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Abstract

A system containing a pair of non-BPS D-strings of type IIA string theory on

an orbifold, representing a single D2-brane wrapped on a nonsupersymmetric 2-cycle

of a Calabi-Yau 3-fold with (h(1,1), h(1,2)) = (11,11), is analyzed. In certain region

of the moduli space the configuration is stable. We show that beyond the region of

stability the system can decay into a pair of non-BPS D3-branes. At one point on the

boundary of the region of stability, there exists a marginal deformation which connects

the system of non-BPS D-strings to the system of non-BPS D3-branes. Across any

other point on the boundary of the region of stability, the transition from the system

of non-BPS D-strings to the system of non-BPS D3-branes is first order. We discuss

the phase diagram in the moduli space for these configurations.
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1 Introduction and Summary

It is now well known that type IIA (IIB) string theory contains extended solitonic objects

called D-2p (D-(2p + 1)) branes which carry charges of various Ramond-Ramond (RR)

gauge fields present in this theory[1]. These objects satisfy BPS condition and as a result

can be interpreted as those solutions of classical stringy equations of motion which preserve

half of the spacetime supersymmetry charges of the underlying theory. These objects are

also amenable to a nice dual perturbative description in that the open strings can end on

them. Due to its BPS nature, these objects remain stable even when one goes from weak to

strong coupling regime of string theory and thus provides a theoretical laboratory to test

various nontrivial conjectures of string dualities.

As a next step towards verifying these conjectures on string dualities one might ask

whether these dualities work for the non-BPS states present in five different perturbative

descriptions of string theory. Generically these non-BPS states are not stable since their

mass is not protected by supersymmetry once one goes beyond tree level of string pertur-

bation theory. But there exists some stable non-BPS states simply because they are the

lightest states carrying some conserved quantum numbers. Such states were explored in

[2, 3, 4, 5, 6, 7]. As a non-trivial check of type I-heterotic SO(32) duality, it was shown that

a stable state in the perturbative spectrum of the heterotic theory, which transforms as a

spinor under the SO(32) gauge group, has a dual counterpart in type I string theory as a
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non-BPS D0-brane[6]. Boundary state description of non-BPS D-branes was developed in

refs.[5, 8]. Attempts to construct solutions of supergravity equations of motion describing

these non-BPS D-branes have been made in refs.[9, 10, 11, 12].

Next we can look for such stable non-BPS D-branes in compactified theories. If we

consider type IIA / IIB theory on a K3 surface or a Calabi-Yau 3-fold, examples of BPS

D-branes wrapped on supersymmetric cycles[13] of these compact manifolds are abundant

[14, 15, 16, 17, 18, 19]. These compact manifolds also contain topologically nontrivial

nonsupersymmetric cycles. These can be interpreted as a homological sum of supersym-

metric cycles. Hence one might ask if it is possible to get stable, non-BPS configurations

by wrapping a BPS D-brane on one of these non-supersymmetric cycles. Although charge

conservation allows them to decay into two or more BPS configurations carrying the same

total charge quantum numbers, such a decay may be prevented due to energy conservation

in certain regions of the moduli space.

Generically type IIA (IIB) theory contains non-BPS D-branes of odd (even) dimen-

sion. These branes are unstable which is signalled by the presence of tachyon on the brane

world-volume. However, the tachyonic mode may be projected out when we consider certain

orbifolds / orientifolds of the theory[20, 21].3 In ref.[20] it was shown that on an orbifold

representing type II string theory compactification on K3, such a non-BPS D-brane repre-

sents a BPS D-brane wrapped on a nonsupersymmetric cycle and it can be stable in certain

region of the moduli space. Beyond the region of stability it can decay into a pair of BPS

D-branes wrapped on supersymmetric cycles. The nature and total number of these decay

products are determined by conservation laws of various quantum numbers e.g. mass, bulk

RR charge and twisted RR charge at various fixed points of the orbifold. This instability

of the non-BPS configuration is signalled by the reappearance of the tachyon on the brane

world-volume. A crucial ingredient in this analysis was that the tachyon at the boundary of

the region of stability represents an exactly marginal deformation, and this exactly marginal

deformation interpolates between the original system representing a D-brane wrapped on

a non-supersymmetric cycle, and the final decay product, representing a set of D-branes,

each wrapped on a supersymmetric cycle.

In this paper we shall pursue this programme in the context of type IIA theory on a

particular Calabi-Yau 3-fold with Hodge numbers h(1,1) = 11, h(1,2) = 11. In the orbifold

limit this Calabi-Yau 3-fold is obtained by modding out T 6 by two ZZ2 transformations,

whose generators we shall denote by I4 and I ′

4 respectively. We shall describe these trans-

3Stable non-BPS D-branes on asymmetric orbifolds have been studied recently in ref.[22].
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formations in detail in the next section (See eqs.(2.1), (2.2) of subsection (2.1)). This

Calabi-Yau orbifold was discussed in [20, 23, 24, 25] in various other contexts. In fact cer-

tain general results of this analysis were already stated in ref.[20]. Also in ref.[25], it was

shown that for non-BPS D-branes wrapped on nonsupersymmetric cycles of this Calabi-

Yau orbifold, the one-loop open string partition function vanishes at some special points

of the moduli space of this orbifold. Thus at these points in the moduli space the branes

do not exert any force on each other. This generalises the idea developed in ref.[26] in

the context of orbifold K3. Recently in ref.[27] study of non-BPS branes on a different

Calabi-Yau orbifold (the one with (h(1,1), h(1,2)) = (51, 3)) was carried out using boundary

state formalism[28, 29, 30, 31, 32, 33, 34, 35] and K-theory analysis[36, 37].

We shall start with a I4 and I ′

4 invariant configuration, containing a pair of non-BPS

D-strings of type IIA theory wrapped on one of the circles of T 6 and then mod it out by

those two ZZ2 transformations. By examining the translational zero modes and the twisted

sector RR charges carried by this configuration, one can identify this as a single 2-brane,

wrapped on a non-supersymmetric 2-cycle of the Calabi-Yau manifold. (In the orbifold limit

the two cycle collapses to a line.) For certain range of values of the radii of the compact

directions the spectrum of open strings on the D-string pair does not contain any tachyonic

mode. Once we go beyond this region, the system develops a tachyonic mode and becomes

unstable. We show that beyond the region of stability there is a lower energy configuration

involving a pair of non-BPS D3-branes wrapped on T 6, carrying the same charge quantum

numbers. Hence it is natural to attribute the tachyonic instability of the original system

to the possibility of decaying into the new system. By examining the translational zero

modes and the charge quantum numbers, we can interprete the final state as a pair of BPS

D4-branes, each wrapped on a homologically trivial 4-cycle of the Calabi-Yau manifold,4

but carrying non-zero magnetic flux through various 2-cycles and hence carrying twisted

sector RR charges. The total RR charges of the initial and final configurations agree.

While comparing the energies of the initial and the final configurations, we encounter a

surprise: in part of the region where the original system does not have a tachyonic mode,

the new system of D3-branes still has lower energy. Thus in this region of the moduli space

the original system is metastable, as it can decay into the system of D3-branes despite being

free from tachyonic modes. There is however certain region of the moduli space where the

original system of non-BPS D-strings is the lowest energy state carrying the given charge

quantum numbers. In this region the system is absolutely stable.

4A D4-brane wrapped on a homologically trivial 4-cycle can also be regarded as a bound state of a

D4-brane D̄4-brane pair, each wrapped on the same 4-cycle.
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The same story is repeated for the system of non-BPS D3-branes. In part of the region

of the moduli space this system does not have a tachyon. But only in a subspace of this

region this has mass lower than the system of D-strings, and hence is stable. Outside this

region it can decay into the system of non-BPS D-strings and hence is metastable. As we

go further out in the moduli space, it develops a tachyonic mode and becomes unstable.

Thus we can divide the moduli space into four regions:

1. D1-brane system unstable, D3-brane system stable,

2. D1-brane system stable, D3-brane system unstable,

3. D1-brane system stable, D3-brane system metastable, and

4. D1-brane system metastable, D3-brane system stable.

There are of course other regions of the moduli space where neither of these systems are

stable, and a different configuration represents the lowest energy state with given charge

quantum numbers. But we shall focus on the part of the moduli space spanning these four

regions.

In terms of the tachyon potential, the existence of the metastable state reflects the

appearance of a local minimum of the tachyon potential, besides the global minimum.

Recently, there has been a lot of progress in understanding the nature of the tachyon

potential[38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] using string field theory [49, 50]. It will

be interesting to see if string field theory can be used to predict the existence of these local

minima.

There is a special point in the moduli space where the would be tachyonic modes on

both the D1-brane system and the D3-brane system become massless.5 We show that at

this point the tachyon potential vanishes identically, and by giving vacuum expectation

value (vev) to the tachyon we can go from the D1-brane system to the D3-brane system. In

the language of first quantized string theory, the tachyon vev represents an exactly marginal

deformation of the boundary conformal field theory (BCFT) describing the two systems,

and this deformation takes us from the BCFT describing the pair of D-strings to the BCFT

describing the pair of D3-branes.

The paper is organised as follows. In section 2 we discuss the construction of the Calabi-

Yau orbifold and the configuration of D-branes on it. We also determine the region of (meta-

)stability of the D-brane configuration in the moduli space of this orbifold. In particular, we
5This is related to the point in the moduli space where the open string spectrum develops exact Bose-

Fermi degeneracy even though the system is non-supersymmetric[25].
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obtain the phase diagram in the moduli space indicating the region of stability of the initial

configuartion of non-BPS D-string pair and the final configuration of non-BPS D3-brane

pair. In section 3 we apply the conservation of energy, twisted sector RR charge at various

fixed points and bulk RR charge to show that beyond the region of stability, the initial

configuartion of D-strings can actually decay into a pair of non-BPS D3-branes.6 We also

argue that each of these non-BPS D3-branes can be regarded as a BPS D4-brane wrapped on

a homologically trivial 4-cycle of the Calabi-Yau manifold, carrying non-zero magnetic flux

through different 2-cycles. In section 4 we show that at the “critical radii”, which represent

a special point on the boundary of the region of stability, some particular tachyonic mode

becomes exactly marginal. Following ref.[51, 52] we study the effect of switching on this

marginal deformation on the open string spectrum, and show that it interpolates between

the BCFT’s describing the D1-brane pair and the D3-brane pair. This establishes that the

possible decay mode identified in section 3 is the actual decay mode of the system beyond

the region of stability.

2 Non-BPS D-strings on Calabi-Yau Orbifold

In this section we shall describe the system we are going to study. We shall consider non-

BPS D-string of type IIA theory in a particular Calabi-Yau orbifold background. The

relevant Hodge number for this Calabi-Yau 3-fold is (h(1,1), h(1,2)) = (11, 11). We begin by

describing the constuction of this particular orbifold.

2.1 Construction of the Calabi-Yau Orbifold

We begin with a six dimensional torus, T 6 and label its coordinates by X4, X5, · · · , X9. We

shall focus on the subspace of the moduli space where it can be represented as a product

of six circles. Let R4, R5, · · · , R9 denote the radii of these six compact directions. Now we

mod out this T 6 by two ZZ2 symmetries, generated by I4, I ′

4 ,

I4 :





(X4, X5, X6, X7, X8, X9) −→ (X4, X5,− X6,− X7,− X8,− X9)

(ψ4, ψ5, ψ6, ψ7, ψ8, ψ9) −→ (ψ4, ψ5,− ψ6,− ψ7,− ψ8,− ψ9)
. (2.1)

6To avoid confusion, we mention that this (and only this) part of the analysis is done using an equivalent

type IIB language.
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and

I ′

4 :





X4 −→ −X4

X5 −→ −X5

X6 −→ − X6 + πR6

X7 −→ − X7

X8 −→ X8 + πR8

X9 −→ X9

ψ4,5,6,7 −→ − ψ4,5,6,7

ψ8,9 −→ ψ8,9

. (2.2)

where ψ4, ψ5, · · · , ψ9 are the worldsheet fermions corresponding to those six directions. The

action of I4, I ′

4 on these worldsheet fermions has been determined from the condition that

these two discrete symmetries do not break worldsheet supersymmetry (i.e. both I4 and

I ′

4 should commute with the worldsheet supercurrent, TF ). Both I4 and I ′

4 leave the

non-compact coordinates X0, . . .X3 and their fermionic partners invariant.

X4 X5 X6 X7 X8 X9

I4 + + − − − −

I ′

4 − − −, 1
2

− +, 1
2

+

I4I ′

4 − − +, 1
2

+ −, 1
2

−

Table 1: Summary of the action of I4 and I ′

4 on T 6.

In an obvious notation, the equations (2.1) and (2.2) can be summarised as shown in

table 1. We shall denote this Calabi-Yau orbifold as T 6/ZZ
(1)
2 ⊗ZZ

(2)
2 ; in particular it can be

shown that it has (h(1,1), h(1,2)) = (11, 11) [23]. This particular background preserves only

1/4th. of the space-time supersymmetry.

2.2 The Configuration

We shall consider type IIA theory on this particular Calabi-Yau orbifold T 6/ZZ
(1)
2 ⊗ ZZ

(2)
2 .

We take a non-BPS D1-brane of this theory and wrap it along X9 such that it stretches

over a fundamental interval [0, 2πR9]. The other eight spatial coordinates of this D-string
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are as given below :

(X1, X2, X3, X4, X5, X6, X7, X8) = (b1, b2, b3, a4, a5, 0, 0, 0) ,

where ai and bk are arbitrary numbers. Clearly the above configuration is invariant under

I4 but not under I ′

4 . The image of the D-string under I ′

4 is located at

(X1, X2, X3, X4, X5, X6, X7, X8) = (b1, b2, b3,−a4,−a5, πR6, 0, πR8) .

Thus the original D-string together with its I ′

4 -image constitute an I4 ⊗ I ′

4 -invariant con-

figuration (See Fig.1). Since the coordinates of the D-string and its I ′

4 image in the non-

compact directions X1, X2, X3 must be identical, we see that this represents a single object

in the orbifold theory. The physical interpretation of this object can be found by exam-

ining its charge quantum numbers. As is well known, a non-BPS D-string of type IIA

string theory does not carry any bulk RR charge. However, if a D-string passes through

an orbifold fixed point then it carries twisted sector RR charge associated with that fixed

point[5, 20]. In the language of Calabi-Yau manifold, twisted sector RR charges are car-

ried by BPS D2-branes wrapped on the (collapsed) 2-cycle associated with that given fixed

point. Thus the D-string system, after orbifolding, carries charges corresponding to BPS

2-branes wrapped on various 2-cycles. Since it describes a single object, and is non-BPS,

the natural interpretation of this object is that it describes a single BPS 2-brane, wrapped

on a non-supersymmetric 2-cycle of the Calabi-Yau manifold. In the orbifold limit, this

2-cycle (of minimal area) collapses to a line.

2.3 Region of Stability in Moduli Space

Next we are going to determine the region of stability in the moduli space for this particular

system. Throughout our discussion we shall restrict ourselves to tree level of open string

theory. Also, to simplify the discussion, in this subsection we shall work on the 4-fold cover

of the orbifold, namely on the original torus T 6, although we shall ensure that we always

work with configurations which are I4 and I ′

4 invariant. Thus the various mass formulæ

we shall be writing down will refer to the masses of the corresponding systems on T 6 before

orbifold projection.

Typically, the instability of the system arises due to open strings stretched between the

D-string and one of its images developing a tachyonic mode. This involves images of the

D-string under I ′

4 , as well as under translation by 2πRi along X i for (4 ≤ i ≤ 8). Since the

physics of the instability arising due to open string stretched between the D-string and its

7
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X

X
π π

π

π

RR

R

R2

2

a

a

X

X

Image of D-string

D-string

Image of
D-string

D-string

O

P

Q

8

6

66

8

8

5

4

5

4

-- a5

-- a4

Figure 1: Location of Non-BPS D-string and its I ′

4 -image in the X6- X8 and X4-X5 plane.

D-strings are also present at the images of O under translation by 2πRi along X i, e.g. at

the point Q.

image under translation is identical to that in the case of K3 orbifold, and can be analysed

in a manner similar to that discussed in ref.[20], we shall concentrate on the instability

arising due to the open string stretched between the D-string and its I ′

4 image. In this case

the relevant part of the moduli space is effectively two dimensional, spanned by R6 and R8,

controlling the distance between the D-string and its I ′

4 -image. The open strings stretched

between the D-string and its I ′

4 image have been denoted as OP and PQ in Fig.1.

The general strategy for this kind of analysis has been stated in [51]. As a first step,

let us determine the effective (mass)2 of the winding mode tachyon coming from the open

string OP and PQ. From Fig. 1 we see that it is given by7 :

m2
T (1) =

(a4

π

)2
+

(a5

π

)2
+

(1

2
R6

)2
+

(1

2
R8

)2
− 1

2
(2.3)

in α′ = 1 unit which we shall be using throughout this paper. Since a4 and a5 are degress

of freedom of the D-strings one requires that there should be no tachyons for any values of

a4 and a5. The most stringent condition comes from

a4 = a5 = 0 . (2.4)

Then the condition for the absence of tachyon from the winding modes (m2
T (1) ≥ 0) is given

7 The subscript T and (1) in the left hand side of the formula (2.3) stand for ‘tachyon’ and D1-brane

respectively.
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by :

R2
6 +R2

8 ≥ 2 . (2.5)

The critical curve in the R6-R8 plane, where the tachyon is massless, is given by

R2
6 +R2

8 = 2 . (2.6)

In the next section (section 3) we shall find the possible decay products of these I ′

4 -

invariant pair of non-BPS D-strings by applying the conservation of energy and bulk and

twisted RR charges. Anticipating the results of the section 3, − that the instability of pair

of non-BPS D-strings for R2
6 + R2

8 < 2 represents the possibility of decay into a pair of

I ′

4 -invariant non-BPS D3-branes extended in X6, X8 and X9 directions, − we shall now

determine the phase diagram of this system on R6-R8 plane. As we shall see in section

3, conservation of twisted sector RR charge (after orbifolding) requires that on one of the

non-BPS D3-branes there are ZZ2 Wilson lines along X6 and X8 directions.8 The zero

momentum mode of the open string with both ends on the same D3-brane is projected out

by requiring invariance under I4, and the potentially tachyonic mode on this system comes

from open strings stretched between the pair of D3-branes carrying half unit of momenta

along X6 and X8 directions. The mass of this mode when the two D3-branes coincide in

the X1, . . .X5, X7 directions, is given by:

m2
T (3) =

( 1

2R6

)2
+

( 1

2R8

)2
− 1

2
(2.7)

Thus the condition for absence of tachyonic modes on the D3-brane system is:

1

R2
6

+
1

R2
8

≥ 2 (2.8)

Let us further write down the mass formula for the pair of D1-branes as well as for the

pair of D3-branes. The mass of a pair of non-BPS D-strings wrapped along X9 is given by:

MD1 = 2 · 1

2πg

√
2 · 2πR9 =

2
√

2

g
R9 (2.9)

where g is the closed string coupling constant and the factor of
√

2 is due to the non-BPS

nature of the D-string. Similarly the mass of the non-BPS D3-brane pair is given by:

MD3 = 2 · 1

(2π)3g
·
√

2 · (2π)3R6R8R9 =
2
√

2R6R8R9

g
(2.10)

8Before modding out the system by ZZ
(1)
2 ⊗ ZZ

(2)
2 transformation, the pair of non-BPS D-strings and the

pair of non-BPS D3-branes are actually related to each other by two T -dualities along X6 and X8.
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1 2 3
R60

1

2

3

R8

II

A

IIII
C

IV

IV

III

B

Figure 2: Phase diagram on R6-R8 plane. A denotes the curve R−2
6 + R−2

8 = 2; B denotes

the curve R6R8 = 1 and C represents the curve R2
6 +R2

8 = 2. In region I the D3-brane pair

is stable and the D1-brane pair is unstable whereas in region II D1-brane pair is stable and

the D3-brane pair is unstable. In region III the D1-brane pair is stable and the D3-brane

pair is metastable, whereas in region IV the D3-brane pair is stable and the D1-brane pair

is metastable.

Comparing eqs.(2.9) and (2.10) we see that

MD1 ≤MD3 for R6R8 ≥ 1 . (2.11)
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Note that for R6R8 = 1, these two masses become degenerate.

The various curves found during the analysis have been plotted in the phase diagram

of Fig. 2. The curve R6R8 = 1 is the curve B in Fig. 2. The equality in (2.8) has been

represented as the curve A, and the curve C denotes the circle given by eq.(2.6). There are

four regions of interest altogether in this phase diagram:

1. R2
6 +R2

8 < 2 (Region I)

Here

R−2
6 +R−2

8 =
4(R2

6 +R2
8)

(R2
6 +R2

8)
2 − (R2

6 − R2
8)

2
> 2 .

Thus the D3-brane pair does not have tachyon. Furthermore

R6R8 =
R2

6 +R2
8 − (R6 −R8)

2

2
< 1 ,

and hence the D3-brane pair is lighter than the D1-brane pair. Thus the D3-brane

pair is stable. On the other hand in this region the D-string pair has tachyon and

hence is unstable.

2. R−2
6 +R−2

8 < 2 (Region II)

Here

R2
6 +R2

8 =
4(R−2

6 +R−2
8 )

(R−2
6 +R−2

8 )2 − (R−2
6 − R−2

8 )2
> 2 .

Thus the D-string pair does not have tachyon. Furthermore

R6R8 =
2

R−2
6 +R−2

8 − (R−1
6 − R−1

8 )2
> 1 ,

and hence the D-string pair is lighter than the D3-brane pair. Thus the D-string pair

is stable. But in this region the D3-brane pair has a tachyonic mode and hence is

unstable.

3. R6R8 > 1 and R−2
6 +R−2

8 > 2 (Region III)

Here R2
6 + R2

8 = (R−2
6 + R−2

8 )R2
6R

2
8 > 2. Thus both D1 and D3-brane pairs are free

from tachyonic mode. But MD3 > MD1. Thus the D-string pair is stable, whereas

the D3-brane pair is in a metastable state.

4. R6R8 < 1 and R2
6 +R2

8 > 2 (Region IV)

Here R−2
6 +R−2

8 = (R2
6 +R2

8)/(R
2
6R

2
8) > 2. Thus in this region also both systems are

free of tachyon. But now MD1 > MD3. Therefore the D3-brane pair is stable and the

D-string pair is in a metastable state.

11



Interestingly all three curves A, B, C meet at one point viz. at the critical radii

(R6, R8) = (1, 1). As we shall see in section 4, at this point the D-string pair can be

deformed to the D3-brane pair via a marginal deformation. Across any other point along

the curve B, the transition from one to the other is first order (metastable → stable). As

neither system contains a relevant perturbation, it is not clear if the arguments based on

renormalization group flow[53, 54] can be used to describe this transition.

Before we end this section, we should remind the reader that in our analysis we have

ignored the possibility of tachyons appearing in various other ways. Thus for example, re-

quiring that there is no tachyonic mode on the D1-brane system from open strings stretched

between a D1-brane and its image under translation along X i (6 ≤ i ≤ 8) gives the

constraints[20]:

Ri ≥
1√
2
, 6 ≤ i ≤ 8 . (2.12)

On the other hand, requiring that open string states with both ends on the same D-string,

but carrying momentum along X9 does not give rise to a tachyonic mode gives

R9 ≤
√

2 . (2.13)

As shown in ref.[20], beyond these ranges of Ri the system becomes unstable against decay

into a pair of BPS states. Throughout our analysis we shall work in regions of the moduli

space where eqs.(2.12) and (2.13) are satisfied.

Now we turn our attention to various conservation laws to verify that the decay modes

described above are indeed possible.

3 Determination of Decay Products of Non-BPS D-

string Pair

In this section we shall show that a pair of non-BPS D-strings as shown in Fig. 1 (with

a4 = a5 = 0) can decay into a pair of non-BPS D3-branes for R6R8 < 1, satisfying the

conservation of energy, bulk RR-charge and twisted RR-charge. Then we shall find a

physical interpretation of the final state D3-branes as wrapped D-branes on the Calabi-Yau

3-fold.

12



3.1 Verification of the Conservation Laws

In this section we shall map our problem to an equivalent type IIB description to make

calculations simpler. For this we shall perform a T-duality transformation T9 along the

coordinate X9 to get type IIB string theory on a dual torus labelled by X4, . . .X8, X̃9. In

that case,

IIA on T 6/I4 ⊗ I ′

4
T9−→ IIB on T 6/(Ĩ4 · (−1)FL ⊗ I ′

4 )

where Ĩ4 denotes the transformation:

Ĩ4 : (X4, . . .X8, X̃9) → (X4, X5,−X6,−X7,−X8,−X̃9) ,

and (−1)FL changes the sign of all the (R,NS) and (R,R) sector states. We shall continue

to denote by I4 the transformation Ĩ4 · (−1)FL in the type IIB string theory, as this is just

the image of the transformation I4 in the type IIA theory. Also under the duality T9,

Non-BPS D1-brane (along X9) of IIA
T9−→ Non-BPS D0-brane of IIB

Non-BPS D3-brane (along X6-X8-X9) of IIA
T9−→ Non-BPS D2-brane (along X6-X8) of IIB

D0-brane

I 4 image of D0-brane

X

X

π

π R
6

6

R8

8

Figure 3: Non-BPS D0-brane of type IIB and its I ′

4 -image in the interval 0 ≤ x6 < 2πR6,

0 ≤ x8 < 2πR8. ‘×’ denotes the fixed points of I4 on X6-X8 plane.

Thus, in IIB description, the initial system consists of non-BPS D0-branes at (X6, X8) =

(0, 0) and (πR6, πR8) (see Fig.3). From now on, unless otherwise stated, we shall use the

IIB description throughout this section 3.1. In applying conservation laws of RR charges,

we shall find it convenient to work with a double cover of the system, where we have

modded out type IIB string theory on T 6 by I4 but not by I ′

4 . Since I ′

4 does not have any

fixed point, and hence does not introduce any new massless state and twisted sector RR

charge, ensuring conservation of RR charge before I ′

4 modding is sufficient to guarantee its

13



conservation after I ′

4 modding. On the other hand for applying conservation of energy, we

shall work with the four fold cover of the system, − on the original torus T 6. Of course, at

every stage of the analysis we shall ensure that we have a system that is invariant under

both I4 and I ′

4 , so that we can mod out the configuration by these transformations at the

end.
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X

X

2πR

π R

0 π R 2πR

Non-BPS D2-brane

6

66

8

8

8

Figure 4: Non-BPS D2-brane of type IIB in the interval 0 ≤ x6 < 2πR6, 0 ≤ x8 < 2πR8.

‘×’ denotes the fixed points of I4.

The non-BPS D0-branes, situated at (0,0) and (πR6, πR8), do not carry any bulk RR

charge, but carry twisted sector RR charge[5]. We shall denote by q(a6,a8) the twisted sector

charge at the fixed point (a6, a8) in the (X6, X8) plane. The charge will be normalized such

that a non-BPS D0-brane of IIB, placed at any of the fixed points of I4, carries unit twisted

sector RR charge associated with that fixed point. Thus our initial state has charges:

q
(in)
(0,0) = q

(in)
(πR6,πR8)

= 1, q
(in)
(0,πR8) = q

(in)
(πR6,0) = 0 . (3.1)

The final decay product must also carry this charge. We shall consider non-BPS D2-branes

of type IIB theory in the X6−X8 plane as our candidate for decay product. Fig.4 shows the

configuration of a single non-BPS D2-brane in the range 0 ≤ x6 < 2πR6, 0 ≤ x8 < 2πR8.

This is by itself an I ′

4 -invariant configuration. Although this does not carry any bulk RR

charge, it carries twisted sector RR charges associated with every fixed point that it passes

through. These charges can be computed using the boundary state formalism of ref.[28].

If θ6 and θ8 denote the Wilson lines on the 2-brane along X6 and X8 respectively, taking

values 0 or π due to the requirement of I4 invariance, then the twisted sector charges carried

by the brane is given by:

q(0,0) =
1

2
ǫ, q(0,πR8) =

1

2
ǫeiθ8 , q(πR6,0) =

1

2
ǫeiθ6 , q(πR6,πR8) =

1

2
ǫei(θ6+θ8) , (3.2)

where ǫ can take values ±1. This result, including the overall normalization factor of (1/2)

appearing in the expression for the charges, can be read out from the expression for the
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boundary state of the 2-brane as given in ref.[28]. This normalization factor of (1/2) can

also be derived from the fact that in type IIB string theory on T 6/I4, the D2-brane can

be continuously deformed, via tachyon condensation, to a D-string at X6 = 0, and a D̄-

string at X6 = πR6, both stretched along x8[20]. Each of these D-strings carry half unit of

twisted sector charge at the fixed points through which they pass[3, 55]. Since a continuous

deformation cannot change the value of RR charge quantum numbers, the D2-brane before

tachyon condensation must also carry half unit of twisted sector charge at each of the four

fixed points (0,0), (0, πR8), (πR6, 0) and (πR6, πR8).

Since I ′

4 exchanges the points (0,0) with (πR6, πR8) and (0, πR8) with (πR6, 0), we see

from (3.2) that in order to get an I ′

4 invariant configuration, we must have θ6 = θ8 = 0 or

θ6 = θ8 = π.

Now let us take N such coincident D2-branes. We shall slightly generalise our notation

by replacing (ǫ, θ6, θ8) in the above expressions by (ǫ(k), θ
(k)
6 , θ

(k)
8 ) respectively (k =

1, · · · , N). Thus for N such coincident branes we have:

q
(tot)
(0,0) =

1

2

N∑

k=1

ǫ(k)

q
(tot)
(0,πR8) =

1

2

N∑

k=1

ǫ(k)ei θ
(k)
8

q
(tot)
(πR6,πR8)

=
1

2

N∑

k=1

ǫ(k)ei (θ
(k)
6 + θ

(k)
8 )

q
(tot)
(πR6,0) =

1

2

N∑

k=1

ǫ(k)ei θ
(k)
6 (3.3)

Again, I ′

4 invariance of individual branes requires θ
(k)
6 = θ

(k)
8 = 0 or π for each k. Hence

applying charge conservation, and using eqs.(3.1) and (3.3), we get:

N∑

k=1

ǫ(k) ei θ
(k)
8 = 0 (3.4)

N∑

k=1

ǫ(k) ei θ
(k)
6 = 0 (3.5)

N∑

k=1

ǫ(k) = 2 (3.6)

N∑

k=1

ǫ(k) ei (θ
(k)
6 + θ

(k)
8 ) = 2 (3.7)

Since ǫ(k) = ±1, from (3.6) we can easily see that N must be an even integer. It is also easy

to demonstrate that eqs.(3.4)-(3.7) admit solutions for any even integer N . For example,
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for N = 2 we get the following consistent set of solutions:

ǫ(1) = ǫ(2) = + 1 , (3.8)

Either θ
(1)
6 = 0, θ

(1)
8 = 0; θ

(2)
6 = π, θ

(2)
8 = π (3.9)

or θ
(1)
6 = π, θ

(1)
8 = π; θ

(2)
6 = 0, θ

(2)
8 = 0 (3.10)

As is evident from (3.9) and (3.10), one of the 2-branes carries ZZ2 Wilson lines along X6

and X8. From this solution, we can construct solutions for any even N by adding pairs of

branes with same θ6 and θ8 and opposite values of ǫ. Other solutions are also possible.

Now we want to compare the masses of the initial and the final system of D-branes.

Before any orbifold projection, the mass of N = 2m (m ∈ ZZ+) non-BPS D2-branes in

a fundamental cell X6 ∈ [0, 2π R6], X
8 ∈ [0, 2πR8] (see fig. 4) is equal to

N
√

2R6R8

g
,

whereas the mass of the initial configuration of a pair of non-BPS D0-branes is
2
√

2

g
.

Demanding that the initial system has higher mass than the final state, we obtain

R6 R8 ≤
2

N
, (3.11)

This condition is least stringent for N = 2, and hence this is the generic decay channel of

the original system in its region of instability. Indeed, for N = 2, eq.(3.11) is automatically

satisfied whenever R2
6 + R2

8 ≤ 2, − the region where the original D0-brane pair develops

a tachyonic mode. In addition, in more restricted regions of the moduli space, given by

eq.(3.11) for N ≥ 4, additional decay channels open up in which the original system decays

to four or more non-BPS D-branes. We should of course keep in mind that once one of the

radii is sufficiently small, we violate (2.12), and decay channels into BPS branes also open

up.

For N = 2, the equality in (3.11) and eq.(2.6) are satisfied simultaneously for (R6, R8) =

(1, 1). As we shall see in the next section, there is an exactly marginal deformation which

interpolates between the initial and the final system at this critical radii for N = 2.

3.2 Interpretation of the Final State

So far we have analysed the system before modding it out by I ′

4 . As has already been

noted, after modding out by I ′

4 , the initial system describes a single brane configuration

as it has only one set of degrees of freedom describing its movement in the non-compact

directions. In contrast, each of the type IIB D2-brane configurations in the final state is I4
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and I ′

4 invariant by itself, and hence can move in the non-compact directions independently

of the other D-branes. Thus the final state describes a set of N independent objects.

In order to find the physical interpretation of these objects, we examine the RR charges

carried by each of these objects. For this we go back to the type IIA description by

performing T-duality alongX9. Under this duality, a non-BPS D2-brane of IIB gets mapped

to a non-BPS D3-brane of IIA spanning the X6 −X8 −X9 directions. The brane does not

carry any bulk RR charge, but it carries twisted sector RR charges associated with each

fixed point through which it passes. Since these RR charges are carried by BPS 2-branes

wrapped on homologically non-trivial 2-cycles, it will be natural to interprete the non-BPS

3-brane as a 2-brane wrapped on some complicated 2-cycle of the Calabi-Yau manifold.

However this interpretation cannot be correct. To see this, let us deform all the radii

R4, . . . R9 to very large values. This makes the non-BPS 3-brane unstable, but it continues

to exist as a classical solution of the equations of motion. Clearly in this region this cannot

be interpreted as a BPS 2-brane wrapped on a 2-cycle, since it occupies a 3-dimensional

subspace. Instead it can be interpreted as a bound state of a D4-brane D̄4-brane pair[3, 6],

each wrapped on a K3 subspace of the Calabi-Yau orbifold spanned by X6, . . .X9. The

two D4-branes must carrying different amounts of magnetic flux through the homology two

cycles, so that after combining the effect of the magnetic flux with the effect of the non-

trivial anti-symmetric tensor field flux through the 2-cycles[56], we recover the correct RR

charges of the brane. Equivalently, we can think of each non-BPS 3-brane as a single D4-

brane wrapped on a trivial 4-cycle, but carrying nontrivial magnetic flux through various

homology 2-cycles.

4 Conformal Field Theory at the Critical Radii

In this section we shall show that at the critical radii R6 = R8 = 1, there is an exactly

marginal deformation which interpolates between the D3-brane pair and the D1-brane pair.

We shall carry out this analysis before either I4 or I ′

4 projection, but making sure that at

every stage of the analysis the configuration under study is invariant under I4 and I ′

4 .

We shall find it more convenient to start with the BCFT describing the D3-brane pair

spanning X6-X8-X9 directions, and identify an I4 and I ′

4 invariant marginal perturbation

which takes this BCFT to the BCFT describing the D1-brane pair along X9 direction. The

relevant part of the BCFT at the critical radii before we switch on the perturbation is

described by a pair of scalar fields X i ≡ X i
L + X i

R for i = 6, 8 and their left- and right-
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moving superpartners ψi
L, ψ

i
R. These fields satisfy Neumann boundary conditions on the

real line, given by:9

(X i
L)B = (X i

R)B ≡ 1

2
X i

B; (ψi
L)B = (ψi

R)B ≡ ψi
B. (4.1)

Besides these there are other scalar fields and their fermionic superpartners corresponding

to the other coordinates, and also bosonic and fermionic ghost fields. But they will play no

role in our analysis.

The other part of the BCFT which will be important for our analysis is the Chan

Paton (CP) factor. Open string spectrum on each non-BPS D3-brane comes from two CP

sectors[7]: II2 and σ1 (2× 2 Pauli matrix) — these will be called internal CP factors. For a

pair of non-BPS D3-branes, there also exists a set of external CP factors : II2, Σ1, Σ2, and

Σ3 (2×2 Pauli matrices). (Σ1, Σ2) CP sectors correspond to open strings stretched between

different non-BPS D3-branes, and (II2, Σ3) correspond to open strings with both ends on

the same D3-brane. The internal and external CP factors commute with each other.

Due to the presence of ZZ2 Wilson lines along X6 and X8 on one of the D3-branes,

the open string states with two ends on two different D3-branes are anti-periodic under

X6 → X6 + 2πR6 and under X8 → X8 + 2πR8, and hence carry half integer units of

momentum along X6 and X8. This can be restated as follows: the translation symmetry

X8 → X8 + 2πR8 (X6 → X6 + 2πR6) under which we normally identify space to make X8

(X6) compact, acts on the open string states via conjugation by Σ3. Under this conjugation,

CP sectors II2 and Σ3, representing open strings with both ends on the same D3-brane,

remain invariant, but CP sectors Σ1 and Σ2, representing open strings with two ends on

two different branes, change sign. This is exactly what we require.

Our next task is to determine the action of I4 and I ′

4 on various operators of the BCFT,

so that we can identify I4 and I ′

4 invariant vertex operators. On the coordinates X6 and

X8 and their fermionic partners, the action of I4 and I ′

4 has been specified in eqs.(2.1) and

(2.2); thus we only need to determine their action on the CP factors. We can divide this

into two parts: the action on the internal CP factor, and that on the external CP factor.

The action on the internal CP factor can be determined by taking a single D3 brane, and

identifying an appropriate 2-point coupling between a closed string state and an open string

state[20]. Since we know the transformation properties of the closed string states under I4

and I ′

4 , this determines the transformation properties of open string states under I4 and

I ′

4 , and hence their action on the internal CP factor. This procedure has been illustrated

9 These are the boundary conditions for NS-sector open string states. In the Ramond(R)-sector we have

different boundary condition for ψi; it has been discussed in [6] and will not be discussed here.
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in ref.[20]; hence here we shall quote the final result. Both I4 and I ′

4 conjugates internal

CP factor by σ3. Thus they leave states with internal CP factor II2 unchanged, and change

the sign of the states with internal CP factor σ1.

Let us now turn to the action of I4 and I ′

4 on the external CP factors. Since both I4 and

I ′

4 leave individual D3-branes unchanged, they must leave unchanged CP factors II2 and

Σ3, and hence can at most induce a rotation about the 3-axis on the external CP factors.

Since (I4)
2 acts as identity on the fields, it must also act as identity on the CP factor in

order that it is an order two transformation. This leaves us with two choices: either it

acts as conjugation by Σ3, and changes the sign of Σ1 and Σ2, or it leaves all external CP

factors invariant. Both choices are allowed. After modding out the theory by I4, these two

choices can be shown to be related to the choice of relative sign of ǫ(1) and ǫ(2) in eqs.(3.3).

From eq.(3.8) we see that we need ǫ(1) = ǫ(2); this can be shown to correspond to choosing

the action of I4 to be trivial on all the external CP factors. For the time being we shall

proceed with this assumption, but later we shall consider the other choice, and show how

this corresponds to choosing ǫ(1) = −ǫ(2). (The most straightforward way of seeing this is

to construct the boundary state of the D3-branes characterized by ǫ, θ6 and θ8, and then

compute the open string partition function by taking the inner product between two such

boundary states. But we shall follow a shorter, more intuitive path.)

Next we turn to the action of I ′

4 on the external CP factors. For this note that the

action of (I ′

4 )2 on various fields is given as follows:

(I ′

4 )2 : X6 → X6, X8 → X8 + 2πR8, ψ6 → ψ6, ψ8 → ψ8 . (4.2)

Recall now that X8 → X8 + 2πR8 acts as identity on all the open string states only if it

is accompanied by the conjugation of external CP factors by Σ3. Thus in order that I ′

4 is

an order two transformation, (I ′

4 )2 must conjugate external CP factors by Σ3. Hence I ′

4

itself must conjugate the external CP factors by a square root of Σ3. Furthermore, we have

already seen that it should leave the external CP factors II2 and Σ3 unchanged. This leaves

us with two possible choices: conjugation by exp(±iπΣ3/4). They give equivalent results.10

For definiteness, we shall take this to be exp(iπΣ3/4).

With these rules we are now in a position to construct the I4 and I ′

4 invariant vertex

operators. At R6 = R8 = 1, the lowest energy states of the open strings, carrying internal

CP factor σ1, external CP factors Σ1 or Σ2, and momenta ±1
2

along X6 and X8, become

10After modding out the theory by I ′

4 , these two choices correspond to the choice of sign in front of the

part of the boundary state carrying half integer winding along x8 and x6, − the sectors twisted by I ′

4 and

I4I ′

4 respectively.
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massless. Before requiring I4 and I ′

4 invariance, the vertex operator of one such open string

state in the (0,0) picture[57] is given by:

(ψ6
B + ψ8

B) exp(
i

2
(X6

B +X8
B)) ⊗ σ1 ⊗ Σ1 . (4.3)

The complete I4 and I ′

4 invariant vertex operator can be constructed by adding to it its

transforms under I4, I ′

4 and I4 · I ′

4 . This is given by

V
(0)
T ∝ 1

2
(ψ6

B + ψ8
B)

[
ei(X6

B
+ X8

B
)/2 + e− i(X6

B
+ X8

B
)/2

]
⊗ σ1 ⊗ Σ1

+
1

2
(ψ6

B − ψ8
B)

[
ei(X6

B
− X8

B
)/2 + e− i(X6

B
− X8

B
)/2

]
⊗ σ1 ⊗ Σ2 (4.4)

We now note that this perturbation is identical to the one described in ref.[51] in the

context of marginal deformation of a BPS D-brane - D̄-brane system, with the only differ-

ence that there is an additional internal CP factor σ1 attatched to each vertex operator.

Since σ1 commutes with all other operators, the presence of this operator does not af-

fect the analysis, and one can show following ref.[51] that (4.4) corresponds to an exactly

marginal operator. One can also follow the procedure of [51] to study how the spectrum

of open strings changes under this deformation, and show that for a specific value of the

deformation parameter the spectrum becomes identical to that of open strings living on a

pair of D1-branes (along X9) situated at diametrically opposite points of the torus spanned

by (X6, X8). Indeed, part of the spectrum of open strings living on the original non-BPS

D3-brane pair, corresponding to CP factors II2 ⊗ II2, II2 ⊗ Σ3, σ1 ⊗ Σ1 and σ1 ⊗ Σ2, is

identical to that living on a D3-D̄3 brane pair of IIB, and these states evolve under the

marginal deformation in a manner identical to that described in [51]. These correspond

to states living on a D1-D̄1 brane pair of IIB in the deformed theory, forming part of the

expected spectrum of open strings on a D1-brane pair of IIA. The rest of the states on the

D3-brane pair of IIA can be shown to evolve into the rest of the states on the D1-brane

pair of IIA under this deformation. As the analysis is a straightforward generalization of

the one carried out in [51], we shall not repeat it here.

Thus we conclude that the marginal deformation takes the original D3-brane pair to a

D1-brane pair. The locations of the D1-branes can be determined as follows. The tachyon

vertex operator in the zero picture is given in (4.4). Examining the −1 picture version of

this vertex operator, and defining a complex tachyon field whose real and imaginary parts

are proportional to the coefficients of Σ1 and Σ2 respectively in the −1 picture, as in [51],

we get

T (X6, X8) ∝ sin(
1

2
(X6 +X8)) + i sin(

1

2
(X6 −X8)) . (4.5)
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This has zeroes at X6 = X8 = 0 and at X6 = X8 = π, showing that these are the locations

of the D1-branes. This is consistent with the choice (3.8)-(3.10), since with this choice the

net twisted sector charges are concentrated at X6 = X8 = 0 and at X6 = X8 = π.

Now suppose we had made a different choice for the action of I4 on the external CP

factors, namely that it changes the sign of the external CP factors Σ1 and Σ2. In that case,

(4.4) would be replaced by

V
(0)
T ∝ 1

2
(ψ6

B + ψ8
B)

[
ei(X6

B
+ X8

B
)/2 − e− i(X6

B
+ X8

B
)/2

]
⊗ σ1 ⊗ Σ1

− 1

2
(ψ6

B − ψ8
B)

[
ei(X6

B
− X8

B
)/2 − e− i(X6

B
− X8

B
)/2

]
⊗ σ1 ⊗ Σ2 (4.6)

This is still a marginal deformation, but would correspond to a tachyon field configuration:

T (X6, X8) ∝ cos(
1

2
(X6 +X8)) − i cos(

1

2
(X6 −X8)) . (4.7)

Thus now it has zeroes at (X6 = 0, X8 = π) and at (X6 = π,X8 = 0). This is where the

final state D1-branes will be, and hence this is where the twisted sector charges will be

concentrated. By examining eq.(3.3) we see that this corresponds to the choice

ǫ(1) = −ǫ(2) , (4.8)

together with eqs.(3.9) and (3.10). This shows that the choice of how I4 acts on external

CP factors is correlated with the choice of relative signs of ǫ(1) and ǫ(2), and that for our

system, I4 acts trivially on the external CP factors.

As in ref.[51] one can deform the system away from the critical radii, and show that the

final system continues to describe a D1-brane pair. This establishes that the D1-brane pair

indeed decays into a D3-brane pair (and vice versa) across the region of stability R6R8 = 1.
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