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Abstract

We test the validity of the Siegel gauge condition for the lump solution of cubic open
bosonic string field theory by checking the equations of motion of the string field com-
ponents outside the Siegel gauge. At level (3,6) approximation, the linear and quadratic
terms of the equations of motion of these fields are found to cancel within about 20%.
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1 Introduction

String field theory[1, 2] has turned out to be a very powerful tool for directly verifying the

various conjectures[3, 4, 5] about tachyon condensation on unstable D-branes of bosonic

and superstring theories. There are two main conjectures: 1) the state corresponding

to the tachyon condensed to the minimum of its potential is the closed string vacuum

state without any D-brane, and 2) suitable classical solutions involving the tachyon field

represent the various lower dimensional D-branes. Both the conjectures make statements

about nonperturbative field configurations on a D-brane. It is natural that in a second

quantized string theory which defines string theory off-shell, one should be able to verify

these conjectures directly. Various works in second quantized string theories have been

done towards this direction both in the context of bosonic string [7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and superstring theories [26, 27, 28, 29, 30].

Witten’s cubic string field theory[1] is one of the candidates for the second quantized

string theory in the bosonic case. Although the action of this theory is at most cubic in

fields, there are infinite number of terms in the action. Therefore performing computations

is in general difficult. But fortunately the argument of universality[31, 32] and application

of symmetry properties, − all of which help in truncating the string field consistently to

a subspace of the full configuration space, − combined with the level truncation method

introduced by Kostelecky and Samuel[6] have made computations possible. The work of

refs.[7, 9] has verified the first conjecture in bosonic string theory to a very high degree

of accuracy. In the work of ref.[12] the verification of the second conjecture has been

performed by explicitly constructing the codimension one lump solution on a D-brane

wrapped on a circle, and verifying that the energy of the solution corresponds to that

of the unwrapped D-brane of one lower dimension. Computations have been done for
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various values of the radius of the circle and with a modified level truncation scheme.

This analysis has also been extended to the higher codimension solutions[13, 14].

The cubic string field theory is a gauge theory. Therefore in this case one has to deal

with the gauge-fixing conditions. Because of the infinite number of fields present in the

theory, it is difficult to show the reasonability of a given gauge choice in general. Both, the

construction of the nonperturbative vacuum solution[7, 9] and the lump solution[12, 13, 14]

have been carried out using the Siegel gauge condition. But acceptance of these solutions

is subject to the validity of this gauge chosen for the solutions. In ref.[18] the stringy

BRST invariance of the nonperturbative vacuum solution has been explicitly checked in

the level truncation scheme. This is equivalent to checking the validity of the Siegel gauge

for the solution by ensuring that the equations of motion of the fields outside the Siegel

gauge are automatically satisfied by the solution obtained in the Siegel gauge. In this

paper we attempt to check the validity of the Siegel gauge for the lump solution given

in ref.[12] using similar method. We will perform computations only for the value of the

radius
√

3 and use the modified level truncation method introduced in ref.[12].

The rest of the paper is organized as follows. In sec.2 we give the description of

the setup in which we perform our computation. This is basically a review of the setup

considered in ref.[12], the only exception being that the set of string fields is extended

to include the fields outside the Siegel gauge. In sec.3 we explain, in the context of the

lump solution, the approach taken to test the validity of a gauge choice for a specific

solution. Finally in sec.4 we give our results up to the level (3, 6) in the modified level

truncation scheme. Although this is done only for radius R =
√

3, the analysis can be

easily extended to the other values of the radius analysed in ref.[12].

2 Review of the Setup

Here we review the general setup considered in ref.[12] in computing the lump solution in

a modified level truncation scheme. We will follow the same notations and conventions

adopted in this paper.

• Action: We consider a D-brane in the 26 dimensional bosonic string theory. The

cubic open string field theory action on the D-brane is given by:

S = − 1

g2
o

(

1

2
〈Φ, QBΦ〉 +

1

3
〈Φ, Φ ∗ Φ〉

)

, (2.1)
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where the string field Φ is a ghost number 1 state in the Hilbert space of the combined

matter-ghost conformal field theory. The BRST charge QB, the BPZ inner product

〈A, B〉 and the star product A ∗ B have their usual meaning. This action possesses

gauge invariance with the following gauge transformation law:

δ|Φ〉 = QB|Λ〉 + |Φ ∗ Λ〉 − |Λ ∗ Φ〉, (2.2)

where |Λ〉 is a ghost number zero state.

• Background: The background considered in ref. [12] is of quite general type. The

total matter conformal field theory CFT on the open string world-sheet is,

CFT = CFT(X) + CFT′, (2.3)

with

CFT′ = CFT(Y ) ⊕ CFT(X0) ⊕ CFT(M). (2.4)

Here X is the world-sheet scalar field corresponding to a direction x along the D-

brane which is compactified on a circle of radius R and the scalar fields Y and X0

correspond to respectively a space-like non-compact direction y transverse to the

D-brane, and the time direction x0. M is an arbtrary manifold describing the rest

of the compactification of space-time with the only restriction that any noncompact

direction of M is transverse to the D-brane2. This effectively makes the D-brane a

D-string aligned along x in the non-compact part of the space-time.

• Consistent truncation: For a lump solution which varies only along x, the back-

ground fields can carry momentum only along the x direction. As was shown in

ref.[12], in constructing this solution we can use a truncated version of the string

field theory where we take the string field to be a linear combination of states cre-

ated by the ghost oscillators, and the Virasoro generators of CFT(X) and CFT′,

on parity even primary states of CFT(X). Furthermore, the Siegel gauge condition

excludes the excitations involving the ghost oscillator c0. Since in the gauge invari-

ant action one has to include these states, the truncated spectrum is generated by

acting the oscillators
{

LX
−1

, LX
−2

, · · · ; L′
−2

, L′
−3

, · · · ; c1, c0, c−1, c−2, · · · ; b−2, b−3, · · ·
}

(2.5)

on either
2 This restriction was made in ref. [12] just to make the D-brane have a finite mass.
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– the zero momentum parity-even primary states of CFT(X) (with the null states

removed), or

– the Fock vacuum states of the form cos
(

n
R
X(0)

)

|0〉.

Among these states we must keep only those which have ghost number 1 and are

twist even. The latter property requires that the total contribution to L0 eigenvalue

of the state from the matter and ghost oscillators is odd.

• Modified level truncation scheme: Ref.[12] has introduced a modified level

truncation scheme which is applicable in a more general situation. The level of a

field is defined as the difference between the L0 eigenvalue of the corresponding state

and the zero momentum tachyon state. Then the level (M, N) approximation to

the action is obtained by keeping all fields with level M and below, and keeping all

terms in the action with total level N and below.

3 Testing Validity of the Siegel Gauge for the Lump

Solution

While making a gauge choice it has to be ensured that any field configuration can be

brought to lie on the gauge slice under a gauge tranformation. Whether a gauge choice

is good in this sense or not can depend on the class of field configurations considered

in a given problem. For example, for the twist even cofigurations, the Siegel gauge,

namely b0|Φ〉 = 0, is a good gauge choice near Φ = 0. But the vacuum solution found

in refs.[6, 7, 9] or the lump solution found in ref.[12] is far away from Φ = 0. Thus

the arguments showing the validity of the Siegel gauge near Φ = 0 are not applicable

here. In order to show that the Siegel gauge is a valid gauge choice for a solution of this

kind, one needs to verify that the solution obtained in the Siegel gauge satisfies the full

set of gauge invariant equations of motion. Since the solutions in the Siegel gauge are

constructed by setting to zero the variation of the gauge fixed action with respect to the

fields satisfying the Siegel gauge condition, what needs to be checked is that the equations

of motion (derived from the gauge invariant action) of the fields which do not satisfy the

Siegel gauge condition are also satisfied. For the vacuum solution this was verified in

ref.[18]. To check the validity of Siegel gauge for the lump solution in this approach one

follows the following steps in the modified level truncation scheme:
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• Compute the action S (eqn. (2.1)) by expanding the string field |Φ〉 in the truncated

Hilbert space without implementing any gauge condition.3

• Find the equations of motion of the fields outside the Siegel gauge.

• Check if these equations of motion are satisfied by the lump solution obtained in

the gauge fixed theory.

A given term in the action S can be linear, quadratic or cubic in a given field. Since

in the lump solution all the fields outside the Siegel gauge are set to zero, in verifying

the equations of motion we need to take the first derivative of the action with respect to

various fields and then set the fields outside the Siegel gauge to zero. Thus only those

terms in the action which are linear in fields outside the Siegel gauge contribute to the

equation of motion of these fields. These are the terms we need to compute.

Let us take the following expansion for the truncated string field:

|Φ〉 =
∑

a

φa|Φa〉 +
∑

n

φn|Φn〉, (3.1)

where the indices a and n run over respectively the states inside the Siegel gauge and

outside the Siegel gauge. Then the part of the action which contributes to the equation

of motion of a specific field φn is:

− 1

g2
o





∑

a

Can φa +
∑

a,b

Cabn φaφb



 φn, (3.2)

where Cαβ = Cβα = 〈Φα, QBΦβ〉 and Cαβγ = Cαγβ = 〈Φα, Φβ ∗ Φγ〉.4 Therefore the

correponding equation of motion is:
∑

a

Can φa +
∑

a,b

Cabn φaφb = 0. (3.3)

One has to check the above equation in the modified level truncation scheme.

4 Checking Equations of Motion for Fields Outside

the Siegel Gauge

Here we will check the equations of motion for fields outside the Siegel gauge in the

modified level truncation scheme. We will present results upto the level (3, 6).
3i.e. using the oscillators in (2.5)
4That the coefficients Cαβγ are same even for non-cyclic permutations of the indices α, β, γ, is a

property of the truncated spectrum. Here the indices α, β, γ run over all fields in the truncated spectrum.

6



We start by making a list of the relevant fields. In table 1 some classes of states have

been listed with their vertex operators and levels. The relevant fields which get involved

in the computations are the coefficients of these states in the expansion of the string

field. The states which are inside the Siegel gauge, namely |Tn〉, |Un〉, |Vn〉, |Wn〉 and |Zn〉
are precisely the ones which have been considered in ref.[12] for constructing the lump

solution. The states |Rn〉 and |Sn〉 are outside the Siegel gauge as they involve the c0

oscillator.

Table 2 shows the fields5 and their levels which get involved in our computation upto

level (3, 6) for R =
√

3. The fields in the square brackets i.e. r0, r1 and s1 are the ones

outside the Siegel gauge. We will check the equations of motion for these fields.

State Vertex Operator Level
R2 = 3

|Tn〉 = c1| n
R
〉 c cos

(

n
R
X

)

n2/R2

|Un〉 = c−1| n
R
〉 1

2
∂2c cos

(

n
R
X

)

2 + n2/R2

|Vn〉 = c1L
X
−2
| n
R
〉 TX c cos

(

n
R
X

)

2 + n2/R2

|Wn〉 = c1L
′
−2
| n
R
〉 T ′ c cos

(

n
R
X

)

2 + n2/R2

|Zn〉 = c1L
X
−1

LX
−1
| n
R
〉 c ∂2

(

cos
(

n
R
X

) )

2 + n2/R2

|Rn〉 = b−2c0c1| n
R
〉 b ∂c c cos

(

n
R
X

)

2 + n2/R2

|Sn〉 = c0L
X
−1
| n
R
〉 ∂c ∂

(

cos
(

n
R
X

) )

2 + n2/R2

Table 1: The Hilbert space states relevant for constructing the lump solution.

The notations that we will use is as follows. Linear part of eqn. (3.3), i.e.
∑

a Can φa

computed using the level (M, 2M) approximation to the action, will be denoted by

L(M, 2M). Similarly Q(M, 2M) will denote the quadratic part of eqn. (3.3), namely,
∑

a,b Cabn φaφb .

Results

We define K = 3
√

3

4
. For R =

√
3 we have the following results:

The Field r0:

L(2, 4) =
1

2
v0 +

25

2
w0 − 3 u0 (4.1)

5Following ref.[12], we denote a field by the lowercase symbol corresponding to the uppercase symbol
used for the corresponding state.
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Level Fields

0 t0
1/3 t1
4/3 t2
2 u0, v0, w0, [r0]

7/3 u1, v1, w1, z1, [r1], [s1]
3 t3

Table 2: Fields in the Hilbert space up to level 3.

Q(2, 4) = −K t2
0
− 1

2
K1−2/R2

t2
1
+

√
3

2
t0u0 +

5

12
√

3
t0v0 +

125

12
√

3
t0w0 (4.2)

Since contribution to the linear term L should come only from a certain level which is

(2, 4) in this case, L will have the same expression for any higher level. Q in general

varies as one changes the level.

Q(7/3, 14/3) = Q(2, 4) − 1

2
K1−8/R2

t2
2
+

√
3

4
K−2/R2

t1u1

+
125

24
√

3
K−2/R2

t1w1 +
(

8

27R2
+

5

54

)

K1−2/R2

t1v1

+
(

11

8R2
− 1

R4

)

K−1−2/R2

t1z1 (4.3)

Q(3, 6) = Q(7/3, 14/3) +
703

324
√

3
u2

0
− 179

972
K v2

0
− 9475

972
K w2

0

−5
√

3

108
u0v0 −

125
√

3

108
u0w0 −

625

1458
K v0w0 (4.4)

The Field r1:

Here L gets contribution at the level (7/3, 14/3).

L(7/3, 14/3) = −3

2
u1 +

1

2

(

4

R2
+

1

2

)

v1 +
25

4
w1 +

3

R2
z1 (4.5)

Q(7/3, 14/3) = −K1−2/R2

t0t1 −
1

2
K1−6/R2

t1t2 +

√
3

4
K−2/R2

t0u1
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+
1

2

(

1

R2
+

5

16

)

K−1−2/R2

t0v1 +
125

24
√

3
K−2/R2

t0w1

+
(

11

8R2
− 1

R4

)

K−1−2/R2

t0z1 +

√
3

4
K−2/R2

t1u0

+
(

5

54
− 16

27R2

)

K1−2/R2

t1v0 +
125

24
√

3
K−2/R2

t1w0 (4.6)

Q(3, 6) = Q(7/3, 14/3) +

√
3

8
K−6/R2

t2u1 +
(

5

64
− 3

4R2

)

K−1−6/R2

t2v1

+
125

108
K1−6/R2

t2w1 +
1

2

(

11

8R2
− 9

R4

)

K−1−6/R2

t2z1 (4.7)

The Field s1:

L(7/3, 14/3) =
1

R2
u1 −

3

R2
v1 −

2

R2

(

1 +
2

R2

)

z1 (4.8)

Q(7/3, 14/3) = − 1

2R2
K−1−2/R2

t0u1 +
1

2R2
K−1−2/R2

t1u0 (4.9)

Q(3, 6) = Q(7/3, 14/3) +
3

4R2
K−1−6/R2

t2u1 (4.10)

Now to get the numerical values of L and Q for different fields at a given level one has

to substitute the lump solution obtained in ref.[12] at that level. Table 3 displays these

solutions at different levels and table 4 shows the numerical values that we obtain after

substituting these solutions in the equations for L and Q given above.

From table 4 we see that for the equation of motion of each field, there is a high degree

of cancellation between the linear and the quadratic terms in the equation of motion. The

last column explains clearly the degree of this cancellation, − we see that the sum of the

quadratic and the linear term is typically about 10-20% of the linear term alone. This

may not seem to be a very good result, but we note that in the corresponding calculation

for the vacuum solution at level (2,6) (t0 = .544, u0 = .190, v0 = w0 = .0560)[6, 32], the

linear and the quadratic terms in the equation of motion of r0 are given by respectively

0.158 and -0.124. These add up to about 22% of the linear term. Thus at this level our
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Field (2, 4) (7/3, 14/3) (3, 6)

t0 0.25703 0.265131 0.269224

t1 -0.384575 -0.394396 -0.394969

t2 -0.107424 -0.12046 -0.125011

u0 0.0888087 0.0900609 0.0969175

v0 -0.00675676 -0.0175367 -0.0172906

w0 0.0317837 0.0299617 0.0320394

u1 ... -0.0643958 -0.0648543

v1 ... 0.0540447 0.0505836

w1 ... -0.0187778 -0.0189058

z1 ... -0.0698363 -0.0665402

t3 ... ... -0.0142169

Table 3: The values of various modes of the string field at the stationary point of the
potential for R =

√
3 calculated at various levels of approximation.
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Field Level L Q L+Q (L+Q) / L

r0 (2, 4) 0.127492 -0.098026 0.0294657 0.231119

(7/3, 14/3) 0.0955702 -0.0838568 0.0117134 0.122563

(3, 6) 0.101095 -0.0881436 0.0129511 0.128108

r1 (7/3, 14/3) -0.0410629 0.0323025 -0.00876042 0.213342

(3, 6) -0.0410517 0.0325827 -0.00846901 0.206301

s1 (7/3, 14/3) 0.00208592 -0.00198787 0.0000980474 0.0470043

(3, 6) 0.00173186 -0.00131896 0.000412898 0.238413

Table 4: The linear (L), quadratic (Q) and total (Q+L) contribution to the equations of
motion of the fields outside the Siegel gauge. The last column shows the degree to which
the linear and the quadratic terms cancel.

results for the lump solution are as good as those for the vacuum solution. As has been

verified in ref.[18], the cancellation betwen the linear and quadratic terms in the equations

of motion of the vacuum solution improves to about 1% when we use the solution at level

(10,20) approximation.6 We could therfore expect a similar improvement of the results

for the lump solution when we go to higher level.

This provides evidence that the equations of motion of the fields outside the Siegel

gauge are automatically satisfied by the solutions obtained in ref.[12] in the Siegel gauge.

From the last column of table 4 one may notice that for the field s1 the cancellation at

level (7/3, 14/3) is much better than that at level (3, 6). This at a first glance, may seem

to show that the level truncation scheme fails to work in this case. This however is not

the case, as can be seen from that fact that the cancellation for the field r1 at level (7/3,

14/3) is much worse than that for s1, and so the high degree of cancellation for the field s1

should be treated as accidental. Indeed, at any given level of approximation it is always

possible to take the independent fields at level 7/3 to be appropriate linear combinations

6Note that although the authors of ref.[18] used the solutions obtained at the level (10,20) approxi-
mation, in computing the contribution to the equations of motion of the field r0 they only used the level
(2,6) approximation. Presumably contribution from fields at higher level do not alter the results.
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of r1 and s1 so that the derivative of the action with respect to one of these fields is very

small (or even zero) when we substitute the Siegel gauge solution obtained at that level.

It so happens that in the level (7/3, 14/3) approximation s1 is the linear combination for

which the equation of motion is satisfied very closely. But clearly this does not establish

that the level (7/3, 14/3) approximation is better than the level (3,6) approximation, −
what is required for the approximation to be good is that the contribution to the equations

of motion of both the fields should be small. As can be seen from table 4, the cancellation

for r1 is actually better at level (3,6) than at level (7/3, 14/3). Thus we cannot conclude

that the cancellation becomes worse when we go from level (7/3, 14/3) to level (3,6).

It is true however that on the whole, the degree of cancellation does not improve either

in going from level (7/3, 14/3) to level (3,6). This could be due to the fact that we do

not introduce too many new fields in going from the level (7/3, 14/3) to the level (3,6)

approximation.
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