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Abstract

It has been shown recently that the background independent open string field
theory provides an exact description of the tachyon condensation on unstable
D-branes of bosonic string theory. In this analysis the overall normalisation of
the action was chosen so that it reproduces the conjectured relations involving
tachyon condensation. In this paper we fix this normalisation by comparing
the on-shell three tachyon amplitude computed from the background inde-
pendent open string field theory with the same amplitude computed from the
cubic open string field theory, which in turn agrees with the result of the first
quantised theory. We find that this normalisation factor is in precise agree-
ment with the one required for verifying the conjectured properties of the
tachyon potential.
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The 26-dimensional bosonic string theory contains D-p-branes for all p. Each of these

D-p-branes has a tachyonic mode. It has been conjectured[1] that there is a local minimum

of the tachyon potential which describes the closed string vacuum without any D-brane.

At this minimum the negative contribution from the tachyon potential exactly cancels

the tension of the D-brane. Further, it has been conjectured that a codimension q lump

solution on the D-p-brane represents a D-(p − q)-brane in the same theory. Support

for these conjectures comes from the analysis of the world-sheet theory[2, 1], cubic open

string field theory (COSFiT)[3], noncommutative limit of the effective field theory of the

tachyon[4], as well as various toy models of tachyon condensation[5, 6].

A different open string field theory that is (formally) background independent was

proposed and developed in Refs.[7, 8, 9, 10, 11]. Recently it has been pointed out[12, 13]

that this string field theory can provide an exact verification of these conjectures. A

general field configuration in background independent open string field theory (BIOSFiT)

is associated with a boundary operator of ghost number 1 in the world-sheet field theory

of matter and ghost system. We shall take the world sheet to be a disc of unit radius

with flat metric on it and work in the convention α′ = 1. If {OI} denotes a complete set

of boundary vertex operators of ghost number 1, we can expand a general operator O of

ghost number 1 as

O =
∑

I

λIOI . (1)

We shall restrict to operators of the form O = cV =
∑

α λαcVα, where c is the ghost field

and V =
∑

α λαVα is a boundary operator in the matter theory. In this case, a string

field theory configuration associated with the operator cV is described by the world-sheet

action

SBulk +
∫ 2π

0

dθ

2π
V(θ) , (2)

where the angle θ parameterises the boundary of the disc, and SBulk denotes the bulk

world-sheet action corresponding to the closed string background. We shall consider a

trivial background in flat space, therefore SBulk describes the CFT of 26 free scalar fields

Xµ and the (b, c) ghost system. For such configurations, the string field theory action

SBI(λ
α) is obtained as a solution of the equation:

δSBI

δλα
=

K

2

∫

dθ

2π

∫

dθ′

2π
〈Oα(θ){QB,O(θ′)}〉

V
, (3)

where 〈 · · · 〉V denotes correlation function in the world-sheet field theory described by

the action (2). QB is the BRST charge and K is a normalisation constant to be fixed

later. In the following, we shall also use the correlation function 〈 · · · 〉 in the absence of
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the boundary term in (2). Notice that eqn.(3) determines the action upto an additive

constant. However, since we shall always compute the difference between the values of the

action for two configurations, this ambiguity will not affect our analysis. The subscript

BI in eqn.(3) stands for background independent open string field theory.

A special class of string field configurations corresponding to operators of the form

O = cV with:

V = a +
∑

i

ui(X i)2 , (4)

was analysed in Refs.[8, 13]. In this case the action can be computed exactly since the

worldsheet theory remains free. The resulting action has an unstable extremum at (a =

0, ui = 0) corresponding to the original D-brane. In addition, it has several other extrema

with the following properties:

1. There is an extremum at (a = ∞, ui = 0). The difference in energy density between

the original configuration (a = 0, ui = 0) and this extremum is K[13].3

Thus if K = Tp — the tension of the original D-p brane — this would prove the con-

jecture that the tachyon potential has an extremum where the negative contribution

due to the potential energy exactly cancels the tension of the D-brane.

We shall refer to the solution (a = ∞, ui = 0) as the vacuum solution.

2. There is a solution where

ui =

{

∞ for 1 ≤ i ≤ q,

0 otherwise,
(5)

and a determined as a function of the ui’s[13]. This configuration describes a codi-

mension q soliton with energy per unit (p − q)-volume, measured above the energy

of the vacuum solution, given by:

∆E = (2π)qK . (6)

If K = Tp, this is precisely the correct formula for the tension of the D-(p−q)-brane.

It is clear from above that in order to establish that the tachyon dynamics in the

background independent open string field theory reproduces the conjectured relations

3Throughout this paper we shall be using the convention that when V = 0, the partition function
of the matter conformal theory on the unit disk is equal to the volume Ω of the D-brane world-volume.
With this convention, SBI(a, ui = 0) = ΩK(1 + a)e−a + C where C is an additive constant. This differs
somewhat from the convention used in ref.[13].
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involving tachyon condensation, we need to show that K = Tp. This is what we shall

prove in this paper. To this end, we compute the on-shell three tachyon amplitude from

the cubic open string field theory[14], and compare it with the same amplitude computed

in the background independent string field theory[7]. (Notice that the three point tachyon

amplitude calculated in Ref.[13] vanishes on-shell. This does not agree with the result of

the first quantised theory.)

Recall that the euclidean action of the cubic open string field theory describing the

dynamics of a D-p-brane is given by

Scubic = 2π2Tp

(

1

2
〈Φ|QB|Φ〉 +

1

3
〈f1 ◦ Φ(0)f2 ◦ Φ(0)f3 ◦ Φ(0)〉

)

, (7)

where |Φ〉 is the string field represented by a ghost number 1 state in the Hilbert space

of the first quantised theory, fi’s are known conformal maps reviewed in Ref.[15], and

fi ◦Φ(0) denotes the conformal transform of the vertex operator Φ(0) by fi. The normal-

isation factor 2π2Tp was derived in Ref.[15], and will be important for our analysis. The

Fock vacuum |k〉 ≡ eik·X(0)|0〉, where |0〉 is the SL(2,R) invariant vacuum and kµ labels

momentum along the world-volume of the D-brane, is normalised as follows:

〈k|c−1c0c1|k
′〉 = (2π)p+1δ(k + k′) . (8)

We shall interpret (2π)p+1δ(0) as the volume of the D-p-brane world-volume.

Let us consider a tachyonic string field configuration of the form

|Φ〉 =
∫

dp+1k T (k)c1|k〉 , (9)

with T (k) supported over near on-shell momentum k2 ≃ 1. Substituting (9) into (7),

and keeping only the leading order terms in (k2 − 1) in both the quadratic and the cubic

terms, we arrive at the action:

Scubic ≃ 2π2Tp

[

1

2

∫

dp+1k

∫

dp+1k′ (2π)p+1δ(k + k′)(k2 − 1)T (k)T (k′)

+
1

3

∫

dp+1k

∫

dp+1k′

∫

dp+1k′′ (2π)p+1δ(k + k′ + k′′)T (k)T (k′)T (k′′)

]

. (10)

This encodes information about the on-shell three tachyon amplitude in the cubic open

string field theory.
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Let us now turn to the background independent open string field theory. In this case

a near on-shell tachyon field configuration is represented by a boundary perturbation of

the form:
∫

dθ

2π
V(θ) =

∫

dθ

2π

∫

dp+1k φ(k)eik·X(θ) , (11)

with φ(k) supported over near on-shell momentum k2 ≃ 1. We shall use the normalisation

(8) for computing correlation functions in the world-sheet theory in the absence of any

boundary perturbation. The action of the background independent open string field

theory is given by eqn.(3). To calculate the quadratic term it is sufficient to replace 〈 〉V

by 〈 〉 and use the relation

{QB, c(θ)eik·X(θ)} = (k2 − 1)∂c(θ)c(θ)eik·X(θ) . (12)

Substituting this in eqn.(3), and keeping terms to leading order in (k2 − 1), we get the

near on-shell quadratic term:

S
(2)
BI =

K

4

∫

dp+1k

∫

dp+1k′ (2π)p+1δ(k + k′)(k2 − 1)φ(k)φ(k′) . (13)

Next we evaluate the on-shell three tachyon coupling. Unfortunately, direct determi-

nation of this coupling is difficult due to the problem with ultraviolet divergences on the

world-sheet[11], so we shall take recourse to an indirect method.4 We use the fact that

whenever the world-sheet action (2) describes a conformal field theory, the corresponding

string field configuration is a solution of the equations of motion[7]. Thus the equations

of motion derived from the string field theory action SBI must be proportional to the

β-functions of the boundary conformal field theory described by the action (2). Now if,

V =
∑

α

λαVα , (14)

where Vα are primary vertex operators of dimensions hα ≃ 1, with the operator product

expansion

Vα(x)Vβ(y) ≃
C

γ
αβ

|x − y|hα+hβ−hγ
Vγ(y) , (15)

the β-function associated with the coupling λα to second order in λ is given by[16]

βα(λ) ∝ (hα − 1)λα +
1

2π
Cα

βγλ
βλγ . (16)

4Renormalization group equations have been used in the past to derive on- and off-shell tachyon
amplitudes in open string theory[17].
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The factor of (2π)−1 in front of the second term can be traced to the normalisation factor

of (2π)−1 appearing in front of the boundary perturbation in eqn.(2). Since the operators

eik·X have conformal weights h(k) = k2, and satisfy the operator product expansion

eik·X(x)eik′·X(y) ≃
1

|x − y|k2+k′2−(k+k′)2
ei(k+k′)·X(y) , (17)

the equation of motion for the (near on-shell) tachyon field in BIOSFiT is:

(k2 − 1)φ(k) +
1

2π

∫

dp+1k′

∫

dp+1k′′ δ(k − k′ − k′′)φ(k′)φ(k′′) = 0 . (18)

The cubic part of the background independent string field theory action can now be con-

structed, the normalisation being determined from eqn.(13). Near on-shell the BIOSFiT

action upto cubic order in φ(k) is given by,

SBI ≃
K

4

[

∫

dp+1k

∫

dp+1k′ (2π)p+1δ(k + k′)(k2 − 1)φ(k)φ(k′)

+
1

3π

∫

dp+1k

∫

dp+1k′

∫

dp+1k′′ (2π)p+1δ(k + k′ + k′′)φ(k)φ(k′)φ(k′′)

]

. (19)

The above can be compared with the corresponding result of the cubic open string field

theory (10). The quadratic terms in the two actions agree under the identification:

T (k) =
1

2π

√

K

Tp

φ(k) + · · · , (20)

where the dots denote terms linear in φ(k) which vanish on-shell, and terms quadratic

and higher orders in φ(k). This relates the tachyon fields in the two string field theories.

Requiring that the cubic terms match leads to

K = Tp , (21)

the relation we set out to prove. Thus the background independent string field theory

provides a verification of all the conjectures involving tachyon condensation on the bosonic

D-branes. It should be possible to generalise this to prove the corresponding conjectures

in superstring theory.
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