At level 14/3:

V (2, 14/3) =
1

64
K1−8/R2

t22

(
22u0 −

(
5 − 128

R2

)
v0 − 125w0

)

V (
7

3
,
14

3
) =

1

8

(
1 +

1

R2

) (
−2u2

1 +
(
1 +

8

R2

)
v2
1 + 25w2

1 +
(

8

R2
+

16

R4

)
z2
1 +

24

R2
v1z1

)

+K1−2/R2
{

19

288
t0u

2
1 +

1

3456

(
537 +

8864

R2
+

256

R4

)
t0v

2
1 +

28425

3456
t0w

2
1

− 11

864
t0u1

((
5 +

16

R2

)
v1 + 125w1

)
+

125

1728

(
5 +

16

R2

)
t0v1w1

+
19

144
t1u0u1 −

11

864
t1u0

((
5 +

16

R2

)
v1 + 125w1

)

− 11

864

(
5 − 32

R2

)
t1v0u1 +

1

1728

(
537 +

944

R2
− 512

R4

)
t1v0v1

+
25

1728

(
25 − 160

R2

)
t1v0w1 −

1375

864
t1w0u1 +

25

1728

(
25 +

80

R2

)
t1w0v1

+
28425

1728
t1w0w1 +

1

216

1

R2

(
384 +

1145

R2
+

336

R4
+

64

R6

)
t0z

2
1

+
11

864

1

R2

(
−44 +

32

R2

)
t0u1z1 +

1

432

(
2359

R2
+

1672

R4
− 128

R6

)
t0v1z1

+
125

432

1

R2

(
11 − 8

R2

)
(t0w1z1 + t1w0z1)

+
1

864

1

R2

(
11

(
−44 +

32

R2

)
t1u0z1 +

(
2158 − 2832

R2
+

512

R4

)
t1v0z1

)}

V (3, 14/3) =
1

2
K3−14/R2

t1t2t3 . (3.10)
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And at level 6:

V (2, 6) = K
{

1

144
u3

0 +
8321

93312
v3
0 −

219775

10368
w3

0 −
95

7776
u2

0 (v0 + 25w0)

+
1969

15552
u0v

2
0 +

104225

15552
u0w

2
0 −

22375

31104
v2
0w0−

47375

31104
v0w

2
0 +

6875

23328
u0v0w0

}

V (7/3, 6) = K1−6/R2
{

19

576
t2u

2
1 +

1

2304

(
179 − 1696

R2
+

768

R4

)
t2v

2
1 +

9475

2304
t2w

2
1

− 11

1728

(
5 − 48

R2

)
t2u1v1 −

1375

1728
t2u1w1 +

1

72

(
625

48
− 125

R2

)
t2v1w1

+
1

144

(
−128

R2
+

723

R4
− 2064

R6
+

1728

R8

)
t2z

2
1 +

11

432

(−11

R2
+

72

R4

)
t2u1z1

+
1

288

(
− 67

R2
− 808

R4
+

1152

R6

)
t2v1z1 +

125

864

(
11

R2
− 72

R4

)
t2w1z1

}

V (3, 6) =
1

4

(
−1 +

9

R2

)
t23 +

1

2
K3−18/R2

t0t
2
3 . (3.11)

3.2 Potentials at various truncation levels and mass calcula-

tions

From these formulae one can construct the potentials at various truncation levels using

(3.1). As we will use them, we give below the explicit sums for V(1/3,2/3), V(4/3,8/3),

V(2,4), V(7/3,14/3) and V(3,6):

V(1/3,2/3) = V (0, 0) + V (1/3, 2/3)

V(4/3,8/3) = V(1/3,2/3) + V (4/3, 2) + V (4/3, 8/3)

V(2,4) = V(4/3,8/3) + V (2, 2) + V (2, 8/3) + V (2, 4)

V(7/3,14/3) = V(2,4) + V (7/3, 8/3) + V (7/3, 4) + V (2, 14/3) + V (7/3, 14/3)

V(3,6) = V(7/3,14/3) + V (3, 14/3) + V (2, 6) + V (7/3, 6) + V (3, 6)

(3.12)

In general, the potential at a given level has many extrema. Two of them will be

of particular interest for us:

1. We always find a translationally invariant minimum ~Tvac corresponding to the

tachyon condensation. At this minimum, all fields with nonzero momentum have
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Field (1/3, 2/3) (4/3, 8/3) (2, 4) (7/3, 14/3) (3, 6)

t0 0.181034 0.214757 0.25703 0.265131 0.269224

t1 -0.344389 -0.343566 -0.384575 -0.394396 -0.394969

t2 ... -0.0955972 -0.107424 -0.12046 -0.125011

u0 ... ... 0.0888087 0.0900609 0.0969175

v0 ... ... -0.00675676 -0.0175367 -0.0172906

w0 ... ... 0.0317837 0.0299617 0.0320394

u1 ... ... ... -0.0643958 -0.0648543

v1 ... ... ... 0.0540447 0.0505836

w1 ... ... ... -0.0187778 -0.0189058

z1 ... ... ... -0.0698363 -0.0665402

t3 ... ... ... ... -0.0142169

Table 3: The values of various modes of the string field at the stationary point of the
potential for R =

√
3 calculated at various levels of approximation.

zero vev. We will use this solution when calculating the ratio r(2) defined in

eq.(2.18).

2. If we start the numerical algorithm with initial values near t0 ≈ 0.25 and t1 ≈
−0.4 then our numerical algorithm converges to the one-lump solution ~Tlump that

we are interested in.

The solution ~Tvac can be found in refs. [9, 11]. In table 3 we give the solutions
~Tlump at various truncation levels. Having found ~Tvac and ~Tlump we can now calculate

the ratio of the lump mass to the D0-brane mass using the two different methods

(2.17) and (2.18). The results are given in Table 4. We see that the first method gives

a monotonically decreasing lump mass whereas the second method is oscillating but
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Level r(1) r(2)

(1/3; 2/3) 1.32002 0.77377

(4/3; 8/3) 1.25373 0.707471

(2; 4) 1.11278 1.02368

(7/3; 14/3) 1.07358 0.984467

(3, 6) 1.06421 0.993855

Table 4: The ratio of the calculated mass of the lump to the mass of the D0 brane in
the two schemes described in equations (2.17) and (2.18).

gives a lump mass much closer to the expected mass.
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Figure 1: The dashed line shows a plot of t(x) for R =
√

3 at level (1/3, 2/3) ap-
proximation. The solid line shows the plot of t(x) for R =

√
3 at the level (3,6)

approximation.
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Figure 2: The dashed line shows a plot of t(x) for R =
√

3 at level (4/3, 8/3) ap-
proximation. The solid line shows the plot of t(x) for R =

√
3 at the level (3,6)

approximation.
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Figure 3: The dashed line shows a plot of t(x) for R =
√

3 at level (2, 4) approximation.
The solid line shows the plot of t(x) for R =

√
3 at the level (3,6) approximation.
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Figure 4: The dashed line shows a plot of t(x) for R =
√

3 at level (7/3, 14/3)
approximation. The solid line shows the plot of t(x) for R =

√
3 at the level (3,6)

approximation.

It is instructive to plot the profile of the tachyon field:

t(x) =
∑

n

tn cos
nx

R
, (3.13)

as a function of x and compare them at different approximations. In figs.1-4 we have

plotted the tachyon profiles at the level (1/3,2/3), (4/3,8/3), (2,4) and (7/3,14/3)

approximation respectively, each of them being superimposed on the tachyon profile at

the level (3,6) approximation.

For future use, we shall now define two new functions F0 and G0 as follows:

F0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R) = V( 7
3
, 14

3
) ,

G0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R) = V(3,6) − V (3, 6) − V (2, 14/3)− V (7/3, 4)

−V (7/3, 6) − V (3, 14/3) (3.14)

where V( 7
3
, 14

3
) and V(3,6) have been defined in eqs.(3.5)-(3.12). The right hand side of

this equation has to be interpreted as a function of the various modes t0, . . . z1 and

R, without R being set to
√

3. The function F0 and G0 defined here will be useful in
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constructing the potential V(M,N) for other values of R, as will be discussed in the next

section.

4 Tachyon Lump at Other Radii

In this section we shall discuss the construction of the tachyonic lump solution on circles

of radii other than
√

3, and compare the results with those obtained for R =
√

3. As

the basic techniques have already been discussed in the previous two sections, in this

section we shall only quote the results.

4.1 R >
√

3

First we need to decide which values of R we shall use to study the lump. Although

this choice is arbitrary, there is slight simplification of counting levels if we choose R

such that the level of u1, v1, w1 and z1 coincide with that of one of the harmonics (say

tn) of the tachyon field. This requires

2 +
1

R2
=
n2

R2
, → R =

√
n2 − 1

2
. (4.1)

We shall consider the values n = 4, 5, 6 corresponding to R =
√

15
2
,
√

12,
√

35
2
. In each

case we shall be using the level (2 + 1
R2 , 4 + 2

R2 ) approximation to the potential. For

this we need to include up to the n-th harmonic of the tachyon field t and the first

harmonics of the fields u, v, w and z.

For these additional R values all interactions present in V( 7
3
, 14

3
) at R =

√
3 are still

present. We need, however, further interactions as can be checked using the generating

function (3.2). These additional interactions can be expressed in terms of the following

functions:

F1(t0, · · · , t4, u0, v0, w0, u1, v1, w1, z1;R)

= −1

4

(
1 − 9

R2

)
t23 −

1

4

(
1 − 16

R2

)
t24

+
1

2
K3−18/R2

t0t
2
3 +

1

2
K3−32/R2

t0t
2
4 +

1

2
K3−14/R2

t1t2t3 +
1

4
K3−24/R2

t22t4 +
1

2
K3−26/R2

t1t3t4

+
(

11

32
u1 −

125

64
w1 +

( 25

2R4
− 11

16R2

)
z1 +

( 11

4R2
− 5

64

)
v1

)
K1−14/R2

t2t3

(4.2)
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F2(t0, · · · , t5, u0, v0, w0, u1, v1, w1, z1;R)

= −1

4

(
1 − 25

R2

)
t25 +

1

2
K3−38/R2

t2 t3 t5 +
1

2
K3−42/R2

t1 t4 t5 +
1

2
K3−50/R2

t0 t
2
5

+
(

11

32
u0 +

(
− 5

64
+

9

2R2

)
v0 −

125

64
w0

)
K1−18/R2

t23

+
(

11

32
u1 +

(
− 5

64
+

23

4R2

)
v1 −

125

64
w1 +

( 49

2R4
− 11

16R2

)
z1

)
K1−26/R2

t3 t4

(4.3)

F3(t0, · · · , t6, u0, v0, w0, u1, v1, w1, z1;R)

= −1

4

(
1 − 36

R2

)
t26 +

1

4
K3−54/R2

t23 t6 +
1

2
K3−56/R2

t2 t4 t6 +
1

2
K3−62/R2

t1 t5 t6

+
1

2
K3−72/R2

t0 t
2
6 +

(
11

32
u0 +

(
− 5

64
+

8

R2

)
v0 −

125

64
w0

)
K1−32/R2

t24 .

(4.4)

We shall now write down our results for level (2+ 1
R2 , 4+ 2

R2 ) approximation for the

potential for R2 = (n2 − 1)/2 in terms of the functions F0, . . . F3 defined in eqs.(3.14),

(4.2)-(4.4). These are as follows:

V(32/15,64/15)(t0, · · · , t4, u0, v0, w0, u1, v1, w1, z1;R =
√

15/2)

= F0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R =
√

15/2)

+F1(t0, · · · , t4, u0, v0, w0, u1, v1, w1, z1;R =
√

15/2) , (4.5)

V(25/12,25/6)(t0, · · · , t5, u0, v0, w0, u1, v1, w1, z1;R =
√

12)

= F0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R =
√

12)

+F1(t0, · · · , t4, u0, v0, w0, u1, v1, w1, z1;R =
√

12)

+F2(t0, · · · , t5, u0, v0, w0, u1, v1, w1, z1;R =
√

12) , (4.6)

V(72/35,144/35)(t0, · · · , t6, u0, v0, w0, u1, v1, w1, z1;R =
√

35/2)

= F0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R =
√

35/2)

+F1(t0, · · · , t4, u0, v0, w0, u1, v1, w1, z1;R =
√

35/2)

+F2(t0, · · · , t5, u0, v0, w0, u1, v1, w1, z1;R =
√

35/2)

+F3(t0, · · · , t6, u0, v0, w0, u1, v1, w1, z1;R =
√

35/2) . (4.7)
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As in the previous section, we can find a tachyonic lump solution by starting with

a non-zero seed value of t1. The numerical solutions are given in Table 5. The result

for the two ratios r(1) and r(2), defined in eqs.(2.17) and (2.18) are given in Table 6.

-7.5 -5 -2.5 2.5 5 7.5
x

-0.2
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0.4

0.6

t(x)

Figure 5: The dashed line shows a plot of t(x) for R =
√

15/2 at level (32/15, 64/15)

approximation. The solid line spanning a smaller range of x shows the plot of t(x) for
the level (3,6) approximation at R =

√
3.

In Figs.5-7 we have plotted the tachyon field t(x) defined in eq.(3.13) as a function

of x for each of the three values of R. For reference we have also plotted on the same

graph the function t(x) obtained in the level (3,6) approximation forR =
√

3. As is seen

from these figures, the tachyon profiles for different radii are almost undistinguishable

from each other even though they are obtained as superpositions of harmonics of very

different wave-lengths.

4.2 R <
√

3

Finally we would like to study how the shape of the soliton changes when R is small.

For this we take R =
√

1.1 and work at the level (40/11, 80/11) approximation of the

potential. One can show that to this level of approximation the potential is given by,

V(40/11,80/11)(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R =
√

1.1)
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Field R =
√

15/2 R =
√

12 R =
√

35/2 R =
√

11/10

t0 0.363333 0.401189 0.424556 0.0804185

t1 -0.308419 -0.255373 -0.218344 -0.31707

t2 -0.19463 -0.190921 -0.176679 -0.00983574

t3 -0.0849552 -0.122721 -0.132269 ...

t4 -0.0248729 -0.0575418 -0.0830114 ...

t5 ... -0.0210929 -0.0409281 ...

t6 ... ... -0.0178687 ...

u0 0.118792 0.131499 0.139048 0.0318155

v0 0.0131977 0.020668 0.0263317 -0.0591248

w0 0.0380389 0.0417417 0.0438076 0.0132021

u1 -0.0712708 -0.0629211 -0.0567058 -0.0052739

v1 -0.0958004 -0.0657449 -0.0476215 -0.0119114

w1 -0.0181708 -0.0150031 -0.0131234 -0.000863176

z1 0.0860302 0.058747 0.0418645 0.00570249

Table 5: The values of various modes of the string field at the stationary point of the
potential for different radii.

31



R r(1) r(2)

√
15/2 1.14625 1.00535

√
12 1.19147 1.01324

√
35/2 1.23876 1.02353

√
11/10 1.02175 0.979149

Table 6: The ratio of the calculated mass of the lump to the mass of the D0 brane at
various radii in the two schemes described in equations (2.17) and (2.18).
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Figure 6: The dashed line shows a plot of t(x) for R =
√

12 at level (25/12, 25/6)
approximation. The solid line spanning a smaller range of x shows the plot of t(x) for
the level (3,6) approximation at R =

√
3.

= G0(t0, t1, t2, u0, v0, w0, u1, v1, w1, z1;R =
√

1.1) , (4.8)

where G0 has been defined in eq.(3.14). The tachyonic lump solution for this potential

is given in table 5. The results for the two ratios r(1) and r(2) defined in eqs.(2.17) and

(2.18) are given in table 6.
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Figure 7: The dashed line shows a plot of t(x) for R =
√

35/2 at level (72/35, 144/35)

approximation. The solid line spanning a smaller range of x shows the plot of t(x) for
the level (3,6) approximation at R =

√
3.

We have displayed in fig. 8 the tachyon profile, superimposed on the tachyon profile

for the level (3,6) approximation at R =
√

3. As can be seen from this figure, for

R =
√

11/10 there is not enough room for the full lump solution to fit in, but the

profile of the lump at smaller radius follows closely the profile at larger radius near the

core.

4.3 Size of the lump

We can estimate the size of the lump at different radii in a somewhat systematic way

by fitting the lump profile with a gaussian curve of the form:

G(x) = a+ b · e−x2/(2σ2) . (4.9)

We calculate the parameters a, b and σ using a nonlinear regression algorithm on a set

of points chosen on the lump profile in the following way. For R ≥
√

3:

• We take 100 points, regularly spaced in x, in the core of the lump from x = −
√

3 π

to x =
√

3π.
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Figure 8: The dashed line shows a plot of t(x) for R =
√

11/10 at level (40/11, 80/11)

approximation. The solid line spanning a smaller range of x shows the plot of t(x) for
the level (3,6) approximation at R =

√
3.

• We take a smaller density of points, regularly spaced in x, on the rest of the circle

(where the profile is essentially flat). Here we have taken 20, 30 and 40 points

for R =
√

15/2, R =
√

12 and R =
√

35/2 respectively.

In the case of R =
√

11/10, we take 100 points from x = −
√

11/10π to x =
√

11/10π

The results of the regression at the different radii are given in table 7. We see that

the size of the lump, which can be defined as a multiple of σ, is essentially independent

of the radius (it increases by about 1.5 % when R increases from
√

3 to
√

35/2). Even

when there is not enough room for the lump to fit in (R =
√

11/10), the lump is only

slightly compressed (by about 7 %). A reasonable definition for the size would be 6 σ,

with the solution extending by 3 σ both along the positive and the negative x-axis.

With this convention, the lump will have a size of approximately 9.3
√
α′. This is close

to the answer obtained in ref.[12].
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Radius a b σ

√
3 0.559814 -0.828599 1.52341

√
15/2 0.546313 -0.804112 1.5595

√
12 0.544226 -0.801652 1.54089

√
35/2 0.54328 -0.799957 1.54477

√
11/10 0.451678 -0.702596 1.41847

Table 7: The result for the best fit of the profile of the lump with the gaussian curve
described in eq.(4.9).

5 Conclusions and Open Questions

In this paper we have developed and tested the level expansion method in string field

theory beyond translationally invariant vacuum solutions. This enabled us to give

a systematic method for calculating quantities related to tachyon lumps and to give

an accurate description of D-branes as tachyonic lumps in bosonic string field theory.

Given the accuracy of our calculations (about 1% typically) we are confident that the

profile of the lump that we have found is indeed very close to the exact one. As we have

seen, as long as the radius is sufficiently big the lump has a definite radius independent

profile. Indeed, when approximated by a gaussian, the lump representing a D-brane

has σ ≃ 1.55
√
α′. We also considered the profile of the tachyon lump for R =

√
1.1α′,

a radius sufficiently small that the large radius profile of the lump does not fit on the

circle. We saw that the bottom part of the lump is essentially unchanged.

There are some questions related to the present work that we have not addressed.

In particular we have not produced a lump solution in string field theory for R = 1,

where the tachyon harmonic t1 becomes exactly marginal and the D0 and D1 branes

have the same mass. Presumably, for small (R2 − 1) one must go fairly high in the

level expansion to produce an accurate description. We have also not discussed the

case R < 1, where the D0 brane is unstable against decay into the D1 brane, or into

the translationally invariant vacuum. We have also not tried to describe several D0
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branes, all located at the same position.

We have not discussed issues related to the size of the lump representing a D-

brane. While in the conformal field theory description a D-brane is an object with

a well defined position, in string field theory it is a fat object, with thickness of the

order of the string scale. Since string field theory is a gauge theory one may wonder if

the size is an artifact of the chosen gauge. We do not at present know the answer to

this question. The simplest way to get some insight into the nature of this extended

solution would be to try to find out the energy density. This fails since the string field

theory action is nonlocal, and hence there is no known expression for energy density

in this theory. It would be interesting to examine some physical question that could

help interpret the nature of this size [34]. According to the conjectures of refs.[1, 2], all

physical quantities calculated in the background of the lump solution must agree with

those calculated in the background of a lower dimensional D-brane.

The methods used in this paper should be able to deal with:

• Neveu-Schwarz string field theory, where tachyon kinks rather than lumps repre-

sent lower dimensional D-branes. One way to deal with the boundary conditions

on a circle would be to place both a kink and an anti-kink at diametrically op-

posite points of the circle. Another, probably more efficient way would be to

include a Wilson line along the circle in such a way that the tachyon boundary

conditions are twisted [5].

• Higher codimension D-branes. In [12] it was observed that as the codimension is

increased the naive use of the tachyon “bounce” gave increasingly worse approxi-

mations to the lump mass. We believe that our methods will enable calculations

to any desired accuracy. The simplest situation would involve making two of the

original brane dimensions into circles and including harmonics in both directions

by simple extension of the methods of section 2.2.

• Intersecting D-branes. The simplest setup would be to begin with a D2-brane on

a torus and generate a pair of transverse D1 branes intersecting at one point.

We hope that our analysis will ultimately provide a more refined understanding of

string field theory and its geometry. One application is already apparent; if we could get
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a formulation of string field theory around the translationally invariant vacuum where

the original D-brane is no longer present, such formulation will have more unbroken

symmetries than the current formulation.

It is interesting to note that the level expansion method used here incorporates

into the calculational scheme an ultra-violet (UV) cutoff. Since l = p2 + · · ·, working

at fixed l implies a upper bound to the momentum (in the spatial directions). From

this one is naturally led to propose a level expansion method for quantum string field

theory. One approach could be to use the Euclidean version of the theory, and make

periodic all directions including time[35], thus turning, at any fixed level M , the set of

all relevant fields into a set of expansion coefficients cn, with l(|φn〉) ≤M . Since we are

setting the whole system in a box, we also have a natural infra-red cutoff. The whole

quantum path integral
∫ ∏

[dcn] exp(−S(cn)/h̄) could then be evaluated.9 Alternatively,

one could make all dimensions except time periodic. In this case the result would be

the quantum mechanics of the wave functions cn(t). It would be exciting if the level

expansion gave a concrete calculational definition of quantum string field theory, a

definition one could in practice feed to a computer in order to calculate observables to

any desired degree of precision.
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