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Abstract

It has been conjectured that condensation of tachyons on a bosonic D-brane gives rise
to vacuum / soliton solutions which are independent of the initial magnetic field on the D-
brane. We present evidence for this conjecture using results from two dimensional conformal
field theory. In particular we identify a continuous path in the configuration space of open
string fields which interpolates between D-brane configurations with two different quantized
magnetic flux.
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The dynamics of tachyon, massless scalars and gauge fields on a D-p-brane of 26 di-

mensional bosonic string theory in flat Minkowski signature space-time in static gauge is

described by the action

SBI = −
1

gc

1

(2π)p

∫
dp+1xV(T )

√
− det

(
gµν + ∂µY i∂νY i + 2πFµν

)
+ . . . , (1)

where xµ denote the world-volume coordinates of the brane (0 ≤ µ ≤ p), yi denote the

space-time coordinates transverse to the brane (p + 1 ≤ i ≤ 25), Y i denote the massless

scalar fields on the D-brane world-volume associated with the coordinates yi, gc is the closed

string coupling constant, gMN is the closed string metric (which we take to be constant with

giµ = 0, gij = δij), Fµν = ∂µAν−∂νAµ denote the gauge field strength, T denotes the tachyon

field, and V(T ) denotes the tachyon potential with the D-brane tension term included. V(T )

has a maximum at T = Tmax describing the original D-brane configuration and has been

conjectured to have a local minimum at T = Tmin where V(Tmin) = 0[1, 2]. We have chosen

α′ = 1 and have normalized V so that V(T = Tmax) = 1. . . . denotes terms containing

derivatives of T , ∂µY and Fµν .

It has also been conjectured that the minimum of the potential T = Tmin describes

the vacuum without a D-brane[1], and that at this minimum all different values of Fµν

and Y i actually describe the same physical configuration in open string field theory[3]. It

follows from this, using the techniques of non-commutative field theory[4, 5, 6], that many

apparently different soliton solutions, for which T approaches Tmin asymptotically, but the

asymptotic values of Fµν are different, also describe the same configuration[3]. This in turn

resolves some of the puzzles raised in refs.[7, 8] in interpreting non-commutative tachyonic

solitons as D-branes[9, 10, 11].

Some evidence for this conjecture comes from the string field theory results of refs.[12,

13]. In this paper we provide an evidence for this conjecture using the techniques of two

dimensional conformal field theory (CFT). For simplicity of notation, we shall take our

initial system to be a D-2 brane, and assume that the directions tangential to the 2-brane

have been compactified on a torus T 2. In this case, the above conjecture has a somewhat

dramatic consequence. Since the total magnetic flux through T 2 is quantized, in terms of the

field variables appearing in the Born-Infeld action it is not possible to continuously deform

a configuration with a given magnetic flux to a configuration with a different magnetic flux

even via off-shell field configurations. On the other hand if the conjecture is correct, then

starting from a configuration with a given magnetic flux at T = Tmax, we can deform T to

Tmin, and since at T = Tmin all magnetic field background describes the same configuration,
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we can change the value of the magnetic field to any other value allowed by the quantization

rules. We can then deform the tachyon field back to T = Tmax. This gives a continuous

path in the configuration space of open string field theory interpolating between D-branes

with different amounts of magnetic flux.

A T-dual version of this phenomenon is as follows. Let us take a D1-brane, and take the

direction x1 tangential to the D-brane, and a direction (say y2) transverse to the D-brane

to be compact. As usual, we denote by Y 2 the massless scalar field on the D-brane world-

volume associated with the coordinate y2. Now consider a classical field configuration on

the D1-brane world-volume theory of the form:

Y 2 = ax1 , (2)

where a is a constant. In this case compactness of the 1 and 2 directions imply that only

discrete values of a are allowed. In particular, if both 1 and 2 directions have the same

periodicity (say 2π), then a must be an integer,1 since as x1 changes by 2π, Y 2 must change

by an integer multiple of 2π. Again, the Born-Infeld action describing the D-brane world-

volume theory does not allow a continuous deformation of fields which interpolates between

configurations with different values of a. However, if the conjecture stated above is correct,

then we should be able to interpolate between these two field configurations by starting

with a given value of a, taking T to Tmin where all values of a correspond to the same

configuration, and then changing T back to Tmax with a taking a different value.

In this paper we explicitly demonstrate this phenomenon using the techniques of two di-

mensional CFT. For definiteness we shall focus on the problem of interpolating between two

magnetic field backgrounds in D2-brane wrapped on a torus. Since it is difficult to describe

tachyon condensation into vacuum using the CFT techniques, one would have thought that

even if the interpolation outlined above had been possible, it will be difficult to demonstrate

this using CFT techniques since the path passes through the vacuum configuration. But as

we shall see, we do not need to go all the way down to the vacuum configuration for this

interpolation; it is possible to find a path via a codimension one soliton, i.e. a D1-brane in

this case. Since formation of a codimension one soliton via tachyon condensation is a well

understood process in conformal field theory[15, 1, 17, 18], we can use CFT techniques for

studying this process.
1This describes a D-string pointing along the vector (1, a) in the (x1

, y
2) plane for integer a. There are

also other allowed D-string configurations pointing along the vector (p, q) for any relatively prime pair of
integers p, q. They can be represented as classical configurations in the world-volume theory of p D-strings
lying along x

1.
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More specifically, we shall show that under certain conditions the initial system of D2-

brane with magnetic flux can be taken to a D1-brane via marginal deformation, and further-

more, that this D1-brane can be taken to a D2-brane without magnetic flux via a relevant

deformation. In the language of string field theory this implies that in the configuration

space of string fields there is a continuous path which interpolates between a D2-brane con-

figuration with magnetic flux and a D2-brane configuration without magnetic flux. This is

precisely what is expected according to the conjecture stated earlier.

We label the D2-brane world volume by coordinates (x0, x1, x2) with x1 ≡ x1 + 2π,

x2 ≡ x2 + 2π, take the background anti-symmetric tensor field to be 0, and the background

closed string metric to be

gµν =
(

R2
1

R2
2

)
for µ = 1, 2 , (3)

with the rest of the components of gMN being equal to those of the Minkowski metric ηMN .

Thus R1 and R2 are the radii of the circles, measured in the closed string metric, along x1

and x2 directions respectively. With the normalization of Fµν used in writing eq.(1), the

quantization law of the magnetic flux is given by:

F12 =
n

2π
. (4)

From eq.(1) we see that the mass of the wrapped D2-brane is given by

MD2 =
1

gc

√
R2

1R
2
2 + (2πF12)2 =

1

gc

√
R2

1R
2
2 + n2 . (5)

Now, according to the results of ref.[6, 14] we can describe the string field theory living

on this system around this background magnetic field by starting with a string field theory

written in a background metric Gµν , effective coupling go, and zero background magnetic

field, and then replacing all products appearing in the action and the equations of motion

of this theory by non-commutative ∗-products defined with non-commutativity parameter

Θµν . Gµν , Θµν and go are given in terms of gµν , Fµν and gc as:

G−1 +
Θ

2π
= (g + 2πF )−1 , go = gc

√
det G

det(g + 2πF )
. (6)

This gives, using eqs.(3), (4)

G = (R2

1R
2

2 +n2)
(

R−2
2

R−2
1

)
, Θ =

2πn

R2
1R

2
2 + n2

(
−1

1

)
, go = gc

√
R2

1R
2
2 + n2

R1R2

.

(7)
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From this we see that the radius of the x1 direction measured in the metric Gµν is given by√
(R2

1R
2
2 + n2)/R2

2. Let us adjust R1, R2 and n such that this radius is unity, i.e.

R2

1R
2

2 + n2 = R2

2 . (8)

We shall now show that when eq.(8) is satisfied, there is a marginal deformation which

takes the CFT describing the D2-brane system under study to a D1-brane along x2. For

this let us consider an auxiliary system where the non-commutativity parameter is set to

zero, keeping Gµν and go fixed at values given in eqs.(7). This will correspond to a D2-brane

wrapped on T 2 with zero background magnetic field, and closed string metric and coupling

constant given by Gµν and go defined in eq.(7). When eq.(8) is satisfied, the radius in the

x1 direction is unity for this auxiliary system, and the results of refs.[15, 1] show that there

is an exact marginal deformation in the boundary CFT describing this auxiliary system,

generated by the operator cos(X1). Furthermore, for a specific value of the deformation

parameter, the deformed CFT associated with this auxiliary system represents a D1-brane

lying along the x2 direction. In the language of string field theory, the existence of this

marginal deformation implies the existence of a one parameter family of solutions, with

fields depending on the x1 direction[12].

Let us now go back to the original system, describing the D2-brane on T 2 with n units

of magnetic flux on it. Equations of motion in the string field theory describing this system

differs from those in the auxiliary system by the replacement of all the ordinary products by

∗-products[6, 14]. But the ∗-product reduces to the ordinary product for field configurations

which depend on only one direction. Thus the one parameter family of solutions in the

string field theory describing the auxiliary system are also classical solutions in the string

field theory describing the original system.

In the language of two dimensional conformal field theory, this means that for the D2-

brane on T 2 in the background given in eqs.(3), (4), the boundary CFT admits an exactly

marginal perturbation when eq.(8) is satisfied, (Special cases of such deformations for R1 =

R2 were discussed in ref.[16].) One would naturally suspect that just as in the case of

the auxiliary system, this CFT also flows to a D1-brane along x2 under this marginal

deformation. That this is indeed so can be argued by noting that the correlation functions

of open string vertex operators in the boundary CFT, which carry momentum only along the

X1 direction, are identical to that in the auxiliary CFT. Thus we can borrow the results of

[15, 1] and conclude that there is a special point along the direction of marginal deformation

where the Neumann boundary condition along x1 gets converted to a Dirichlet boundary
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condition. This gives a D1-brane along the x2 direction.

There are various consistency checks that one can perform to confirm this result:

1. The mass of a D1-brane wrapped along x2 is given by

MD1 =
R2

gc

. (9)

When eq.(8) is satisfied, the mass of the D1-brane given in (9) matches with that of

the D2-brane given in (5).

2. If there is a marginal deformation interpolating between the initial D2-brane configura-

tion and the final D1-brane configuration, then the CFT describing the final D1-brane

system must also admit a marginal deformation. In the analysis of refs.[15, 1] this

came from massless open string modes winding around the 1 direction. The ground

state of such an open string has mass2 equal to

(R2

1 − 1) = −n2/R2

2 , (10)

using (8). This is strictly negative for n 6= 0, and describes a tachyonic mode rather

than a massless mode. This poses a puzzle. However note that if we consider an open

string state winding once along the x1 direction and carrying n units of momentum

along the x2 direction, then it has mass2

R2

1 +
n2

R2
2

− 1 = 0 . (11)

Thus in this case these open string modes give rise to the marginal deformation which

takes us back to the original D2-brane system with a magnetic field on it. This

calculation also illustrates the importance of quantization law of F ; if n in eq.(8) had

not been an integer, the spectrum of open strings on the D-string wrapped along x2

would not contain a massless state of this kind.

3. The analysis can be given a more intuitive interpretation in a T-dual language. For

this let us make an R → 1/R duality transformation along the x2 direction so that the

dual x̃2 direction now has radius R−1
2 . In that case the initial configuration describes

a D-string pointing along the vector (1, n) in the (x1, x̃2) plane. The total length of

such a D-string inside a unit cell is 2π
√

R2
1 + n2/R2

2. It can be easily verified that

when condition (11) is satisfied, the open string state on this D-string, carrying unit
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momentum along the D-string, is exactly marginal. Using the results of refs.[1, 15] we

can show that this marginal deformation takes the D-string to a D0-brane. We can

now go back to the original description by a reverse R → 1/R duality transformation

along the x̃2 direction. This gives us a D-string stretched along x2.

Thus we have established that there is a marginal deformation which takes us from

an initial configuration of D2-brane with n units of magnetic flux to a D1-brane lying

along x2. We shall now show that there is a relevant deformation of the CFT which takes

this D1-brane to a D2-brane wrapped on T 2, but with no magnetic flux. As seen from

eq.(10), the ground state of an open string with unit winding along the x1 direction, and

no momentum along the x2 direction, represents a tachyonic mode, and hence a relevant

deformation of the boundary CFT. We shall now investigate the effect of switching on this

relevant perturbation on the conformal field theory describing the D-string. This is indeed

a well studied problem, and can be recognised as such by going to the T-dual description

in which we make an R → (1/R) duality transformation along the x1 direction. This takes

the D-string to a D2-brane wrapped on the dual torus, and the open string states with unit

winding along x1 to open string states with unit momentum along the dual x̃1 direction. As

has been shown in refs.[17, 18], the effect of perturbation by open string vertex operators

carrying unit momentum along the x̃1 direction is to take the D2-brane to a D1-brane lying

along x2. Going back to the original description by another R → 1/R duality transformation

along x̃1, we see that the final configuration is a D2-brane wrapped on the original torus

T 2, without any background magnetic field.

Thus by a combination of marginal and relevant deformations we can take a D2-brane

wrapped on T 2 with n units of magnetic flux to a D2-brane wrapped on T 2 with no magnetic

flux. In open string field theory the effect of a marginal deformation can be represented by a

continuous deformation of string field configuration via on-shell field configurations, whereas

a relevant deformation of the kind discussed here can be represented by a continuous defor-

mation of string field configuration via off-shell field configurations. (To see how relevant

deformation can be regarded as a continuous deformation via off-shell field configuration,

we can take the solution given in ref.[19], and continuously deform each component of the

string field from 0 to the final value appropriate for the solution.) Thus the result of this

paper implies that in string field theory describing dynamics of a D2-brane wrapped on T 2,

there is a continuous deformation via off-shell string field configurations which can interpo-

late between a configuration with n units of magnetic flux through T 2 and a configuration
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with 0 unit of magnetic flux through T 2. This establishes the desired result.

One can give a slight twist to this tale by taking R1 to be 1 instead of the value given

in eq.(8). In this case the x1 radius of the auxiliary system, given by
√

1 + n2R−2
2 , is larger

than 1, and as a result the open string vertex operator with unit momentum along the x1

direction is relevant rather than marginal. Nevertheless, the analysis of refs.[17, 18] tells us

that under this relevant deformation the auxiliary CFT flows to that describing a D-string

along x2. The arguments given earlier then shows that the same must be true also for the

original system consisting of a D2-brane with n units of magnetic flux.

Now start with a different configuration, − a D2-brane wrapped on the same torus but

without any magnetic flux. For R1 = 1 the ground state of the open string with unit

momentum along x1 is massless and describes an exact marginal deformation which takes

the D2-brane to a D1-brane lying along x2. Thus we see that starting with two different D2-

brane configurations, one with magnetic flux and one without magnetic flux, we reach the

same D1-brane configuration. This in turn shows that the codimension one soliton formed

by tachyon condensation on the original D2-brane is independent of the magnetic flux on

the brane. This is precisely what is predicted according to the conjecture that we are trying

to verify.

We conclude with the following observations:

• The analysis of this paper can also be applied to the D-brane anti-D-brane system or

non-BPS D-brane in type II string theories. Magnetic field on a non-BPS D-brane does

not give rise to any Ramond-Ramond (RR) charge, and so the possibility of changing

this magnetic field does not violate any conservation law. For a D-brane anti-D-brane

system only a special combination of the magnetic field on the two branes can be

switched on this way, − the one which does not give rise to any RR charge.2 Thus

there is again no conflict with conservation of RR charges.

• The main lesson learnt from the analysis of this paper is that whereas the description

of the world-volume theory of the D-brane in terms of the effective action involving

tachyon and the massless fields captures many of the important features, it fails to

capture all the important properties of the system. This point has already been

advocated forcefully in ref.[13] in a different context. Here we see another illustration

of the same phenomenon. Field configurations which are disconnected in the low

energy effective field theory get connected to each other in the full string theory. On

2I would like to thank S. Minwalla for discussion on this point.
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the other hand, description of the D-brane system in terms of conformal field theory

is suitable for studying condensation of tachyons into a lower dimensional soliton,

but not into the vacuum. Thus full-fledged string field theory seems to be the only

framework for studying all aspects of the problem.
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