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Abstract

We use the level truncation scheme to obtain accurate descriptions of open bosonic
string field configurations corresponding to large marginal deformations such as back-
ground Wilson lines. To do so, we solve for all fields as functions of the massless string
field, and confirm that the effective potential of the massless field becomes increasingly flat
as the level of approximation is increased. Surprisingly, as a result of the merging of two
branches of the solution - one originating at zero tachyon vev and the other originating
at the tachyonic vacuum - this effective potential exists only for a finite range of values of
the massless field. We use the D1 to D0 brane marginal transition on a circle to explore
the possibility that this finite range corresponds to the infinite range of the conformal
field theory parameter describing marginal deformations, but are unable to arrive at a
definitive conclusion.
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1 Introduction and Summary

It has been realised recently that string field theory (SFT) [1, 2, 3] provides a useful tool

for studying the phenomenon of tachyon condensation in string theory [4, 5, 6, 7, 8, 9, 10]

using the level truncation scheme developed in ref.[11]. This includes the open string

tachyon on a D-brane of bosonic string theory, as well as on a non-BPS D-brane or a

D-brane anti-D-brane pair in type II string theory. The analysis has been extended to

discuss condensation of modes of the tachyon carrying momentum along compact direc-

tions as long as the effective (mass)2 of this mode remains negative [12, 13, 14]. In the

language of two dimensional conformal field theory (CFT) describing the propagation of

the string, switching on a vacuum expectation value (vev) for such tachyonic fields corre-

sponds to switching on relevant perturbations. Although conformal field theory analysis

has been used to gain insight into the phenomenon of tachyon condensation in some of

these cases [15, 16], string field theory certainly seems to provide a unified approach
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to the study of these phenomena. An alternative approach to the study of these phe-

nomena based on effective field theory on non-commutative spaces has been proposed in

refs.[17, 18, 19, 20], and its relationship to string field theory has been discussed in [21].

Typically D-branes also contain massless open string states. In many cases the po-

tential for the fields associated with these modes has exact flat directions. Switching on

a vev for these fields corresponds to exactly marginal deformations of the corresponding

conformal field theory. A typical example of such a marginal deformation is the Wilson

line; a constant vev of a U(1) gauge field along a compact direction. These deformations

can be studied using well known techniques of conformal field theory. On the other hand,

studying these in string field theory seems to be a difficult problem due to the following

reason. Whereas we expect that the exact potential in string field theory will have an

exact flat direction corresponding to each marginal deformation of the two dimensional

conformal field theory, to any given order in the level truncation scheme the potential

is not exactly flat. As a result, if we try to solve the equations of motion of string field

theory using the level truncation scheme, then instead of getting a one parameter family

of solutions corresponding to each marginal direction, we get isolated solutions.

This is the problem that we address in this paper. We take our marginal deformation

parameter as, where the s stands for SFT, to be that associated with the constant vev of

a U(1) gauge field. Instead of trying to solve the equations of motion of all components

of the string field, we hold fixed as and solve for all other fields as a function of as

using their equations of motion. This allows us to find the ‘effective potential’ for the

massless field as. At any given order in the level expansion, this potential is not flat,

and hence it has at most isolated extrema. We find, however, that as we increase the

level of approximation, the potential becomes flatter, strongly suggesting that the exact

effective potential is indeed flat. This shows that for a fixed vev of the massless field as,

the solution of the equations of motion of all other fields gives an accurate representation

of the string field configuration corresponding to the deformed conformal field theory. The

flatness of the effective potential is consistent with the earlier result of Taylor [5] showing

that the coefficient of the leading quartic term in the expansion of the effective potential

around the origin does approach zero as the level of approximation is increased.

During the process of determining the effective potential of the marginal field, we find

a surprise: the effective potential exists only if |as| is less than a certain value as. This

restriction can be understood as follows. For zero vev of the marginal field, the equations
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of motion of the other fields have at least two solutions: the trivial solution where all

other fields vanish, and the tachyonic vacuum solution studied in [11, 4, 6]. We shall

refer to these two solutions as the M-branch, for marginal, and the V -branch for vacuum,

respectively. When we switch on a small vev as of the marginal field, the two branches still

remain, although the vev of the other fields associated with these two branches change

slightly. For the study of the tachyonic vacuum, the V -branch is the relevant branch,

but for our study, the M-branch is the relevant branch. We find that as we increase3

the value of as these two branches come closer together, and at certain critical value of

the vev, they meet. Beyond this point there are no real solutions associated to these

branches. This phenomenon can be seen analytically at the level (1,2) approximation to

the potential, but we have checked numerically that this phenomenon persists at least up

to the level (4,8) approximation. Furthermore, the vev of the massless field as at which

the two branches meet seems to converge rapidly to a finite value as as we increase the

level of approximation. We shall refer to as as the critical value of the string field marginal

parameter. This value, together with the values taken by the other fields in the theory

define the critical string field.

This brings us to the question of interpretation of the critical value as. Although this

corresponds to a finite string field configuration, there is a priori no guarantee that it

corresponds to a finite vev ac (c for CFT parameter) of the gauge field which appears e.g.

in the Born-Infeld action. There are now two possibilities:

(1) The critical value as corresponds to ac = ∞, or

(2) The critical value as corresponds to a finite value ac of the gauge field vev.

Unfortunately, with the information available at present, we are unable to distinguish be-

tween these two possibilities. If the first possibility holds, then this implies that an infinite

distance in the CFT moduli space (as measured in Zamolodchikov metric) correponds to

a finite shift in the string field. On the other hand, if the second possibility holds, then

this would mean that open string field theory in a single coordinate system is unable to

describe the full CFT moduli space. However, we can describe the full CFT moduli space

by taking open string field theory in different coordinate patches.

To see that this can be done, note that all states are neutral under the gauge field

and therefore the presence of the Wilson line does not affect the form of the correlation

3Due to the existence of a Z2 symmetry under which as → −as, we can restrict our study to positive
values of as only.
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functions of the conformal field theory for a suitable choice of basis of states in the Hilbert

space. Thus, the string field theory action has exactly the same form about any back-

ground Wilson line, and hence can span a given (finite) range of values of the Wilson

line centered around the background value. Thus clearly the whole range of Wilson line

vev can be spanned by putting together a set of string field theories formulated around

different background values of the Wilson line. The fields in two such string field theories

formulated around different background Wilson lines are presumably related by compli-

cated non-linear field redefinitions. In the case of infinitesimal marginal deformations,

these field redefinitions were worked out in ref.[22].

We are not only unable to decide between options (1) and (2) but it is also not clear

to us whether or not the same phenomenon, i.e. the appearance of a critical value as, also

occurs in superstring field theory describing a single BPS D-brane configuration. In this

case there is no analog of a non-trivial tachyonic vacuum from which another branch of

the solution can originate, and therefore a critical value would have to arise by a different

mechanism, possibly involving the massive string fields. Although there are tachyonic

modes on a non-BPS D-brane or a brane-antibrane pair, the vev of the gauge field does

not induce a tachyon vev due to the GSO Z2 symmetry under which the tachyon is odd

and the gauge field is even. In fact, no state in the GSO odd sector will acquire a vev.

Hence the above comments for the BPS brane apply to these cases as well.

Although we carry out the analysis in the specific case of marginal deformations as-

sociated with the vev of a Wilson line, our results can be used in a more general context.

First of all, instead of considering a gauge field vev along a direction tangential to the

brane, we could consider giving a vev to the scalar field representing translation of a

brane along a direction transverse to the brane. The effective potential for this mode

will be identical to that of the Wilson line, and hence all our results apply to this mode.

More generally, if we consider a situation where the bulk c = 26 matter conformal field

theory has a U(1) current algebra, with the U(1) current satisfying either Dirichlet or

Neumann boundary condition at the boundary of the world-sheet, then the U(1) current

at the boundary of the world-sheet corresponds to a marginal operator, and our result

can be used to describe the string field configuration corresponding to switching on this

marginal deformation. In particular, this includes deformations which create a tachyonic

lump on a circle of unit radius. As discussed in refs.[23, 24, 15, 16], if we consider a

D-p-brane of bosonic string theory with one of its tangential directions x compactified on
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a circle of radius R, and switch on background tachyon field proportional to cos(x/R),

the conformal field theory flows to that describing a D-(p−1)-brane for R ≥ 1. For R = 1

this describes a marginal deformation, since the tachyon vertex operator can be mapped

to the boundary value of a U(1) current[24]. Hence the effective potential for this mode

of the tachyon can be determined from our general results. We verify this explicitly by

determining the tachyon potential to level (4,8) for arbitrary R close to but larger than

one, and then showing that in the R → 1 limit, this potential reduces to the level (4,8)

potential involving the Wilson line. Using the results for the tachyon potential at level

(4,8) approximation we also obtain a more accurate description of the lump solution for

R close to but larger than one. This generalizes and extends the analysis of ref.[14].

The earlier analysis of [24] shows that for R close to but slightly larger than one,

the effective tachyon potential has a minimum at ac = ± 1
2
√

2
, corresponding to turning

the D-p brane into a D-(p − 1) brane.4 We use our present string field theory analysis

of the tachyon potential for R near one to attempt to find the expectation value of the

string field theory variable as representing the same minimum. This gives the values of as

corresponding to ac = ± 1
2
√

2
. We use this to try to gain more insight into the functional

relationship between ac and as. Unfortunately this analysis does not quite answer the

question as to whether as corresponds to finite or infinite value of ac.

The rest of the paper is organised as follows. In section 2 we construct the relevant

part of the string field theory action needed for computing the effective potential for the

Wilson line, and use this to compute the effective potential. The computation is done

analytically at level (1,2) approximation and numerically up to level (4,8) approximation.

In section 3 we construct the string field theory action relevant for studying the lump

solution on a circle of radius R, and discuss its equivalence with the action of section 2

for R = 1. We also use this potential for R > 1 to estimate the value of as for ac = 1
2
√

2
.

This is used in section 4 to discuss the possible functional relation between as and ac, in

particular whether the upper limit on as corresponds to finite or infinite value of ac. We

conclude in section 5 with some comments. Appendices A and B contains the details of

the string field theory action relevant for the analysis of sections 2 and 3 respectively.

4ac is normalized such that it multiplies a vertex operator of unit norm in the CFT action.

6



2 String Fields for Wilson Line Marginal Deforma-

tions

In this section we begin our analysis of string fields corresponding to CFT marginal

deformations. The setup is that of bosonic open string field theory describing the dynamics

of a D-p brane. We single out a particular coordinate x along the world volume of the

brane and consider giving expectation value to the constant mode of the gauge field

component Ax. This represents a marginal deformation of the BCFT describing the D-

brane. Our aim is to find the string field corresponding to such deformations. We will not

assume that the deformation is small. For our present analysis it will make no difference

whether or not the x-direction is compact; we give x-independent expectation values to

all fields, so that modes carrying non-zero momentum along x (or any other direction)

are set to zero.

We begin by examining the lowest level approximation to the problem where happily,

many of the features of the problem are already apparent. Then we discuss its general-

ization to higher levels.

2.1 Lowest level analysis: Level (1,2)

At the lowest level (level (1,2)) approximation we must include the tachyon and the gauge

field. The string field is therefore

|Φ(1)〉 = (t0 + as αX
−1) c1|0〉 , (2.1)

where t0 denotes the level zero tachyon zero mode and as denotes the level one gauge

field zero mode. αX
n denotes the nth oscillator mode of X. We now evaluate the string

field action to get the potential V(Φ)(≡ −S(Φ)/(2π2Tp) where Tp is the tension of the

D-brane) associated to this string field. A small calculation gives5

V(t0, as) = −1

2
t20 +

1

3
K3t30 + Kt0a

2
s , (2.2)

where K = 3
√

3/4. We note the absence of a quadratic and cubic term for as. This, of

course, is expected by the standard CFT constraints on marginal operators. Note that

5One can use, for example, the conservation method of ref.[25] to find the t0a
2
s coupling. Using

equation (4.18) one finds that 〈c1, α
X

−1
c1, α

X

−1
c1〉 = 16

27
〈c1, c1, c1〉 = 16

27
K3 = K.
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the sign of the last term is the same as that of the second term. This will play a role in

what follows, and is a result of the positive norm of the state αX
−1|0〉.

We now find the effective potential for as by integrating out classically the tachyon

field t0. Since the equation of motion is quadratic we find two solutions

tM0 =
4

81
√

3

(
−

√
64 − 729a2

s + 8
)
, tV0 =

4

81
√

3

(√
64 − 729a2

s + 8
)
. (2.3)

These are the marginal M-branch solution and the vacuum V -branch solution respectively.

Indeed one can see that for as = 0 we get tM0 = 0, which is the value for the tachyon at

the maximum of the potential, while tV0 is the familiar tachyon expectation value at the

local minimum of the cubic potential. It is clear from the above equations that there are

no real solutions for t0 unless

|as| ≤
8

27
≡ a(1,2)

s . (2.4)

Note that at this point the two branches for t0 meet.

It is of interest to understand the nature of the effective potential for as. Substituting

the values of t0 into V(t0, as) and letting VM/V (as) ≡ V(t
M/V
0 (as), as) we obtain:

VM/V (as) =
2

59049

(
−512 + 8748a2

s ± (64 − 729a2
s)

3/2
)
, (2.5)

where the top sign (the +) goes for the M-branch, and the bottom sign is for the V -branch.

We are particularly interested in the M-branch, where we expect to have as represent a

marginal direction. Thus ideally VM(as) should have been identically zero. While it is

not zero, the function is certainly relatively flat. It is a monotonically increasing function,

and 2π2TpVM(a(1,2)
s ) = 0.17 Tp, indicating that at the end of the domain of definition the

potential energy for the marginal direction fails to be zero by about 17% of the D-brane

tension. We can expand VM (as) for small as finding:

VM (as) =
27

32
a4

s +
6561

4096
a6

s + · · · . (2.6)

We shall see that as the level of approximation is increased the potential VM becomes

flatter. The leading coefficient (as well as the other expansion coefficients) will become

smaller. The computation of the leading quartic term in the above equation is equivalent

to the computation of the quartic gauge field interaction in ref. [5].

We can also examine the V -branch for as small. We get

VV (as) = − 2048

59049
+

16

27
a2

s + · · · . (2.7)

8



Notice the leading constant term. The numerical value of 2π2TpVV (as = 0) is −.68Tp.

This is 68% of the energy density of the original brane, and approaches 100% of the brane

tension as we increase the level of approximation[4, 6]. Note also that the quadratic

term for as does not vanish (and will not become smaller as the level of approximation

is increased). This is consistent with the expectation that there are no massless states

around the stable vacuum. The marginal direction has been lifted.6

0.05 0.1 0.15 0.2 0.25 0.3
a_s

-0.6

-0.4

-0.2

V

Figure 1: The level (1,2) effective potential V ≡ (2π2VM/V (as)) for as on the M -branch (solid

line) and V -branch (dashed line). The two branches meet at a
(1,2)
s = 8/27.

2.2 Higher level analysis: Up to Level (4,8)

We gave before the fields necessary to compute the effective potential of the marginal

parameter to level (1,2). This included the tachyon and the level one field αX
−1c1|0〉

(see (3.1)). Note that the latter state is odd under both the twist symmetry (the twist

eigenvalue is Ω = (−)l, with l the level), and the X → −X transformation. Thus it is

even under the combined operation of the twist and parity transformation. Since this is

a symmetry of the string field theory action [27], it is clear that we can get a consistent

solution of the full string field theory equations of motion by setting to zero fields which

are odd under this combined operation. Thus in extending our analysis to higher level,

6We thank W. Taylor for raising the question of the fate of this marginal direction on the stable
vacuum, and for comparing with us his results to be published independently [26].
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we only need to include string field configurations which are even under the combined

operation of the twist and the X → −X transformation. We shall further restrict the

string field configuration by including only the zero momentum modes, using the Siegel

gauge condition, and considerations involving closure of the ∗-product algebra of a subset

of a string fields along the lines discussed in [28, 4, 14]. This amounts to including states

of ghost number one, obtained by acting on c1|0〉 with b−n, c−n, αX
−n and L′

−n for n > 0.

Following the notation used in [14], we denote by LX
n the Virasoro generators associated

with the world sheet field X and by L′
n the Virasoro generators associated with the other

matter fields in the boundary CFT. To the extent possible, we shall try to label the states

in terms of LX
−n instead of αX

−n.

0.05 0.1 0.15 0.2 0.25 0.3
a_s

0.025

0.05

0.075

0.1

0.125

0.15

0.175

V

Figure 2: The various effective potentials V ≡ (2π2VM (as)) for the marginal parameter as

on the M -branch. The dashed curve represents the level (1,2) approximation, the successively
flatter curves represent the level (2,4), (3,6) and (4,8) approximations. Note that each potential
has a different domain of definition.

We can now easily construct the list of string fields appearing at the next few levels.

Let us begin with level two fields. Since these are automatically twist even, they must

also be even under X → −X. This means that we can get the usual (Virasoro and ghost-

current) descendents of the tachyon field but cannot get descendents of the marginal field,

since such descendents would be odd under X → −X. As there is no new primary state
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in the CFT involving X at this level, the list of level 2 states in the string field is

|Φ(2)〉 =
(
u0c−1b−1 + v0L

X
−2 + w0L

′
−2

)
c1|0〉 . (2.8)

Let us now continue to level three. Since all fields here are twist odd, they must also

be odd under X → −X. We can therefore allow all states obtained as ghost-current

or Virasoro descendents of the level one state αX
−1c1|0〉. One readily verifies that this

exhausts the list of possible states,7 and gives a total of four level three fields:

|Φ(3)〉 =
(
sc−1b−1 + rLX

−2 + r̄L′
−2 + yLX

−1L
X
−1

)
|ϕa〉 , |ϕa〉 = αX

−1c1|0〉 . (2.9)

Finally we proceed to the list of fields at level four. Being twist even, all states that are

ghost current or Virasoro descendents of the tachyon must be included. These give a total

of ten states. There is one more twist even state at this level, − a level four primary of

CFT(X)

|p4〉 =
(
αX
−3α

X
−1 −

3

4
(αX

−2)
2 − 1

2
(αX

−1)
4
)
c1|0〉 . (2.10)

Therefore the level four string field is given as

0.05 0.1 0.15 0.2 0.25 0.3
a_s

-1

-0.8

-0.6

-0.4

-0.2

V

Figure 3: The various effective potentials V ≡ (2π2VV (as)) for the marginal parameter as on
the V -branch. The top curve represents the level (1,2) approximation, the successively lower
curves represent the level (2,4), (3,6) and (4,8) approximations.

7One can count this as the number of level 3 ghost number 1 states built with αX

−n
, b−n, c−n and L′

−n

oscillators which must have an odd number of αX

−n
oscillators.
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Level as αM
4 αV

2 2π2VM( 8
27

) 2π2VM(as)

(1, 2) 0.296296 0.843752 0.592593 0.1712 0.1712

(2, 4) 0.321374 0.200234 0.672892 0.0743 0.1254

(3, 6) 0.330107 0.200234 0.631329 0.0605 0.1221

(4, 8) 0.331428 0.096999 0.633432 0.0444 0.1020

Table 1: We show the variation of various quatities as a function of the level of the
calculation. Here as denotes the maximal value possible for the string field marginal
parameter. The coefficient αM

4 defines the leading quartic term in as in the effective
potential on the M-branch. The coefficient αV

2 defines the leading quadratic term in
as in the effective potential on the V -branch. We also show the value of the potential,
normalized in units of the tension of the brane, for the maximal value (as) of |as| at level
(1,2), and for the end of the range at each level.

|Φ(4)〉 = g|p4〉 +
(
aLX

−4 + āL′
−4 + bLX

−2L
X
−2 + b̄L′

−2L
′
−2 + b̂L′

−2L
X
−2

+c c−3b−1 + d b−3c−1 + e b−2c−2 + (fLX
−2 + f̄L′

−2)c−1b−1

)
c1|0〉 . (2.11)

We can now compute the potential V at various levels of approximation by standard

procedure. The results of this computation are given in appendix A. At each level, we can

determine the effective potential for the Wilson line in the M-branch by (numerically)

eliminating all the other fields by their equations of motion. These results have been

shown8 in Fig. 2. We see from this figure that the effective potential becomes flatter

as we increase the level of approximation. This can also be verified by computing the

coefficient αM
4 of the a4

s term in the expression for the effective potential (see, for example,

(2.6)), which has been listed in table 1 and is seen to decrease as we increase the level of

approximation. These results for αM
4 are in agreement with those of ref.[5]. In each case

we find a maximum value as of |as| beyond which the effective potential ceases to exist.

These values have also been listed in table 1 and are seen to converge rapidly to about

0.33. The same procedure can be carried out to determine the effective potential in the

8Due to the as → −as symmetry of the potentials, we have displayed them only for positive as.
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V -branch (by choosing different initial data for obtaining the solution). These results have

been shown in Fig.3. As we see from this figure, the effective potential on the V -branch

does not become flat as we increase the level of approximation. A quantitative measure

of this is the coefficient αV
2 of the a2

s term in the potential (see, for example, (2.7)); as

seen from table 1, it converges to a finite value as we increase the level of approximation.

3 Tachyonic Lump Solution near Marginality

The setup here is that of Ref. [14], namely, we consider a D-brane with one of its spatial

dimensions wrapped around a circle of radius R. The object of interest is the potential

for string field modes that are either space-time constants or carry momentum along

this circle. This problem was indeed analysed in ref.[14] for various values of R > 1.

Our interest here, however, is the R → 1 limit where the tachyonic mode t1 carrying unit

momentum along the circle becomes marginal. Giving a vev to this mode can be shown to

be equivalent to giving a vev to a Wilson line [24]. Thus we expect this string field tachyon

condensation problem to be related to the string field Wilson line problem discussed in

the previous section. As we shall see by direct examination of the corresponding string

field potentials, this is indeed the case. We shall also be able to gain some additional

information about the Wilson line problem by exploiting this equivalence.

In the same spirit as for the case of the marginal field, we introduce radius dependent

effective potentials Ṽ(t1; R) for t1. We take the full string field potential to a given

approximation, and for fixed values of R and t1 eliminate all other variables by using their

equations of motion. Choosing between the marginal9 or vacuum solution branches, this

defines, for the fixed chosen value of R, the effective potentials ṼM(t1; R) and ṼV (t1; R)

for t1. Except for the lowest level approximation, the effective potentials are calculated

only numerically, using the analytic expressions for the full string field potential.

We also attempt here to estimate the vev of t1 which at the radius R = 1 leads to

the formation of the lump. Via the identification t1 ↔
√

2as to be established below, we

obtain an estimate for the vev of the string field parameter as leading to the formation of

the lump. On the other hand, we can describe the formation of the lump at R = 1 as a

marginal deformation of the boundary CFT. Let us denote by ac the parameter labelling

9Note that the deformation associated with t1 is no longer marginal for R 6= 1. But we shall continue
to refer to this branch as the marginal branch.
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this marginal deformation, normalised so that in the action of the deformed CFT, it

multiplies
∫

dxϕ(x), with the marginal operator ϕ normalized so that 〈ϕ|ϕ〉 = 1. Then

the value of ac, which corresponds to the formation of the lump solution at R = 1, is

ac = ± 1
2
√

2
[23, 24]. These pieces of information will be used in section 4 to investigate the

functional relationship between as and ac.

3.1 Tachyon potential for D-brane on a circle at level (1,2)

Since we will be particularly interested in the case R → 1 where the first tachyon harmonic

t1 becomes marginal, we will measure level as if the radius equals one. As in ref.[14], we

shall consider string field configurations which are even under twist, and the X → −X

transformation. At level one the string field now includes the zero mode t0 of the tachyon

and its first harmonic t1:

|Φ̃(1)〉 =
(
t0 + t1 cos

(X(0)

R

))
c1 |0〉 . (3.1)

The potential, given in eqns. (3.5) and (3.6) of [14] is

Ṽ(t0, t1; R) = −1

2
t20 +

1

3
K3t30 −

1

4
(1 − 1

R2
)t21 +

1

2
K3−2/R2

t0t
2
1 . (3.2)

When R = 1 the potential simplifies to

Ṽ(t0, t1; R = 1) = −1

2
t20 +

1

3
K3t30 +

1

2
Kt0t

2
1 , (3.3)

where t1 now clearly represents a massless state. Comparing this with (2.2) we see that

the two potentials agree if we identify

t1 ↔
√

2as . (3.4)

This factor of
√

2 is simply a reflection of the fact that the state cos(X(0)/R)|0〉 has

norm (1/
√

2), whereas αX
−1|0〉 has unit norm. As we shall see in the next subsection, this

identification will be possible to implement to higher level, as expected from the CFT

argument [24].

The tachyon case, however, lends itself to an interesting analysis for R slightly above

one. Again, we can integrate t0 using its field equation to find an effective potential for

the field t1. The quadratic equation for t0 only has real solutions when

|t1| ≤ t1(R) ≡ 8
√

2

27
K−1+1/R2

. (3.5)
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Note that the maximum possible value t1 of t1 becomes larger as the radius is decreased

towards the value R = 1. The critical value t1 at R = 1, as required, is in agreement with

(2.4) given the identification (3.4). The resulting M-branch effective potential ṼM (t1; R)

for the t1 field is a bit complicated and the explicit form is not very illuminating, but it

has a local minimum at:

t1 = ±K−3+2/R2
√

1 − 1/R2

√

1 − 1

2
K2/R2(1 − 1

R2
) ≡ ±t

(0)
1 (R) . (3.6)

This describes the one lump solution for a given value of R. This value of t
(0)
1 (R), of

course, agrees with the analysis of ref.[14]. Here we would like to use t
(0)
1 (R) to estimate

the vev of t1 leading to the one lump solution at R = 1, namely, at marginality. The

R → 1 limit of t
(0)
1 (R), however, simply vanishes! The source of this problem can be traced

to the following facts. The effective potential for t1 has two parts: the term quadratic in

t1 which vanishes identically at R = 1, and the higher order terms which do not vanish

identically at a given level of approximation, but are expected to vanish when we compute

the potential exactly. Due to this, at any given level of approximation the minimum of

ṼM (t1; R) will approach the t1 = 0 point as R → 1. We shall try to get around this

problem by working at a fixed value of R close to 1 (e.g.
√

1.1), and then increasing the

level of approximation to determine the point that t
(0)
1 approaches for this fixed value of

R.

3.2 Tachyon potential for D-brane on a circle at higher level

We now include fields at higher levels. Keeping only states which are even under twist

and the X → −X transformations as in [14], we get the following set of states at level

two:

|Φ̃(2)〉 =
(
u0c−1b−1 + v0L

X
−2 + w0L

′
−2

)
c1|0〉 , (3.7)

Note that this is identical to the list of states we generated in (2.8) for the Wilson line

problem.

At level three we have,

|Φ̃(3)〉 =
(
u1c−1b−1 + v1L

X
−2 + w1L

′
−2 + z1L

X
−1L

X
−1

)
|ϕt〉 , |ϕt〉 = cos

(
X(0)

R

)
c1|0〉 . (3.8)

At level four the fields to be included are:

|Φ̃(4)〉 = g̃|p4〉 + t2|χ〉 +
(
aLX

−4 + āL′
−4 + bLX

−2L
X
−2 + b̄L′

−2L
′
−2 + b̂L′

−2L
X
−2
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+c c−3b−1 + d b−3c−1 + e b−2c−2 + (fLX
−2 + f̄L′

−2)c−1b−1

)
c1|0〉 , (3.9)

where |p4〉 has been defined in eq.(2.10), and

|χ〉 = cos(
2X(0)

R
)|0〉 . (3.10)

The string field theory potential involving these fields has been computed and given in

appendix B.

3.3 Relating marginal tachyons to Wilson lines

As we have mentioned several times, at R = 1 the CFT describing the D-brane marginal

tachyon dynamics can be mapped to a Wilson line CFT problem. We have already seen

that at level (1,2) this identification is indeed realized by setting t1 ↔
√

2as as indicated

in (3.4). We shall now explain how this identification can be extended to show that the

R = 1 tachyon problem is completely isomorphic to the Wilson line problem to level (4,8).

It follows from this that the effective potential VM (as) for the Wilson line parameter and

ṼM (t1; R) for the first tachyon harmonic are related as

VM (as) = ṼM(t1 =
√

2as; R = 1) . (3.11)

We begin by arguing equivalence of the types of terms present in the complete string

field potentials. We shall denote by V(M,N) the level (M, N) approximation to V(Φ),

by Vmm the quadratic term in the potential for level m fields, and by Vmnp the cubic

term in the potential coupling a level m, a level n and a level p field. As we did before,

the potential terms Ṽ for the tachyon lump case are distinguished from the Wilson line

potential terms by the tilde. We now claim that the total level of all the terms entering a

term in the potential must be even. For the case of the tachyon lump this follows readily

by invariance of the string field action under the translation X → X + πR; the odd level

fields carry odd unit of momentum and hence are odd under this transformation whereas

even level states carry even unit of momentum and so are even under this transformation.

For the case of the Wilson line this follows from X → −X symmetry under which the odd

level fields are odd, and the even level fields are even. These symmetries are eventually

responsible for the t1 → −t1 and as → −as symmetries of the corresponding effective

potentials.
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We list below, for convenience, the terms that appear in the string field potential

relevant for the study of the Wilson line when we include fields up to a given level (while

keeping the total level below 8):

level zero : V00 ,V000

level one : V11 , V011

level two : V22 , V002 , V112 ,V022 , V222 ,

level three : V33 , V013 , V033 , V123 , V233

level four : V44 , V004 , V114 , V024 , V224 , V044 , V134 (3.12)

For each level ℓ the list of terms up to and including those in the appropriate line give

all interactions involving fields with level less than or equal to ℓ. A similar list with V
replaced by Ṽ appears for the string field potential relevant for the study of the lump

solution on a circle.

With the identification t1 ↔
√

2as we have already guaranteed that the terms listed in

the first two lines above give exactly the same potentials as their tilde versions. Indeed,

with ϕa and ϕt used to denote the Wilson and tachyon unit momentum marginal operators

(see (2.9) and (3.8)) the agreement is the result of the following equality of correlators

involving the Virasoro and ghost current primaries ϕa and ϕt:

〈 ϕa√
2

,
ϕa√

2
, t 〉 = 〈ϕt , ϕt , t 〉 . (3.13)

In this equation t denotes the CFT vertex operator for the zero-momentum tachyon c1|0〉.
Let us now consider the third line in (3.12), that is include the new terms that involve

level two fields (and fields with lower level). Note again that the level two fields in both

cases (eqns. (2.8) and (3.7)) are identical and in fact we have used the same labels for

them. It follows that all couplings involving level zero and level two fields in both string

field potentials are identical. The only question is whether the V112 terms are the same

as the Ṽ112 terms. In other words, does the equality

〈 ϕa√
2

,
ϕa√

2
, Φ(2) 〉 = 〈ϕt , ϕt , Φ̃

(2) 〉 (3.14)

hold for any of the three level two fields in Φ(2) and Φ̃(2) ? It does. Indeed, all fields

in Φ(2) (Φ̃(2)) are either Virasoro or U(1) ghost-current descendents of the level zero
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tachyon. Since both ϕa and ϕt have the same dimension and ghost number, the equality

(3.14) follows from (3.13).

Let us now consider the fourth line in (3.12), that is include the new terms that

involve level three fields (and fields with lower level). Note the complete isomorphism

manifest from equations (2.9) and (3.8): all these fields are just Virasoro and ghost-

current descendents of ϕa and ϕt respectively. It follows from the normalizations of ϕa

and ϕt that V33 and Ṽ33 terms will match if we identify

s =
u1√

2
, r =

v1√
2

, r̄ =
w1√

2
, y =

z1√
2

. (3.15)

Our remarks about descendents imply that the equality of correlators defining V013, V033,

V123, and V233, with their tilde counterparts simply follow from (3.13).

Finally, let us consider the fifth and final line in (3.12), giving the new terms that

involve level four fields (and fields with lower level). We do this in two stages. Let us

first consider the common list of fields in (2.11) and (3.9). These ten fields, denoted by

the same labels, are all Virasoro and ghost current descendents of the zero momentum

tachyon. By the earlier arguments, all correlators involving these level four fields and fields

of level ≤ 3 will agree in the Wilson and tachyon string field potentials. Now consider the

remaining fields g (multiplying |p4〉) in the Wilson case, and, g̃ and t2 (multiplying |p4〉
and |χ〉 respectively) in the tachyon lump case. All of these states are primaries. We now

show that out of the two level four primaries in the tachyon lump case, only one linear

combination needs to be kept at R = 1.

For this purpose consider in the tachyon lump case the complete list of primaries at

all levels less than or equal to four appearing in the study of Ṽ:

{ t , ϕt , p4 , χ } (3.16)

We now split them as follows

{
t , ϕt , p̃4 ≡

1

2
(−p4 + 9χ)

}
, d ≡ 1

2
(p4 + 3χ) . (3.17)

In the first set we have included three vertex operators, and we have separated out a

fourth one called d (d stands for decoupled). We now claim that the kinetic terms in

the string field theory do not mix d with any operators in the first set. For the first

two operators this is trivially so, and for the third it follows from 〈p4|c0L0|p4〉 = 81/2,

〈χ|c0L0|χ〉 = 3/2, and 〈p4|c0L0|χ〉 = 0. Moreover, p̃4 has been normalized such that
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〈p̃4|c0L0|p̃4〉 = 〈p4|c0L0|p4〉 and also satisfies the property that any three point correlator

in the first set involving one or two p̃4’s equals the correlator with p̃4 replaced by p4 and

ϕt replaced by ϕa/
√

2. (This can be checked by explicit computation.) Finally, any three

point correlator involving two fields from the first set and the field d vanishes. This is

trivially so for 〈t, t, d〉 and less trivially so for 〈ϕt, ϕt, d〉 and others.

It follows from the above argument that if we rewrite the relevant part of the string

field |Φ̃(4)〉 making use of the new basis

g̃ |p4〉 + t2 |χ〉 =
1

6
(t2 − 3g̃) |p̃4〉 +

1

6
(t2 + 9g̃) |d〉 , (3.18)

the component field associated to |d〉 will not acquire an expectation value as it has no one

point functions with other fields that do. In addition, the interchangeability of (p4, ϕa/
√

2)

and (p̃4, ϕt) in the relevant computations indicates that the coefficient field of |p̃4〉 in |Φ̃(4)〉
should be identified with the field g, − the coefficient of |p4〉 in |Φ(4)〉. All in all we have

that the interactions involving level four fields will agree upon the identifications

g =
1

6
(t2 − 3g̃) , and, 0 =

1

6
(t2 + 9g̃) . (3.19)

In view of this and previous identifications, our result for the equivalence of the Wilson

and tachyon lump string field potentials (ommitting all common field variables that are

simply identified) reads

V
(
as, {s, r, r̄, y}, g

)
= Ṽ

(
t1 =

√
2as, {u1, v1, w1, z1} =

√
2{s, r, r̄, y},

g̃ = −g/2, t2 = 9g/2 ; R = 1
)

(3.20)

This is the main result of this subsection. Integrating out all fields except t1 or as yields

the result quoted in (3.11).

3.4 Estimating the string field marginal parameter for the lump

Having noted at the end of subsection 3.1 that taking the limit R → 1 at any fixed level

does not provide an estimate for the vev of t1 at the lump solution, we try now taking a

fixed value of R near one, and examine how the vev of t1 at the lump solution varies as we

increase the level. We will take, somewhat arbitrarily, R =
√

1.1, a value of R reasonably

close to one, but (hopefully) not so close that we would need a prohibitively high level

computation to converge to the expected values of t1.
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Level t1 t
(0)
1 t

(0)
0 t

(0)
2

(1, 2) 0.4092 ± 0.21307 0.03336 —

(2, 4) 0.4462 ± 0.29707 0.06964 —

(3, 6) 0.4598 ± 0.31127 0.07693 —

(4, 8) 0.4624 ± 0.33625 0.09425 −0.0102

Table 2: We show the variation of various quatities as a function of the level of the
calculation for R =

√
1.1. Here t1 denotes the maximal value possible for the tachyon

harmonic t1. The next three columns give the values of the tachyon harmonics at the
lump solution of the equations of motion. Note that as the level is increased, the vev of
the nearly marginal tachyon harmonic t1 increases.

0.1 0.2 0.3 0.4
t1

-0.04

-0.02

0.02

0.04

0.06

0.08
V

Figure 4: The level (1,2), (2,4), (3, 6) and (4,8) effective potentials V ≡ 2π2ṼM (t1;R) for t1
when R =

√
1.1. As the level is increased the potentials become deeper and the value of t1 at

the minimum larger.

Using the potential given in appendix B, and setting R =
√

1.1, we can calculate

the value of the string field at the extremum of the potential representing the lump at

different levels of approximation. In table 2 we have given the values t
(0)
0 , t

(0)
1 and t

(0)
2 of

the tachyon harmonics at this extremum. Further insight is obtained by consideration of
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the effective potentials ṼM(t1; R =
√

1.1) obtained at various approximation levels and

shown in Fig. 4. Note that with increasing level, the potentials become increasingly deep

and the minimum is attained for larger and larger values of t1. Those values t
(0)
1 for t1 are

the ones given on the table. At level (4,8), the value of t1 at the minimum of the potential

is ±.336. Assuming that this is a good approximation to t
(0)
1 for R = 1, and using eq.(3.4),

we see that the lump solution at R = 1 corresponds to as = ±.336/
√

2 = ±.238. This

gives

as ≃ ±.238 at ac = ± 1

2
√

2
. (3.21)

Due to the reasons mentioned at the end of subsection 3.1, however, this value of t
(0)
1 might

not be a very accurate result, since even at level (4,8) VM (as) = ṼM(
√

2as, R = 1) receives

an appreciable contribution, and hence causes a significant distortion of the potential at

R =
√

1.1. Indeed, the pattern in table 2 suggests that at least at this radius, we are

underestimating the value of t
(0)
1 .

4 Matching CFT and SFT Marginal Parameters

In this section we shall try to interpret our results of section 2. In particular we shall be

addressing the question: what does it mean to have a finite cut-off as on as beyond which

the string field theory calculation of the effective potential breaks down?

Clearly the most important question here is: what gauge field vev does the point

as = as correspond to? If it corresponds to infinite value of this gauge field then our

results would imply that in string field theory a finite range of the string field covers the

full range of values of the marginal deformation parameter in conformal field theory. On

the other hand if as = as corresponds to a finite value of the gauge field vev, then it would

mean that formulated around a given background, the string field theory only covers a

finite subset of the full CFT moduli space.

In order to be able to resolve this issue, one needs to know the relationship between

the string field theory parameter as and the gauge field vev ac in the Born-Infeld action.

In general the parameters as and ac are related by a function:10

as = f(ac) . (4.1)

10Some aspect of this relationship has been discussed recently in ref.[29].
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If |ϕ〉 denotes the normalized dimension one primary state representing the marginal

direction, and ϕ denotes the corresponding vertex operator, then we take as to be the

coefficient of the state c1|ϕ〉 in the expansion of the string field, and ac to be coefficient of
∫

dxϕ(x) to be added to the CFT action in order to construct the marginally deformed

CFT. With this normalization convention, for small ac, as ≃ ac [30]. This gives f(ac) ≃ ac

for small ac.

Our interest lies in studying the behaviour of f(ac) for large ac. In particular, we want

to explore the possibility that as = as corresponds to ac = ∞. It is easy to construct

functions which approach a finite value as for large ac. An example of a function of this

type is:

f(ac) = as tanh (
ac

as
) . (4.2)

This would have the requisite properties f(ac) ≈ ac for ac small, and f(∞) = as. Using

the level (4,8) value of as (= .331), eq.(4.2) predicts:

f(ac =
1

2
√

2
) = .331 tanh

1

.331 × 2
√

2
= .261 . (4.3)

This is in fair agreement with eqs.(3.21). Indeed, as remarked below that equation, (3.21)

is probably an underestimate of the actual value of as for ac = 1
2
√

2
.

Although this analysis seems to indicate that eq.(4.2) gives a fairly accurate description

of the relationship between as and ac, there is also counterevidence to this conjectured

relationship. For this we again turn to the potential ṼM(t1; R) in the tachyonic lump

problem. According to the analysis of ref.[24], for R > 1 but close to 1, the effective

potential is periodic in ac with periodicity 1/
√

2. This means that the potential should

have an infinite number of oscillations in the range 0 ≤ ac < ∞, and in particular have

a maximum at ac = 1√
2
. According to eq.(4.2) this corresponds to the point as = .322,

i.e. t1 =
√

2 × .322 = .455. Examining Fig. 4 we find no evidence for a maximum of

ṼM (t1; R) near t1 ∼ .455, nor any oscillation of the potential. This seems to indicate

that eq.(4.2) does not quite represent the correct relation between as and ac, and that

as = as may correspond to a value of ac below 1√
2
. We should recall, however, that

VM (as) = ṼM(
√

2as, R = 1) computed at level (4,8) has a large slope at as = .322

(see Fig. 2), and this might destroy a potential maximum in ṼM(
√

2as; R) at this point.

Thus in absence of better numerical results, we are unable to decide whether as = as

corresponds to infinite or finite ac.
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5 Concluding Remarks

The finite range of definition of the effective potential for the string field marginal param-

eter as in the (marginal) M-branch arose because beyond some limiting value for as field

equations for other string fields could not be solved at all or solutions would fail to be

continuous functions of as. More concretely, we saw that at the critical value for as the

M-branch and the V -branch, associated with the stable tachyonic vacuum merged.

Actually, even the tachyon effective potential appears to have a finite range of definition

in the level expansion [11, 6] with the stable minimum well inside this range. In this

case the limiting values appear as points beyond which some massive field equations

either fail to have solutions or fail to give solutions that are continuous functions of

the tachyon. The physical interpretation of this finite range is not clear; in particular,

the lower limiting value is precisely in the direction where the effective potential of the

tachyon is expected to be unbounded below. A complete understanding of the more

familiar marginal case discussed in this paper might help interpret the finite range of the

tachyon effective potential.

For the case of superstring field theory on a BPS D-brane, the non-BPS D-brane, or

the D-brane anti-D-brane pair, if string field marginal parameters have finite ranges it

will be through an effect technically similar to that of the tachyon effective potential.

Given that in such superstring field theories the fields in the GSO odd sector acquire no

expectation values, unfamiliar branches of solutions associated to massive fields in the

GSO even sector would have to limit the domain of definition of the effective potential.

It certainly appears that more accurate calculations could give significant insight into

the questions raised in this paper. A proper understanding of the description of marginal

operators in both bosonic string theory and superstring theory promises to deepen con-

siderably our understanding of the way non-perturbative physics is encoded in string field

theory.
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A SFT Potential for Study of Wilson Line

In this appendix we shall derive the string field theory potential V(Φ) (with normalization

as defined in the text) relevant for studying the effective potential for constant gauge field

configuration. The expansion of the string field has been described in section 2. We shall

denote by V(M,N) the level (M, N) approximation to V(Φ), by Vmm the quadratic term

in the potential for level m fields, and by Vmnp the cubic term in the potential coupling

a level m, a level n and a level p field. As discussed in the text, using twist symmetry

of the action, it is easy to see that the total level of all the fields entering a term in the

potential must be even. We then have:

V(0,0) = V00 + V000

V(1,2) = V(0,0) + V11 + V011

V(2,4) = V(1,2) + V22 + V002 + V112 + V022

V(3,6) = V(2,4) + V33 + V013 + V222 + V033 + V123

V(4,8) = V(3,6) + V44 + V004 + V114 + V024 + V233 + V224 + V044 + V134

(A.1)

We let K = 3
√

3/4 as in the text. Explicit computation gives the following expressions

for Vmm and Vmnp:

V00 = −1

2
t20

V11 = 0

V22 = −1

2
u2

0 +
1

4
v2
0 +

25

4
w2

0

V33 = −s2 +
9

2
r2 +

25

2
r̄2 + 12y2 + 12ry

V44 =
15

2
a2 +

375

2
ā2 + 9ab +

27

4
b2 + 225āb̄ +

2475

4
b̄2 +

75

8
b̂2 + 3cd

−3

2
e2 − 3

4
f 2 − 75

4
f̄ 2 +

81

4
g2

V000 =
1

3
K3t30

V011 = Kt0a
2
s

V002 =
1

32
Kt20(22u0 − 5v0 − 125w0)

V112 =
1

32
K−1a2

s(22u0 + 27v0 − 125w0)
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V013 =
1

16
K−1t0as

(
22s − 21r − 125r̄ − 12y

)

V022 =
1

1024
K−1t0(228u2

0 − 220u0v0 + 537v2
0 − 5500u0w0 + 1250v0w0 + 28425w2

0)

V004 =
1

1024
K−1t20(540a + 13500ā + 459b + 26475b̄ + 625b̂

−320c + 960d + 228e − 110f − 2750f̄)

V222 = K
{

1

144
u3

0 +
8321

93312
v3
0 −

219775

10368
w3

0 −
95

7776
u2

0 (v0 + 25w0)

+
1969

15552
u0v

2
0 +

104225

15552
u0w

2
0 −

22375

31104
v2
0w0−

47375

31104
v0w

2
0 +

6875

23328
u0v0w0

}

V033 =
1

1728
K−1t0(228s2 − 924sr + 9657r2 − 5500sr̄ + 5250rr̄ + 28425r̄2

−528sy + 31224ry + 3000r̄y + 30864y2)

V123 =
1

864
K−1as(228u0s + 594sv0 − 462u0r + 969v0r − 2750sw0 + 2625rw0

−2750u0r̄ − 3375v0r̄ + 28425w0r̄ − 264u0y − 324v0y + 1500w0y)

V114 =
1

1728
K−1a2

s(−868a + 13500ā − 885b + 26475b̄− 3375b̂ − 320c

+960d + 228e + 594f − 2750f̄ + 3072g)

V024 =
1

16384
K−3t0

(
u0(11880a + 297000ā + 10098b + 582450b̄ + 13750b̂ − 9600c

+28800d + 30616e − 1140f − 28500f̄)

+v0(7540a − 67500ā − 23799b − 132375b̄− 67125b̂ + 1600c

−4800d − 1140e + 11814f + 13750f̄)

+w0(−67500a − 1431500ā − 57375b− 6918975b̄− 142125b̂

+40000c − 120000d− 28500e + 13750f + 625350f̄)
)

V233 =
1

18432
K−3(648u0s

2 + 2052s2v0 − 3192u0sr + 14212sv0r + 70818u0r
2

+16257v0r
2 − 9500s2w0 + 38500srw0 − 402375r2w0 − 19000u0sr̄

−49500sv0r̄ + 38500u0rr̄ − 80750v0rr̄ + 416900sw0r̄
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−397950rw0r̄ + 208450u0r̄
2 + 255825v0r̄

2 − 1977975w0r̄
2

−1824u0sy − 4752sv0y + 228976u0ry − 58952v0ry

+22000sw0y − 1301000rw0y + 22000u0r̄y + 27000v0r̄y

−227400w0r̄y + 226336u0y
2 − 49904v0y

2 − 1286000w0y
2)

V224 =
1

1048576
K−5

(
u2

0(123120a + 3078000ā + 104652b + 6036300b̄ + 142500b̂

−103680c + 311040d + 1997584e − 9720f − 243000f̄)

+u0v0(331760a − 2970000ā − 1047156b− 5824500b̄− 2953500b̂

+96000c − 288000d− 306160e + 244872f + 285000f̄)

+v2
0(−1254212a + 7249500ā + 658131b + 14217075b̄− 3120375b̂

−171840c + 515520d + 122436e + 549186f − 1476750f̄)

+u0w0(−2970000a − 62986000ā− 2524500b− 304434900b̄− 6253500b̂

+2400000c− 7200000d− 7654000e + 285000f + 12961800f̄)

+v0w0(−1885000a + 14315000ā + 5949750b + 69189750b̄ + 30528450b̂

−400000c + 1200000d + 285000e − 2953500f − 6253500f̄)

+w2
0(15349500a + 283692700ā + 13047075b + 1777831875b̄ + 29669625b̂

−9096000c + 27288000d + 6480900e − 3126750f − 130546350f̄)
)

V044 =
1

1048576
K−5t0(18846480a2 + 14580000aā + 646122000ā2 + 21655656ab

+12393000āb + 10551033b2 + 28593000ab̄ + 1120943400āb̄

+24304050bb̄ + 2269335225b̄2 − 1885000ab̂ + 14315000āb̂

+5949750bb̂ + 69189750b̄b̂ + 15264225b̂2 − 345600ac − 8640000āc

−293760bc − 16944000b̄c − 400000b̂c + 76800c2 + 1036800ad

+25920000ād + 881280bd + 50832000b̄d + 1200000b̂d + 1636352cd

+691200d2 + 246240ae + 6156000āe + 209304be + 12072600b̄e

+285000b̂e + 1021440ce− 3064320de− 1754352e2 + 331760af

−2970000āf − 1047156bf − 5824500b̄f − 2953500b̂f + 96000cf

−288000df − 306160ef + 122436f 2 − 2970000af̄ − 62986000āf̄
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−2524500bf̄ − 304434900b̄f̄ − 6253500b̂f̄ + 2400000cf̄

−7200000df̄ − 7654000ef̄ + 285000f f̄ + 6480900f̄ 2)

+
27

2
K−5t0g

2

V134 =
1

16384
K−5as

(
r(196404a− 283500ā + 298137b− 555975b̄− 121125b̂

+6720c − 20160d− 4788e + 21318f + 57750f̄ + 132096g)

+r̄(108500a − 1431500ā + 110625b− 6918975b̄ + 767475b̂

+40000c − 120000d− 28500e − 74250f + 625350f̄ − 384000g)

+s(−19096a + 297000ā − 19470b + 582450b̄− 74250b̂

−9600c + 28800d + 30616e + 6156f − 28500f̄ + 67584g)

+y(305328a− 162000ā + 502140b− 317700b̄ + 40500b̂

+3840c − 11520d− 2736e − 7128f + 33000f̄ + 749568g)
)

(A.2)

B SFT Potential for Study of Lump Solution on a

Circle

In this appendix we shall derive the string field theory potential Ṽ(Φ) relevant for studying

the formation of the lump solution on a circle of radius R. The expansion of the string

field has been described in section 3. As mentioned there, since we are interested in

studying this phenomenon near R = 1, in counting level of a field we shall pretend as if

R has already been set to 1, although in the expression for the potential we shall keep

the complete R dependence. We shall denote by Ṽ(M,N) the level (M, N) approximation

to Ṽ(Φ), by Ṽmm the quadratic term in the potential for level m fields, and by Ṽmnp the

cubic term in the potential coupling a level m, a level n and a level p field. As discussed

in the text, using momentum conservation it is easy to show that with this definition of

level, the total level of all the fields entering a term in the potential must be even. We

then have:

Ṽ(0,0) = Ṽ00 + Ṽ000

Ṽ(1,2) = Ṽ(0,0) + Ṽ11 + Ṽ011
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Ṽ(2,4) = Ṽ(1,2) + Ṽ22 + Ṽ002 + Ṽ112 + Ṽ022

Ṽ(3,6) = Ṽ(2,4) + Ṽ33 + Ṽ013 + Ṽ222 + Ṽ033 + Ṽ123

Ṽ(4,8) = Ṽ(3,6) + Ṽ44 + Ṽ004 + Ṽ114 + Ṽ024 + Ṽ233 + Ṽ224 + Ṽ044 + Ṽ134

(B.1)

Explicit computation gives the following expressions for Ṽmm and Ṽmnp:

Ṽ00 = −1

2
t20

Ṽ11 = −1

4
(1 − R−2)t21

Ṽ22 = −1

2
u2

0 +
1

4
v2
0 +

25

4
w2

0

Ṽ33 = −1

4
u2

1(1 + R−2) +
1

8
v2
1(1 + R−2)(1 + 8R−2) +

25

8
w2

1(1 + R−2)

+3R−2v1z1(1 + R−2) + R−2z2
1(1 + R−2)(1 + 2R−2)

Ṽ44 =
15

2
a2 +

375

2
ā2 + 9ab +

27

4
b2 + 225āb̄ +

2475

4
b̄2 +

75

8
b̂2 + 3cd

−3

2
e2 − 3

4
f 2 − 75

4
f̄ 2 +

81

4
g̃2 − 1

4
(1 − 4R−2)t22

Ṽ000 =
1

3
K3t30

Ṽ011 =
1

2
K3−2/R2

t0t
2
1

Ṽ002 =
1

32
Kt20 (22u0 − 5v0 − 125w0)

Ṽ112 = K1−2/R2

t21

(
11

32
u0 +

1

2

(
− 5

32
+ R−2

)
v0 −

125

64
w0

)

Ṽ013 =
1

32
K1−2/R2

t0t1
(
22u1 − (5 + 16R−2)v1 − 125w1 + R−2(−44 + 32R−2)z1

)

Ṽ022 =
1

1024
K−1t0 (228u2

0 − 220u0v0 + 537v2
0 − 5500u0w0 + 1250v0w0 + 28425w2

0)

Ṽ004 =
1

1024
K−1t20 (540a + 13500ā + 459b + 26475b̄ + 625b̂

−320c + 960d + 228e − 110f − 2750f̄)

Ṽ222 = K
{

1

144
u3

0 +
8321

93312
v3
0 −

219775

10368
w3

0 −
95

7776
u2

0 (v0 + 25w0)

+
1969

15552
u0v

2
0 +

104225

15552
u0w

2
0 −

22375

31104
v2
0w0−

47375

31104
v0w

2
0 +

6875

23328
u0v0w0

}
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Ṽ033 = K1−2/R2

{
19

288
t0u

2
1 +

1

3456

(
537 +

8864

R2
+

256

R4

)
t0v

2
1 +

28425

3456
t0w

2
1

− 11

864
t0u1

((
5 +

16

R2

)
v1 + 125w1

)
+

125

1728

(
5 +

16

R2

)
t0v1w1

+
11

864

1

R2

(
−44 +

32

R2

)
t0u1z1 +

1

432

(
2359

R2
+

1672

R4
− 128

R6

)
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+
125
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1

R2

(
11 − 8
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1

216

1

R2

(
384 +

1145

R2
+

336

R4
+

64

R6

)
t0z

2
1

}

Ṽ123 = K1−2/R2

{
19

144
t1u0u1 −

11

864
t1u0

((
5 +

16

R2

)
v1 + 125w1

)

+
1

864

1

R2

(
11

(
−44 +

32

R2

)
t1u0z1 +

(
2158 − 2832

R2
+

512

R4
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t1v0z1

)

− 11

864
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R2
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1
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(
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R2
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+
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1728

(
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R2
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(
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1728
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125

432

1

R2

(
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R2

)
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}

Ṽ114 = K1−2/R2

t21

{( 5

32
− 11

27R2

)
a +

125

32
ā +

( 17

128
− 37

54R2
+

8

27R4
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5
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11
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+
1

4
K3−6/R2

t21t2 +
1

4
K−1−2/R2

R−2(1 − 4R−2)t21g̃

Ṽ024 =
1

16384
K−3t0

(
u0(11880a + 297000ā + 10098b + 582450b̄ + 13750b̂− 9600c

+28800d + 30616e − 1140f − 28500f̄)

+v0(7540a − 67500ā − 23799b− 132375b̄− 67125b̂ + 1600c

−4800d − 1140e + 11814f + 13750f̄)

+w0(−67500a − 1431500ā − 57375b − 6918975b̄− 142125b̂

+40000c − 120000d − 28500e + 13750f + 625350f̄)
)
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Ṽ233 =
1
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K−3−2/R2

(
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2
1 + (7296R−2 − 1140)v0u

2
1

−(7296R−2 + 2280)u0u1v1 + (−22528R−4 + 41536R−2 + 23628)v0u1v1
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1
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2
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+(−22528R−6 + 294272R−4 + 415184R−2)u0v1z1

+(−32768R−8 + 629760R−6 − 790080R−4 + 16232R−2)v0v1z1

+(−176000R−4 + 242000R−2)w0u1z1

+(128000R−6 − 1672000R−4 − 2359000R−2)w0v1z1

+(−176000R−4 + 242000R−2)u0w1z1

+(−256000R−6 + 1416000R−4 − 1079000R−2)v0w1z1

+(1819200R−4 − 2501400R−2)w0w1z1

+(22528R−8 + 118272R−6 + 403040R−4 + 135168R−2)u0z
2
1

+(32768R−10 − 95232R−8 + 395520R−6 − 517584R−4 + 34816R−2)v0z
2
1

+(−128000R−8 − 672000R−6 − 2290000R−4 − 768000R−2)w0z
2
1

)

Ṽ224 =
1
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K−5

(
u2

0(123120a + 3078000ā + 104652b + 6036300b̄ + 142500b̂

−103680c + 311040d + 1997584e − 9720f − 243000f̄)

+u0v0(331760a − 2970000ā− 1047156b− 5824500b̄− 2953500b̂

+96000c− 288000d − 306160e + 244872f + 285000f̄)

+v2
0(−1254212a + 7249500ā + 658131b + 14217075b̄− 3120375b̂

−171840c + 515520d + 122436e + 549186f − 1476750f̄)

+u0w0(−2970000a − 62986000ā − 2524500b− 304434900b̄− 6253500b̂
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+2400000c− 7200000d− 7654000e + 285000f + 12961800f̄)

+v0w0(−1885000a + 14315000ā + 5949750b + 69189750b̄ + 30528450b̂

−400000c + 1200000d + 285000e − 2953500f − 6253500f̄)
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0 (15349500a + 283692700ā + 13047075b + 1777831875b̄ + 29669625b̂
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Ṽ044 =
1

1048576
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+24304050bb̄ + 2269335225b̄2 − 1885000ab̂ + 14315000āb̂
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