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Abstract

In previous papers we built (multiple) D-branes in flat space-time as classical solutions
of the string field theory based on the tachyon vacuum. In this paper we construct
classical solutions describing all D-branes in any fixed space-time background defined by
a two dimensional CFT of central charge 26. A key role is played by the geometrical
definition of the sliver state in general boundary CFT’s. The correct values for ratios of
D-brane tensions arise because the norm of the sliver solution is naturally related to the
disk partition function of the appropriate boundary CFT. We also explore the possibility
of reproducing the known spectrum of physical states on a D-brane as deformations of
the sliver.
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1 Introduction and summary

Much work has been done in understanding various conjectures about tachyon conden-
sation on D-branes in bosonic string theory [fl, B, B] using cubic open string field the-
ory [H] (SFT). Although the results are very impressive, they ultimately rely on nu-
merical study of the solutions of the equations of motion using the level truncation
scheme [, B, [, B, B. [0, [T, [2. [3, [4, I3, 4, [7, [, [9, BT, 2T, P2, B3, P4l In a
series of three papers [29, B0, Bl] we attempted an analytic approach to the issues of
tachyon condensation by proposing a candidate string field theory action which describes
string field theory expanded around the tachyon vacuum. As opposed to the conventional
cubic SF'T where the kinetic operator is the BRST operator () g, here the kinetic operator
Q is non-dynamical and is built solely out of worldsheet ghost fields.j In this class of
actions the absence of physical open string states around the vacuum is manifest. Gauge
invariance holds, and therefore basic consistency requirements are expected to be satis-
fied. Furthermore we showed that this theory contains classical solutions representing
D-p-branes for all p < 25, with correct ratios of tensions, thereby providing a non-trivial
check on the correctness of our proposal. The key ansatz that made this analysis possible
was that the string field solution representing a D-brane factorizes into a ghost part ¥,
and a matter part ¥,,, with ¥, the same for all D-branes, and ¥,,, different for different
D-branes. The ¥, representing the D25 brane is a particular surface state of the corre-
sponding boundary conformal field theory (BCFT) known as the sliver ([, B3, Bd, BI].
In this paper we discuss the construction of D-brane solutions in this theory using
conformal field theory techniques. This construction has certain conceptual and practical
advantages. In the construction of ref. [BQ] we obtained an expression for the ratio of
tensions of different D-branes in terms of ratios of determinants of infinite matrices. There
was no analytic understanding, however, why this ratio gave the expected answer. In the
approach taken here, the correct values of all ratios of tensions are obtained manifestly.
Furthermore the analysis given in this paper can be carried out in the background of any
bulk conformal field theory (CFT), for any D-brane described by an appropriate BCFT.[{
We start with some fixed space-time background described by a particular bulk CFT,
and choose once and for all a specific reference BCFT, denoted as BCFT,. We define our
string field to be a state in the Hilbert space of BCFTy. In the analysis of refs.[29, BJ, B]

'For some early attempts at understanding the open string tachyon, see refs.[@]. For field theory
models of tachyon condensation, see refs.[@, |. Study of tachyon condensation using renormalization
group approach has been carried out in refs.[R§].

2A subset of this class of actions was discussed previously in ref. @]

3Throughout this paper a specific BOCFT will refer to the boundary conformal field theory associ-
ated with a single D-brane. Multiple D-brane solutions will be obtained by first constructing solutions
corresponding to the individual D-branes, and then taking appropriate superposition of the solutions.



the D25-brane BCFT played the role of BCFT,. As in those works, we seek solutions of
the form ¥, ® ¥,,, where the ghost component ¥, is universal, but the matter part ¥,,
varies from one solution to another. Under this factorization hypothesis, the matter part
of the string field satisfies a simple equation: it squares to itself under x-multiplication.
One particular solution of this equation is the matter part of the sliver state of BCFT\.
We identify this state as the solution representing the D-brane associated with BCFTy,
generalizing the identification of the D25-brane solution as the sliver of the corresponding
BCFT [B0, B1ll.

In the conformal field theory description [[[T]], the sliver is regarded as a surface state by
using the standard procedure for associating a BCFT state to every Riemann surface with
a boundary, with one puncture at the boundary and a local coordinate at the puncture.
The sliver is described as the surface state associated with a specific once-punctured disk.
This description of the sliver is universal in the sense that the state takes exactly the
same form for any BCFT when written in terms of the Virasoro operators of the BCFT.
It is therefore natural to expect that, just as in the case of BCFTy, the sliver of an
arbitrary BCFT describes the D-brane associated with that BCFT. In order to regard
different D-branes as different solutions in the SFT, however, we need to express the
slivers associated with these different BCF'T’s as states in the Hilbert space of BCFT,.
We find an explicit algorithm for doing this. The solution constructed this way correctly
reproduces the tension of the D-brane associated with the specific BCFT (up to an overall
normalization constant which is the same for all D-branes). This is a nontrivial result
that follows because the tension, in vacuum SFT, is given by the BPZ inner product of
the solution with itself, and we show that this inner product is simply related to the disk
partition function in the specific BCFT. The identification of the disk partition function
with the D-brane tension is a well-known result [B4, B3, Bd, B7, Bg that has played a
crucial role in the study of tachyon condensation in boundary string field theory [BY, [0,

BT, B2, 3, {4, i3, £4, {7, i)

The paper is organized as follows. In section ] we give a brief summary of the results
of refs.29, BO. In section f we give a detailed review of the construction of the sliver
as a surface state associated with a once-punctured disk with a local coordinate at the
puncture. We describe it in various coordinate systems which are useful in our analysis.
We also explain why it is a well defined state, in that the inner product of the sliver
with any BCFT state associated with a vertex operator is computable and finite. This
is not a priori obvious, since the state arises in a limit where the local coordinate at the
puncture becomes singular. Nevertheless, SL(2,R) invariances of the state allow geomet-
rical representations where the local coordinate is non-singular, and the resulting state is
manifestly regular. It is significant that even the regular geometrical description of the



sliver is unusual in that the open string midpoint, which usually is somewhere inside the
disk, reaches the boundary of the disk. This fact gives an intuitive understanding of the
left-right factorization of the sliver functional, a key result in the analysis of [B1, f9]. Our
discussion also addresses star multiplication of surface states, and explains why the sliver
squares to itself under star multiplication.

In section { we use the universal description of the sliver to construct solutions of the
SFT equations of motion describing different D-branes in some fixed space-time back-
ground. We take for the space-time background some fixed bulk CFT with central charge
26, and choose a reference boundary conformal field theory BCF Ty, in whose state space
the string field takes value. The matter part of the sliver of BCFTy is the matter part of
a solution describing the D-brane corresponding to BCFT,. We show in section [l 1] that
every other D-brane in this space-time background, described by some other boundary
conformal field theory BCFT’, can also be obtained as a solution in this SF'T. We explic-
itly write down the classical solution describing this D-brane, and verify that it satisfies
the equations of motion and correctly reproduces the tension of the D-brane. In section
A we show that solutions describing D-branes associated with two different BCFT's x-
multiply to zero, and hence we can construct multiple D-brane solutions by superposing
them. We also give a construction of identical coincident D-branes.

In section f.3 we discuss the construction of classical solutions corresponding to a
two dimensional field theory obtained by deforming BCFT, by a relevant or marginal
boundary operator. The results bear strong resemblance to those of boundary string field
theory, except for one important difference. In boundary string field theory, the coef-
ficient of a relevant deformation is driven to infinity (or more generally to the infrared
fixed point) by the equations of motion. In contrast, here we get a solution of the equa-
tions of motion for arbitrary value of this coefficient. When we compute the tension of
the corresponding solution in section [.4, however, we recover the partition function on
a disk of the deformed boundary conformal field theory (which we call BCFT'), with
the coefficient of the perturbation driven to its infrared fixed point due to a conformal
transformation involving infinite rescaling. Thus the conclusion is that different values of
these coefficients describe the same D-brane solution — the one associated with BCF T[]
For exactly marginal deformations, of course, different values of the coefficient represent
genuinely different solutions.

If BCFT' and BCFTy are related by an exactly marginal deformation, we can also
study small deformations of the solution by taking the perturbing parameter to be small.
This is done in section [l.J. We show in section [.§ that these small deformations can be
thought of as covariant derivatives of the sliver state with respect to a canonical theory-

4This had been earlier anticipated by Witten [50].



space connection introduced in ref. [pI]. We also discuss the background independence of
vacuum string field theory in the language of connections over theory space.

In section | we address the question of the spectrum of physical states around the
solution describing the D-brane associated with BCF'T,. Since general excitations around
this solution involve both matter and ghost oscillators, this problem cannot be studied
completely without knowing the form of the kinetic operator Q and the ghost part ¥,
of the D-brane solution. We make an attempt to study this problem in section p.1] by
restricting ourselves to excitations of the factorized type with the same universal ghost
part ¥, but arbitrary fluctuations in the matter sector. We find that we do get solutions
of the linearized equations of motion for every dimension-one primary in the matter part
of BCFTy, as is expected of the open string spectrum on a D-brane. We also need to
determine which of these solutions could be related by linearized gauge transformations.
Again, without detailed knowledge of Q, we proceed with a restricted class of gauge
transformation parameters described in section .3 which preserve the factorized form of
the linearized fluctuations. Section describes some subtleties that arise in studying
the normalization of states. We discuss a plausible resolution leading to some interesting
conclusions. First, it is strongly suggested that the kinetic operator Q of vacuum SF'T
must annihilate the identity operator. Second, we find that any linearized solution to the
equations of motion with finite BPZ norm is pure gauge. Physical states are then argued
to be associated with states whose BPZ norm diverges logarithmically in the parameters
defining finite versions of the sliver. Although these criteria lead us to identify sliver
deformations by dimension-one primaries as physical states, it is not clear how dimension
one nulls and non-primary operators are removed from the spectrum.

We conclude in section fj with a discussion of some general aspects of the string field
theory around the tachyon vacuum.

2 Review of vacuum string field theory

In this section we shall briefly describe the results of refs.[B9, BQ]. In these papers we

proposed a form of the string field theory action around the open bosonic string tachyon

vacuum and discussed classical solutions describing D-branes of various dimensions. In

order to write concretely this theory we choose to use the state space H of the combined

matter-ghost boundary conformal field theory (BCFT) describing the D25-brane. The

string field W is a state of ghost number one in H and the string field action is given by:
171

S = - §<\II,Q\II)+%(\II,\D*\I/) : (2.1)



where ¢y is the open string coupling constant, Q is an operator made purely of ghost
fields, (, ) denotes the BPZ inner product, and * denotes the usual *-product of the
string fields [ff]. Q satisfies the requirements:

Q(A* B) = (QA)* B+ (—-1)"Ax(QB), (2.2)
(QA,B) = —(-)"(A,9B).

The action (B.1) is then invariant under the gauge transformation:
OUW=0A+UxA—-AxT, (2.3)

for any ghost number zero state A in H. Ref.[Rd] contains candidate operators Q satisfying
these constraints; for our analysis we shall not need to make a specific choice of Q. The
equations of motion are

QU+ U sl =0. (2.4)

In ref. B0 we made the ansatz that all D-p-brane solutions in this theory have the
factorized form:
UV=v,0V,, (2.5)

where W, denotes a state obtained by acting with the ghost oscillators on the SL(2,R)
invariant vacuum of the ghost BCF'T, and V,, is a state obtained by acting with matter
operators on the SL(2,R) invariant vacuum of the matter BCFT. Let us denote by *¢ and
*™ the star product in the ghost and matter sector respectively. Eq.(R-4) then factorizes
as

QU, = -V, VU, (2.6)
and

v, =V, «x"W¥,, . (2.7)

We further assumed that the ghost part ¥, is universal for all D-p-brane solutions. Under
this assumption the ratio of energies associated with two different D-brane solutions, with
matter parts W/ and W,, respectively, is given by:

(W3 [W0) m
(Wi Wn)im

with (-]-),, denoting BPZ inner product in the matter BCFT. Thus the ghost part drops
out of this calculation.

(2.8)

In ref. [B0] we constructed analytically the matter part of the solution for different D-
p-branes, and verified numerically that we get the correct ratio of tensions of D-p-branes
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using eq.(2-§). The matter part of the D-25-brane solution was given by the sliver state
|Z) which will play an important role in the analysis of this paper. The construction of
|Z) will be reviewed in section B

In this paper, we shall be using a more general setup. Instead of restricting ourselves to
D-branes in flat space-time, we shall consider a general space-time background described
by some arbitrary bulk CFT. The role of the D25-brane, in whose Hilbert space the string
field takes value, is played by some fixed D-brane in this background associated with a
specific BCFT. We shall call this BCET,. The matter part of |Z), described as a surface
state in BCF'T, then describes the D-brane associated with BCET.

3 The various pictures of the sliver

In this section we will examine the sliver state |Z) from its geometrical definition. In
this context we take the opportunity to describe in detail the various ways the sliver can
be presented. We emphasize how, despite its origin as a surface state with a singular
coordinate, it is a well-defined state satisfying = « = = =. Although we are interested
in the matter part of the sliver, we shall work in most part with the full sliver including
the ghost sector, so that there is no central charge contribution to the various conformal
transformations and gluing operations. Having established that = x = = =, we can then
use the factorization property of the s-product to conclude that =, ™ =,, = Z,, with
suitable normalization of =, (which could be infinite, but is universal in the sense that

it does not depend on the specific choice of matter BCFT).

3.1 Viewpoints on surface states

The sliver is a ghost number zero state that has a universal definition. It is a surface
state, which means that for any given BCF'T it can be defined as the bra (Z| associated
to a particular Riemann surface X. The surface in question is a disk D with one puncture
P at the boundary. Moreover, there is a local coordinate at this puncture. The local
coordinate at the puncture for the case of the sliver is obtained by a limiting procedure,
to be reviewed and elaborated below.

We shall begin with a general discussion of surface states associated with a disk with
one puncture. A local coordinate at a puncture is obtained from an analytic map m
taking a canonical half-disk Hy defined as

Hy : {[¢] < 1,3(¢) = 0}, (3.1)

into D, where £ = 0 maps to the puncture P, and the image of the real segment {|{| <
1,3(§) = 0} lies on the boundary of D. The coordinate £ of the half disk is called the

8



Figure 1: A punctured disk D with a local coordinate around the puncture P. The coordinate
is defined through a map m from a canonical half disk Hy to the disk. The arcs AM and M B
in D represent the left half and the right half of the open string respectively.

local coordinate. For any point @ € D in the image of the map, £(m~1(Q)) is the local
coordinate of the point. Using any global coordinate u on the disk D, the map m can be
described by some analytic function s:

u=s(), u(P)=s(0). (3.2)

Figure [[] shows a disk D with a local coordinate around the puncture P. The image under
m of the semicircle || = 1, corresponding to the curve AM B in Fig[l] is usually referred
to as the open string. The image of point M, corresponding to £ = i, is called the string
midpoint. The image of the arc AM is called the left-half (as seen from the interior of
D) of the open string, and similarly the image of M B is called the right-half of the open
string. If we denote by o = % In € the coordinate along the string, then the left-half of the
string corresponds to the region 0 < o < 7 and the right-half of the string corresponds
to the region § < o < m. The image of the half-disk Hy in the u-plane, shown by the
shaded region in Figfll, will be called the local coordinate patch.

Given this geometrical data, and a BCF'T with state space H, the state (| € H* asso-
ciated to the surface ¥ is defined as follows. For any local operator ¢(), with associated

state |¢) = limg_ ¢(£)]0) we set

(Xl¢) = (s0¢(0))p, (3-3)

where ( )p corresponds to correlation function on D and s o ¢(0) denotes the conformal
transform of the operator by the map s(§), i.e. the operator ¢(§ = 0) expressed using the
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appropriate conformal map in terms of ¢(s(0)). For a primary of dimension h, so ¢(0) =
#(s(0))(s'(0))". The right hand side of eq.(B-J) can be interpreted as the one point function
on D of the local operator ¢ inserted at P using the local coordinate ¢ defined there. We
also call, with a small abuse of notation, |¥X) € H a surface state; this is simply the
BPZ conjugate of (¥|. While computations of correlation functions involving states in
‘H requires that the map s be defined only locally around the puncture P, more general
constructions, such as the gluing of surfaces, an essential tool in the operator formulation
of CFT, requires that the full map of the half disk Hy into the disk D be well defined.

At an intuitive level (¥| can be given the following functional integral representa-
tion. Consider the path integral over the basic elementary fields of the two dimensional
conformal field theory, — collectively denoted as ¢, — on the disk D minus the local
coordinate patch, with some fixed boundary condition ¢ = ¢y(c) on the boundary AM B
of the local coordinate patch, and the open string boundary condition corresponding to
the BCF'T under study on the rest of the boundary of this region. The parameter o is the
coordinate labeling the open string along AM B, defined through ¢ = €?. The result of
this path integral will a functional of the boundary value ¢o(c). We identify this as the
wave-functional of the state (X|. (For describing the wave-functional of [X) we need to
make a 0 — (7 — o) transformation.) On the other hand the wave-functional of the state
|¢) can be obtained by performing the path integral over ¢ on the unit half-disk in the &
coordinate system, with the boundary condition ¢ = (o) on the semicircle, open string
boundary condition corresponding to the BCFT on real axis, and a vertex operator ¢(0)
inserted at the origin. We can now compute (¥|¢) for any state |¢) in H by multiplying
the two wave-functionals and integrating over the argument (o). The net result is a
path integration over ¢ on the full disk D, with the boundary condition corresponding to
BCFT over the full boundary and a vertex operator ¢ inserted at the puncture P using
the & coordinate system. This is precisely eq.(B.J).

For future use, we shall now describe three canonical ways of defining the surface state
(3|, using three presentations of the disk D. In the first one, we present D as the unit
disk Dy : |w| < 1 in a w-plane. The puncture will be located at w = 1, and the local
coordinate described as

w=f(€), w(P)=f0)=1. (3-4)
This is shown in Figure B(b). In this presentation we have that eq.(B.3) takes the form

(Zl9) = (f 0 ¢(0)) p, (3.5)

In the second presentation of D we map it to the upper half plane (UHP) with global
coordinate z, and locate the puncture at z = 0. We will denote this upper half-plane as

10



Dy. More concretely, we define z through the relation
_ 1+z
1z’
which maps the UHP, labeled by z, to the unit disk Dy. We then have that the local
coordinate around P in this presentation takes the form:

w = h(z)

(3.6)

2= h7"(w) = r7(f(&) = () (3.7)
In this presentation eq. (B.3) can be rewritten as
(B19) = (F 0 ¢(0)) by - (3.8)

where ( )p,, denotes correlation function on the upper half plane. The disk Dy with its
coordinate is shown in figure B(c).

Finally, we introduce the third presentation, where the disk D is mapped into a disk
D having the special property that the local coordinate patch, i.e. the image of the half
disk Hy in 5, is particularly simple. With global coordinate w, the image of Hy appears
as a vertical half-disk of unit radius, with the curved part of Hy mapped to the imaginary
axis and the diameter of Hy mapped to the unit semi-circle to the right of the imaginary
axis (see Fig.Pl(d)). This is achieved by taking, for £ € Hy,

IR

B = h(E) = 1 -

(3.9)

In this presentation the rest of D may take a complicated form. We can now rewrite

eq.(B3) as
(Xlg) = (ho¢(0))5, (3.10)
where () 5 denotes the correlation function on the disk D with appropriate open string

boundary condition at the boundary of D. In this description the information about the
state is encoded in the shape of the disk D.

3.2 The sliver surface state defined

We can now define the sliver state following the route originally taken through a limit of
certain ‘wedge states’ [[1]]. We shall give this description in all three pictures by explicitly
specifying the maps f(£), f(€) and the disk D. In doing so we will refer to Fig.B, [, and
B. We begin by giving the description on the unit disk Dy. We define for any positive
real number n > 0

Ly (3.11)

wn = ful€) = (WO = (T3

11



w = h(§)

B
(©) (d)

Figure 2: Three canonical presentations of the disk D. (b) Disk presented as the unit disk Dy
with global coordinate w.A(c) Disk presented as the upper half plane Dy with global coordinate
z. (d) Disk presented as D with global coordinate w. Here the image of Hy is also a half-disk.

which for later purposes we also write as

wy, = exp(i% tan_l(g)) . (3.12)

As already pointed out before, the map h(§) takes the canonical half disk into a similar
presentation, with the puncture now on the curved side of a half-disk (Figure f-b). More-
over the string midpoint M at ¢ = i is mapped to h(i) = 0. The map w, = (h(£))*™
makes the image of the canonical half-disk into a wedge with the angle at w, = 0 equal
to 2m/n. Figure (B-c) shows the disk Dy in the w,-plane with the puncture and the local
coordinate. For any fixed n we call the (n| the resulting surface state. Thus we have

(nlg) = (faod(0))p,  Vo. (3.13)

12



u = h(¢)
<—
Wn
n— h_l( n)
2% A Z—:U
MR/
.\\\\\ D
B
D
() 0 (d)

Figure 3: The definition of wedge states for arbitrary n. (a) The canonical half disk Hy. (b)
The map of Hy into a vertical half-disk. (¢) The inclusion of the vertical half-disk of (b) into
the disk Dy with global coordinate w. (d) The map of Dy into the upper half plane Dy.

The state obtained when n = 1 is the identity state (see Figure fla). For this state
the local coordinate patch in the w,, plane covers the full unit disk Dy with a cut on the
negative real axis. The left-half and the right-half of the string coincide along this cut.
The state n = 2 is the vacuum state. In this case the image of Hy covers the right half
of the full unit disk Dg in the w, plane. In the n — oo limit, the image of Hy in the
w,, coordinate is a ‘thin sliver’ of the disk Dy (Figure @-b). It was seen in [[] that the

13



limit n — oo of (n| gives rise to a well-defined state. In the next subsection we shall give
a detailed explanation for this result. This surface state (=|, called the sliver, has the
property that the left-half and the right-half of the string are as far as they can be on the
unit disk.

Next we describe the state |n) using the coordinate z on the upper half plane (see
Figf-d). We have

o= by — i ;‘w": _ tan(—% nw,). (3.14)
The composition of (FTZ) and (FT3) gives (]
- tan(%tan_l(f)) = (0, (3.15)
and we have )
(n|d) = (fn o ¢(0))py - (3.16)

Finally we introduce the coordinate w for the presentation of the surface state |n)
using a disk D. Using egs.(B.9) and (B.I11]) we see that

Wy, = (wy)™? . (3.17)

This is simply the map inverse to that taking Figfb to Fig[J-c, but extended for all of
Dqy. Under this map the unit disk Dg in the w,-coordinates is mapped to a cone in the

w, coordinate, subtending an angle nm at the origin w,, = 0. We shall denote this cone
by D,,. Thus we have

(n|¢) = (ho¢0))5, - (3.18)

In the n — oo limit D,, can be viewed as an infinite helix, as shown in Fig .

3.3 Using SL(2,R)-to resolve singular coordinates

All three descriptions of the sliver, using eqs.(B.13), (B-16) and (B.I§), are apparently
singular. (BI3) and (BIf) are singular since the corresponding maps f,(€) and f,(€),
defined in eqgs.(B.1]]) and (B.I7) are singular in the n — oo limit. On the other hand,
(B-I§) is singular since the region D,, becomes a cone with infinite excess angle at the
origin in the n — oo limit. We shall now show that these are only apparent singularities,
and that for any Fock space state |¢), (Z]¢) is a perfectly finite number.

The main ingredient of the proof will be the SL(2,R) invariance of the correlation
functions in the upper half plane. Given any SL(2,R) map R(z), we have the relation:

<H Oi(zi))py = <HR 0 Oi(xi)) Dy » (3.19)

14



n — oo

N

oy

Do
Identity (Z| Sliver (=]

(a) (b)

Figure 4: (a) The surface state corresponding to the identity string field (Z|. Here the image
of Hy covers the full disk, except for a cut in the negative real axis. (b) The surfaces state
corresponding to the sliver (Z|. Here the image of Hy covers an infinitesimally thin sliver
around the positive real axis.

for any set of operators O; and with Dy denoting the upper half plane. Thus we can
rewrite equation (B.16) as:

(n|¢) = (Rn 0 fn 0 $(0))p,, , (3.20)

for any set of SL(2,R) maps R,. Thus if we can find a sequence of maps R,, such that
R, o f, approaches a finite limit f as n — oo with f(£) non-singular at the origin, then
we can define the sliver (Z| through the relations:

(Elg) = (f 2 ¢(0))py - (3.21)
In this case we choose:
R.(z) = =z, (3.22)

so that

= lim gtan (g tan_l(g)) =tan ' ¢. (3.23)



Figure 5: Using w global coordinates the sliver appears as a cone with infinite excess angle—
namely, an infinite helix. The segments AM and BM represent the left-half and the right-half
of the string. The local coordinate patch, represented by the shaded half disk shown to the
right, must be glued in to form the complete surface.

Since this map is non-singular at £ = 0, this provides a finite answer for (Z|¢) for any
Fock space state |¢), thereby providing a non-singular description of the sliver. We shall
denote by

7= f(g), (3.24)

the new coordinate on Dy. This picture of the sliver state is shown in Figure [i(a,b).
The local coordinate patch has become the full strip bounded by the lines (2') = £7 /4.
These two semiinfinite lines are the left- and right- halves of the string. They meet at
the midpoint M which has been sent to z/ = ioco. This is actually the only reminder
that the sliver state is a limit of a sequence of fully regular states. While the coordinate
at the puncture can be taken to be regular at this limit, and thus the state (Z| is well-
defined, in this limit the map of Hy into the disk fails to be regular at one point. The
string midpoint has been sent to the boundary of the disk. While this does not affect any
computation involving Fock space states, this fact is significant in that it shows that there
1s no fully regular geometric presentation of the sliver. This might cause some worry since,
as mentioned before, for gluing purposes the image of the arc {|{| =1, 0 < arg({) < 7}
should be inside the disk. We shall see, however, that gluing operations involving the
sliver can be made well-defined despite this singularity.

This description of the sliver can be obtained by considering another sequence of maps.
For this we introduce a new coordinate system

1
B =5 0@, (3.25)
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Figure 6: The regular presentations of the sliver surface state with non-singular coordinates at
the puncture. In (b) the disk D is the full upper half plane, and the image of the local coordinate
disk Hy is the vertical strip whose boundaries are the left-half and right-half of the string. The
string midpoint is at infinity. (¢) Mapping Dy back to a unit disk with v’ = h(z") we find a
regular presentation on the disk.

The cone ﬁn in the w, coordinate system maps to a semiinfinite cylinder CAZ'n in the Z,
coordinate system with Z,, spanning the range:

TSRE)S (G- T SE) 20, LxZAng (3.26)
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The local coordinate patch is the region:
—7m/4 <Rz, <74, I(Z,) >0. (3.27)

This has been shown in Fig. []. The relationship between Zz, and the local coordinate &

follows from eqs.(B.9) and (B.29):
2, =tan ¢ = f(€). (3.28)
Thus we have
(nlg) = (fod(0))g, Vi) eMH. (3.29)
Note now that using the periodicity along the (Z,) direction we could take the range of

R(Z,) to be —nw/4 < R(Z,) < nw/4. In this case as n — oo, C,, approaches the full UHP
and the coordinate Z,, approaches the coordinate 2z’ introduced earlier.

Figure 7: The finite n approximation to the sliver presented in the Z,, coordinate.

Having obtained a regular description of the sliver we can map it back to the unit
disk by writing w’ = h(z’), with h defined in (B.6). This gives us Figure [f-c; the regular
presentation in the disk. The only remnant of the singular origin is the fact that the
open string midpoint reaches the boundary of the disk and the open string develops a
cusp at the midpoint. As a result of this, at least intuitively, the surface representing the
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sliver appears to be cut into two disjoint pieces by the local coordinate patch. One could
therefore expect the wavefunctional of the sliver to factorize into two wavefunctionals,
one corresponding to the data on the left-half of the string, and the other to the data on
the right-half of the string. It was seen in refs. [B1], 9] that this intuitive expectation is
indeed realized.

We would like to emphasize that the use of SL(2,R) invariance to resolve singular
coordinates is most effective for once punctured disks. For the case of three punctured
disks, the three (distinguishable) punctures can always be fixed at three points and there
are no SL(2,R) invariances left. If the local coordinate at one puncture is singular, nothing
can be done about it. This is not the case for once punctured disks, because after fixing the
position of the puncture there are powerful conformal isometries left over.f] For example,
after fixing the puncture at z = 0, the maps Z = az/(cz 4+ d) do change the looks of the
local coordinate as shown in Figure §. Even though the local coordinate patch in the z or
Z upper half planes look different, and even though the functions Z = §(¢) and z = g(¢§)
are different, as Riemann surfaces with local coordinates they are indeed identical. For
the case of two punctured disks, with punctures fixed at z = 0 and z = 1, for example,
the maps Z = az/(z + (a — 1)) preserve the punctures. Near z = 0 the map looks like
Z =az/(a—1) and near z = 1 it looks like Z =1+ (2 — 1)(a — 1)/a. Since the scaling
factors are inverses of each other, if only one coordinate is singular it cannot be resolved.
Only particular cases when the coordinates are singular in a related way could be resolved.

Figure 8: The power of conformal isometries in resolving singular coordinates on once-punctured
disks is illustrated by showing two versions of a disk (Dg and D) that, while looking different,
represent the same Riemann surface. Using an ¢ — oo limit one could resolve a vanishingly
small image of Hyy in Dp.

5 This of course does not mean that any singularity of the local coordinate patch can be removed by
such transformations, but there is a reasonable degree of freedom.
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3.4 Star multiplication of surface states

The star multiplication of two surface states is easiest to describe by representing them
in the w coordinate system. Let us assume that we have two such surface states, and
associated with them are the regions D and D' , which describe the images of the disk in
the corresponding @ coordinate system. Each of these disks contain as a subspace the
region h(Hy ), — the local coordinate patch. We shall denote by R and R’ the complement
of h(Hy) in D and D’ respectively. By an abuse of notation we shall denote the surface
states associated with the disks D and D’ by |R) and |R’) respectively. This is represented
diagrammatically in Figure f], where in parts (a) and (b) we show two surface states |R)
and |R') built in this way. The regions h(Hy) have been shown shaded in this figure.
In fact, once we have made it clear that the local coordinate is presented in the specific
fashion chosen here, we could simply represent pictorially the surfaces as only the regions
R, namely the image of the full disk minus the local coordinate patch.f]

If the surface states are presented this way, the star multiplication |R) % |R’) is readily
performed. One removes the local coordinate patches from the disks D and D' , and glues
the right half (as viewed from the region of D outside the local coordinate patch) M B of
the R open string to the left half A’M’ of the R’ open string. The result is the composite
region R - R’ shown in the figure. This region represents the star product of the states,
namely

IR) % [R') = |R-R'). (3.30)

In this region, the string is AM B’, with AM the left half, and M B’ the right half. The
local coordinate patch shown to the right, must be glued in to produce the full picture of
the surface state.

We now discuss the multiplication of wedge states [n). As we have already discussed,
in the @ coordinate system relevant for the state (n|, the disk becomes a cone subtending
an angle mn at the origin. If we remove the local coordinate patch the left over region
becomes a sector of angle m(n — 1). If we denote by |R,) a sector state arising from a
sector of angle o, we have the identification of sector states with wedge states:

|n> = |R7r(n—1)>- (331)

Moreover, it is clear from our discussion above that star multiplication of sector states
simply gives a sector whose angle is the sum of those in the product:

Ra) * |Rs) = [Ras) (3.32)

6Leaving off the local coordinate, of course, carries a small risk of confusion, especially because the
local coordinate patch could be presented in other canonical ways, for example, as semi-infinite strips.
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R -R')

(c)

Figure 9: Star multiplication of surface states is simple if the states are presented with w
coordinates, in which case the local coordinate appears as a (shaded) half-disk in the disk D.
Here are shown two surface states; |R) in (a), and |R’) in (b). The star product is shown in (c)
and is obtained gluing the regions R and R’ as indicated, and attaching the half disk (shown to
the right) representing the local coordinate and the puncture.

This is illustrated in Figure [[]. Indeed the multiplication rule (B.39) is consistent with
In) * |m) = |n +m — 1), which is the familiar multiplication rule for wedge states[] The

"We hope the reader will not be confused by the dual use of the term surface state. In the wedge
states, the focus is on the local coordinate which looks like a wedge inside a unit disk, in the sector states,
the focus is on the complement of the local coordinates in the disk when the local coordinate patch is
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A/
wor | s M
M/
B’ Rg B
Ra A’
B Ra+8

B/

Figure 10: The star multiplication of a sector state with angle a to a sector state with angle
[ gives a sector state with angle oo + 3. Sector states are just another presentation of wedge
states.

sliver arises from n — oo and therefore corresponds to a sector state with infinite angle!
This state was shown schematically in Figure fJ. Indeed, it should be noted that among
sector states only two can multiply to themselves, according to (B-39). One is the zero-
angle sector state |Rg) which is the identity |Z) (or the wedge state |n = 1)). The other
is the sliver, which can be viewed as the zero angle wedge state, or as the infinite angle
sector state. Indeed, from (B.33) we have |Ry) * [Roo) = |Roo)-

For later use it will be useful to work out the precise relationship between the different
coordinate systems appearing in the description of the product state |R,+s) and the states
|R.) and |Rg). Again this is simple in the @ coordinate system. For this let us take

a=m(m-—1), f=mn—1), a+pf=n(m+n—2). (3.33)

If we denote by w,,, W, and W,,;,_1 the W coordinates associated with the sector states
|Ra), [Rs) and |Rap) respectively, we have
Wy in R,

dow, i Ry . (3.34)

Wm+4n—-1 = {

In the Z, coordinate system introduced in eq.(B.29) the gluing relations (B.34) take a very

presented as a half-disk. This complement looks like a sector.
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simple form:

~

Zm for
Zmin_1 = (3.35)
Zo+3(m—1)m  for
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4 General D-brane solutions

In this section we shall give deformations of the sliver to generate new solutions of the
equations of motion representing D-branes described by general BCFT’s. The general idea
is simple. We denote by BCF'T the reference BCFT in whose Hilbert space the string
field takes value. The sliver of BCF'T(, whose matter part represents the D-brane solution
associated with BCFTy, is the surface state described in the previous section, with the
specific boundary condition corresponding to BCFT, on the boundary of the surface. To
get a solution representing the single D-brane of some other boundary conformal field
theory BCFT’ we must represent the sliver of BCFT’ on the state space of BCFT, as
we now explain. The construction assumes that BCFT, and BCFT’ have the same bulk
conformal field theory, but of course, differ in their boundary interactions.

Usually the sliver = of BCFT’ will be described in the same manner as discussed
in the last section, with all the correlation functions now being calculated in BCFT".
This, however, would express =’ as a state in the Hilbert space H' of BCFT’, since in
eq.(B:2]), for example, ¢ will now represent a vertex operator of BCFT'. In order to
express =’ in the Hilbert space of BCFT,, we adopt the following procedure. As discussed
in section B3, at an intuitive level, the wave-functional for (='| is a functional of ¢y (o)
with o = % In ¢ labeling the coordinate along the string, obtained by functional integration
over the two dimensional fields ¢ on the full disk (UHP in this case) minus the local
coordinate patch, with boundary condition ¢ = ¢o(c) on the boundaries (2') = £7/4,
and the boundary condition appropriate to BCFT’ on the rest of the boundary of this
region (2’ real, |R(2")| > 7/4). On the other hand given a state |¢) in the Hilbert space H
of BCFTy, we represent the wave-functional of |¢) as a functional of (o), obtained by
performing path integral over ¢ in the inside of the local coordinate patch with boundary
condition appropriate for BCF'T, on the real axis, the vertex operator ¢ of BCF'T| inserted
at the origin in the local coordinate system &, and the boundary condition ¢ = (o)
on the semi-circle. Finally in order to calculate (Z'|¢) we take the product of the wave-
functional of (Z'| and the wave-functional of |¢) and integrate over ¢y(c). The result
will be a functional integral over the fields ¢ on the full UHP, with boundary condition
appropriate to BCFT’ in the range |R(z')| > 7/4, boundary condition corresponding to
BCFT, for |R(2')| < 7/4 and the vertex operator ¢ inserted at the origin in the local
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coordinate system. This can be expressed as

(Z'¢) = (f o 0(0))", (4.1)
where ( )” denotes correlation function in a theory where we have BCFT’ boundary
condition for |R(z")| > /4 and BCFT, boundary condition for |R(2')| < n/4. ¢ is a
vertex operator in BCFTy and f(£) = tan~! ¢ as usual.

In what follows, we shall show that after appropriate ultraviolet regularization, =’
defined this way squares to itself under x-multiplication, and also has the right tension
for describing a D-brane associated to BCFT’. We will begin by considering this general
case in the next subsection. Then we will discuss the situation where BCFT’ is replaced
by a general two dimensional field theory obtained from BCF'T( by some boundary per-
turbation.

4.1 Solution describing an arbitrary D-brane

We shall now describe the construction of the solution of the SFT equations of motion de-
scribing a D-brane corresponding to an arbitrary boundary conformal field theory BCFT'
with the same bulk CFT as BCFT,. We start with the definition of =" given in eq.([L.T)).
The effect of the change of the boundary condition beyond |z/| > /4 can be represented
by inserting boundary condition changing vertex operator o* (discussed e.g. in [52, BJ])
at @’ = +m/4. In other words we can express (1) as

(E16) = (f 0 6(0)o* (o™ (= 7)) (4.2)
If we denote by D and D’ the D-branes associated with BCFT, and BCFT’ respectively,
then o denotes the vertex operator for the ground state of an open string whose left
end (viewed from inside the UHP) is on the D’-brane and right end is on the D-brane,
whereas 0~ denotes the vertex operator for the ground state of open string whose left
end is on the D-brane and right end is on the D’-brane. In anticipation of short-distance
divergences, we shall actually put 0~ and o™ at (=7 —€) and (§ + €) respectively, where
€ is a small positive number. We shall also use the description of the sliver as limit of
finite n wedge states in the Z,, coordinate introduced in eq.(B.25). Thus we have

=) — T +(T -(h__T_
(_\¢)_7}Lngo<fo¢(0)a (4 +€)U (27T 1 €)>5n (4.3)
We now calculate =’ * Z'. From the gluing relations (B.33) we get,

- = . T _ 1
(Z'x =gy = m’lyllr_l’)loo<f o ¢(0) a+(1 + e) o ((% — Z)ﬂ' - e)



Thus the o* at %(m — %)7? =+ € come close as ¢ — 0 and give rise to a divergent factor
(2¢)72" where h is the conformal weight of o*. Hence we have Z' * =’ = (2¢)72"Z'. This
requires us to redefine Z' by absorbing a factor of (2€)?", so that it squares to itself under
x-multiplication

2= 5 - ZhxEh =2, (4.5)

We note, however, that even for finite ¢, the state =/ still squares to itself. Indeed, the
product ot (3(m — 3)m + €)oo~ (3(m — 3)m — €) can be expanded in an operator product
expansion, and since these operators are moved to oo in the m,n — oo limit, only the
identity operator in this operator product expansion would contribute. The coefficient of
the identity operator is given by (2¢)~2" even for finite e.

Since BCFT, and BCFT' differ only in the matter sector, it is clear that |=/;) has the
factorized form

Ek) = 1Z9) ® [ERm) » (4.6)

where =, is a universal ghost factor. Normalizing =, (which is independent of the choice
of BCFT’) such that =, Y =, = Z,, we can ensure that

Zrom ¥ ERam = ERm - (4.7)

Thus we can now construct a new D-brane solution by taking the product [¥,) ® |Z%,,.),
where |U,) is the same universal ghost state that appears in the construction of the
D-brane solution corresponding to BCFT.

We shall now calculate the tension associated with this new D-brane solution. For
this we need to compute (Z7 ,,|=% ,,,)m, Where the subscript m denotes matter. We have,

(Ehm|Zm)m = (26)" (E1Z00m (4.8)

Calculation of (Z! |=! )., is again simple in the Z,, coordinate system. We first compute
the x-product of the two states, and then in the final glued surface with coordinate
Zmin—1 We remove the local coordinate patch —w/4 < R(Z,,1n—1) < 7/4 and identify the
lines R(Zpyn_1) = 7/4. This produces the semi-infinite cylinder C,,4pn_o defined by
T <R(emgn—2) < § +(m+n—2)7 and (2m4n—2) > 0. We therefore find

(E 2N, = m}rilrgoo<a+ (% + e) o ((% — i)ﬁ - e)
a+(% — i)w + e)a‘ (%(m +n—1)m— % - e)>5m+n2 . (4.9)

where the correlation function is now being computed in the matter BCFT. We get a

factor of (2¢€)7*" coming from o inserted at (% — 1)m =+ € as before, but there is another
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factor of (2¢)~2" coming from the other o* insertions that happen at points separated by
a (minimal) distance 2¢ on the cylinder Coin_s. These exactly cancel the explicit factor
of (2¢)* in (f£]). Since from the definition of o it is clear that in the ¢ — 0 limit we
have BCFT” boundary condition on the full real z,,,,_» axis, we find that (=% ,,|Z%,,)m
is given by the partition function of the deformed boundary CFT on the CN’ern_g cylinder
(BCFT') ~ Zp,(BCFT'), (4.10)

== 7
<HR7m ~R7m>m o ZCern72

where in the last step we relate this partition function to the one on the standard unit
disk. This is possible because of conformal invariance. Any constant multiplicative factor
that might appear due to conformal anomaly depends only on the bulk central charge
and is independent of the choice of BCFT’. This can at most give rise to a universal mul-
tiplicative factor. Since the partition function of BCFT’ on the unit disk is proportional
to the tension of the corresponding D-brane [B4, B3, Bd, B1, Bg, we see that the tension
(ERm|ZRm)m computed from vacuum string field theory agrees with the known tension
of the BCF'T” D-brane, up to an overall constant factor independent of BCFT".

Arguments similar to the one given for Z' x =’ show that the result (:I0) holds even
when e is finite. In this case we have two pairs of 0% on the boundary, with the first pair
being infinite distance away from the second pair. Thus we can expand each pair using
operator product expansion and only the identity operator contributes, giving us back the
partition function of BCFT’ on the disk. From this we see that we have a one parameter
family of solutions, labeled by e, describing the same D-brane. We expect these solutions
to be related by gauge transformations, since 0.Z%,, has finite norm (as can be easily
verified) and hence is pure gauge according to the arguments to be given in section [.

4.2 Multiple D-branes and coincident D-branes

We first consider the construction of a configuration containing various D-branes associ-
ated to different BCFT’s. To this end, we note that the star product =« = of the BCFT’
solution and the BCFT, solution vanishes. Indeed, using the same methods as in the
previous subsection, the computation of Z/ x = leads to the cylinder C’m+n_1 with a o™
insertion at I + € and a o~ insertion at (% — 1) —e. In the m,n — oo limit, ¢~ moves off
to infinity and as a result the correlation function vanishes since ¢~ has dimension larger
than zero as long as BCFTy and BCFT are different. Similar arguments show that Z+Z’
and (=,,|Z],)m also vanish. Thus the matter part of =+ Z/; is a new solution describing
the superposition of the D-branes corresponding to BCFTy and BCFT’. Since no special
=1, =N =

assumptions were made about BCFTy nor BCFT, it follows that Z/«Z" = Z"% =" = 0 and
(= |ZY,, = 0 for any two different BCEFT' and BCET”, and hence we can superpose any
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number of slivers to form a solution. This in particular also includes theories which differ
from each other by a small marginal deformation. Special cases of this phenomenon, in
the case of D-branes in flat space-time, have been discussed in ref.[g].

This procedure, however, is not suitable for superposing D-branes associated with the
same BCF'T, i.e. for parallel coincident D-branes. For example, if we take BCFT’ to differ
from BCFT, by an exactly marginal deformation with deformation parameter A, then in
the A — 0 limit the operators o* both approach the identity operator (having vanishing
conformal weight), and although the argument for the vanishing of = % Z" holds for any
non-zero A, it breaks down at A = 0.

In order to construct a superposition of identical D-branes, one can proceed in a
different way. First consider getting coincident BCFT( branes. To this end we introduce
a modified BCFT sliver

(E4¢) = m (o o(0)x* (7 +e)x (57 =7 —))s, (4.11)
Here x* are a conjugate pairf] of operators of BCFTy, having a common dimension h
greater than zero, and representing some excited states of the open string with both ends
having BCFTy boundary condition. Thus, throughout the real line we have BCFT, bound-
ary conditions. We require that the coefficient of the identity in the OPE x~ (z)x™ (y) is
given by |z —y| =2 and that this OPE does not contain any other operator of dimension
<0.

The clear parallel between eqn. ({.I1]) and eqn. ([.J), describing the BCFT" D-brane,
implies that an analysis identical to the one carried out in the previous section will show
that:

1. This new state =, (after suitable renormalization as in eq.([L.H)) squares to itself
under x-multiplication.

2. The BPZ norm of the matter part of =, is proportional to the partition function of
BCFTj on the unit disk.

3. E, has vanishing *-product with =.

Thus the matter part of this state gives another representation of the D-brane associ-
ated with BCFTj, and we can construct a pair of D-branes associated with BCFT, by
superposing the matter parts of = and =, .

This construction can be easily generalized to describe multiple BCFTy D-branes. We
construct different representations of the same D-brane by using different vertex operators

8We need to choose x* to be conjugates of each other so that the string field is hermitian.
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x* in BCFT, satisfying the ‘orthonormality condition’ that the coefficient of the identity
operator in the OPE of x~(x)xW*(y) is given by d;;|z —y| =", and that this OPE does
not contain any other operator of dimension < 0. The correponding solutions =, ;) all have
vanishing s-product with each other, and hence can be superposed to represent multiple
D-branes associated with BCF'T|,.

If instead we want to construct a superposition of identical BCFT’ D-branes, we need
to replace o in eq.(.d) by another pair of vertex operators 7= which represent some
excited states of open strings with one end satisfying BCFT, boundary condition and
the other end satisfying BCFT’ boundary condition. The corresponding state =/

T

will
give another representation of the D-brane associated with BCFT’, having vanishing -

" as long as the operator product of o~ with 77 does not contain the

product with =
identity operator or any other operator of dimension < 0. Hence we can superpose these
solutions to construct new solutions.

This procedure of adding vertex operators near /4 to create new solutions repre-
senting the same D-brane is the BCF'T version of the use of excited states of half-strings

[B1, (9] for the same purpose.

4.3 Finite deformations of the sliver

We shall now consider a class of solutions associated with the sliver for boundary field
theories which are not necessarily conformal. Let us begin with the description of the
sliver of BCFTy given in the Z, coordinate system defined in eq.(B:25). We have from
eq.(B-29):

(El6) = lim (f 0 9(0))5, VI6) € M, (4.12)
with f(£) = tan™'¢, and (-) denotes correlation function calculated in BCFT,. Now
suppose V is a local vertex operator in the matter sector of BCFT,. We define a new
state (ZV*| through the relation:[]

(E"¢) = lim (exp ( /\/ o V(wa)den)fod(0),  V]e) € H, (4.13)

n

where z,, = R(Z,), A is a constant, and the integration is done over the real z, axis
excluding the part that is inside the local coordinate patch. The description of this state
can be made more transparent by taking the full range of $(2,) to be [—%7, §7| with
the local coordinate patch in the region —% < R(2,) < 7, and then identifying Z, as the

coordinate 2’ on the upper half plane in the n — oo limit. This gives

<~V)\‘¢ exp )\//> "da')f o p(0 )> (4.14)

9A construction that is similar in spirit but uses a different geometry was suggested in ref. [@]
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where 2/ = R(2’). This expression should be treated as a correlation function in a theory
where on part of the boundary we have the usual boundary action corresponding to
BCFTy, and on part of the boundary we have a modified boundary action obtained by
adding the integral of V' to the original action. In defining this we need to use suitable
operator ordering, and regularization and renormalization prescriptions to remove the
short distance singularities (see e.g. ref.[p4] for a discussion of this). Typically this
requires V' to be of dimension < 1. In special cases, as discussed in [[I], we may also
be able to include operators of higher dimensions, but as we shall see later these do not
generate new solutions. We shall not explicitly take into account the effects of ultra-violet
divergences in our analysis, and hence the results of this and the next subsection will be
somewhat formal. The analysis, however, can be made concrete in specific examples, e.g.
of the kind discussed in refs. [1]]. If we regard the effect of A deformation to be a change
in the boundary condition, then (f.I4) represents a correlation function with BCFT,
boundary condition in the range —% < x < 7 and the modified boundary condition
outside this range.

We shall now show that |="*) satisfies the relation:

EVA x BV = 2V (4.15)

To compute the *-product in the left hand side of the above equation, we use the z,
coordinate system, keeping n finite and taking the n — oo limit at the end. The advantage
of using the z, coordinate system is in the simplicity of the gluing relations (B.35); since
the coordinate z,,,,_1 of the surface after gluing is related to the coordinates z,, and z,
of the original surfaces by simple shift, there is no conformal transformation of the factors

[V (x,)dx, except for the appropriate change of range. Thus the result of computing
EVA « 2V i

m_l
(B %2V ¢) = lim <exp )\ / o V(@min-1)dTmin1) (4.16)

m,n—00

exp ( /\/_5_—11 R V($m+n_1)d93m+n—1)f0¢(0)>

Cm+n71

This can be rewritten as

mtn—1__ =
T3

uy

4

~

<EV7)‘*EV7)“¢> = m,lrlLIEoo<eXp (—)\/ V(xm+n—1)d'rm+n—1)fo¢(0)> : (417>

C"m«ﬁ»nfl

This is precisely eq.(f.13) with n replaced by m +n — 1 (which is taken to infinity). This
establishes the required result ([L.I7).
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In composing the integrals in passing to ([[.I7) the insertions of V' do coincide at one
point, namely at Ty 4,1 = (5 — i)ﬂ'. This will cause additional divergences even if the
exponentials appearing in the definition of each =¥* are ultraviolet regularized. This

divergence can be regulated as in subsection f1] by defining Z¥** through eq.([13)), with

the z,, integral running from 7 + € to (§ — l)ﬂ' — ¢. Doing so, we miss in the exponent
of eq.(17) an integral of AV over the range ((% — )7 —€) < Tpip1 < (% — 17 +¢€)

compared to the expression for (£V*|¢). In the m,n — oo limit this region moves off to
infinity, and as a result contributes an ¢ dependent multiplicative factor to the correlation
function given by the expectation value of the missing operator in the deformed theory.[
This is the analog of the factor of (2¢)~2" which arose in the analysis of subsection 1],
and can be absorbed in the definition of Z* to ensure that it squares to itself under
sx-multiplication.

Since the operator V is in the matter sector, |=V**) has the factorized form

E) =15 @ =27, (4.18)

where =, is independent of V' and A. As before, with =, *7 =, = =, we ensure that

xR BN = 5N (4.19)

Thus we can now construct new D-brane solutions by taking the product |¥,) ® |=}:),

where |W,) is the universal ghost state that appears in the D25-brane solution.

4.4 Computation of the tension

We would now like to compute the tension associated with this solution. This is pro-

portional to (ZA|ZV4), [ Computation of this inner product is again simple in the 2,

coordinates and the relevant geometry was discussed above ([L9). We therefore find

m+n 1

(EVMENNm = lim (exp (- A / V(@min-2)dtmn-2))s . (420)
where Tpin—2 = R(zmin2). If we do a more careful analysis using the regularized

form of Z¥*, there will be two missing regions, each of width 2¢, in the exponent of
eq.(£20). These regions are infinite distance apart in the m,n — oo limit and each of

10We are assuming here that the correlation function of the missing operator in the deformed theory
satisfies cluster property.

HSince this computation involves matter sector fields only, there may be overall constant factors ap-
pearing at various stages due to non-zero central charge of the bulk matter theory. These are independent
of V and A and cancel when we compute the ratio of tensions.
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these regions give rise to an extra multiplicative factor, equal to the one that appeared
in the computation of =Z* x ZV*  in eq.([20). These exactly cancel the e-dependent
normalization of =V* required to ensure that the regularized =V** squares to itself under
x-multiplication. This is analogous to the corresponding phenomenon in section 1.

We now define a rescaled coordinate u as u = 4(zm4n—2 — §)/(m +n — 2) so that
R(u) ranges from 0 to 2x. Thus in the u coordinate we have a semiinfinite cylinder
C of circumference 27r. Writing uv = ip + 6, and taking into account the conformal
transformation of the vertex operator V under this scale transformation, we get:

(EVEYN = lim (exp (— Ar /0 : d6Vi(6))),.. (4.21)

m,n—00

where Ag [ Vi denotes the operator to which the perturbation A\ [V flows under the
rescaling by (m+n—2)/4. In particular, if V has dimension h, it does not mix with other
operators, and its conformal dimension remains unchanged under the renormalization
group flow, then we have

[ T A0V(0) = AL (m 4 n— 2 [ dov (o). (4.22)

6=0 4 0=0
This semiinfinite cylinder in the u coordinate is nothing but a unit disk Dy with 6 labeling
the angular parameter along the boundary of the disk, and e™” labeling the radial coordi-
nate. Thus what ([.21)) represents is the partition function on a unit disk, with the per-
turbation A [ Vr(0)df added at the boundary! Notice now that if V' is exactly marginal,
i.e. if h =1 to all orders, then the perturbation is simply —\ [Z™ d0V (), whereas if V is a
relevant deformation then h < 1 and in the limit m,n — oo, Ag [ d0Vg(0) approaches its
infrared fixed point A\;g [ dOV;r(6).[3 Thus the net result is that (ZV:*|ZV:}),, represents
the partition function on the unit disk of the BCFT to which the theory flows in the
infrared! As discussed below equation ([.I() this is indeed the tension of the D-brane
associated to this BCFT. Thus we conclude that |¥,) ® |=V) gives the D-brane solution
corresponding to the BCF'T to which the theory would flow in the infrared if we added to
the action the boundary perturbation proportional to [V (0)df. We emphasize that the

string field |¥,) @ |EY*) belongs to the state space of BCFTj.

In particular if we take V' to be the identity operator I, we see from eq.(f.13) that

ﬂ_%)ﬂ

(
(E"¢) = lim (exp(—A /7r /

12WWe shall not consider irrelevant perturbations as it is not clear how to tame the resulting ultraviolet
divergences. Since they flow to zero in the IR, such perturbations are not expected to give rise to new
solutions.

dz,)f o ¢(O)>an . Vo) eH. (4.23)

2
4
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For A > 0, this vanishes due to the infinite range of integration over z,,. Thus we get
|=5*) = 0 and hence |ZL*) = 0. This is consistent with the fact that the trivial solution
U = ( represents the tachyon vacuum configuration, and that in the boundary string field
theory formalism, perturbation by the identity operator takes the unstable D-brane to
the tachyon vacuum.

Note, however, that the solution ([.13) does seem to depend on A for more general
relevant perturbations. Since different values of A\ correspond to the same tension of the
final brane, we expect that they represent gauge equivalent solutions. Thus the parameter
A is analogous to the redundant parameter b labeling the lower dimensional D-p-brane
solutions considered in ref. [B0].[]

4.5 Small deformations of the sliver

From the analysis of subsection [i.J it is clear that when the operator V is relevant, the
state |2¥*) corresponds to a big change in field configuration since it gives rise to a
totally new D-brane solution corresponding to the BCFT to which the theory flows in
the infrared, whereas if V is exactly marginal, then for small \, |Z¥**) is a solution ‘close
to’ the original solution Z.[f] Thus we can define a small deformation AZ" around the
solution = through the relation:

EVA =Z 4+ AAZY +0(\?), (4.24)

and using eqs.(f.13) and (f.14) we find

@=Vg) = — g ([* 7 Vimdr.so00),,
= ( /> V(' o6(0)), . Vie) M. (4.25)

By expanding eq.([E15) in powers of A, it follows that AZY satisfies
ExAZV + AZV xZ = AEY . (4.26)

Thus |¥,) @ |AZ}Y) will describe small deformation of the string field theory solution
describing the D-brane corresponding to BCFTy. One can also give a direct proof of
eq.(£29) by using the x-product rules and the gluing relations (B.3F) as follows. For this
13This was suggested to us by Witten [@]
“Even though (Z,,|EY:*),, vanishes even for small \, we treat the solutions as ‘close’ in the sense that

the BCFT’s corresponding to A = 0 and A small have correlation functions which differ from each other
by small amount.
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we shall represent both AZY through the first of eq.(229) and = by a similar formula
without the [V (z,)dz, insertion for a fixed finite n and then take n — oo limit at the
end of the calculation. Using the by now standard procedure we get:

n(&-1)
(AZV % E|¢) = — lim </ * dxgn_1V(atgn_1)fo¢(0)>a
n—oo jus 2n—1
—_ —~V . W(n_%)
(2 AZV|g) = _JH&U(” ) V(wan1) foo(0), . (427)
™21 ne

Thus we have:

ﬂ(n—%)
(AZY % E|¢) + (2 AZV|¢) = — lim </ dazn-1V(w20-1) fo6(0)) . . (4.28)

n—o00 x Con—1

Introducing m = 2n — 1 we can rewrite this as

™ —%)
(AZY % E|¢) + (2% AZV|¢) = — lim </_ Ain V(en) fo3(0))s - (429)

m—00

This is precisely the expression ([.29) for (AZV|¢). Thus we see that A=Y satisfies

equation ([.26).

For later use we need to use a regularized expression for AZY by restricting the
n 1

integration range in (f£.25) to be [2'| > 7 + ¢, or equivalently, § +¢ <z, < (§ — )7 — €.
When we compute the analog of ([.:2§) with this regularized expression for AZY, and

compare this with the regularized version of (£.2]), we find that we miss an integral

- don 1 (V(won1)f 0 6(0)), (4.30)
2n—1

In the n — oo limit the integration region moves off to infinity and the correlator above

vanishes as long as V has dimension > 0. Thus the regularized A=V still satisfies eq.(f=20).

In the next subsection we shall interpret A=Y as an appropriate covariant derivative of the

surface state along a marginal direction in the space of boundary conformal field theories.

4.6 Background independence and theory-space connections

The string field theory action around the tachyon vacuum enjoys a fundamental prop-
erty: it has manifest background independence with respect to the open string moduli.
This observation will allow us to recover the construction of infinitesimal deformations of
classical solutions from the point of view of deformations along marginal directions in the
open string theory moduli space. To explain these ideas, we need to recall some notions
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about connections in theory space. Our discussion will follow [51], BJ], with some obvious
modifications needed for open strings.

Let us fix the CFT in the bulk (the closed string moduli) and for this given bulk CFT,
let us consider the space of BCFT’s, labeled by some continuous parameters {z°}. Each
point {z°} specifies a BCF'T, with its own state space H,. We have the structure of a
vector bundle, where the base is theory space (parameterized by {z*}), and the fiber at
each point z is ‘H,. Thus we can introduce connections on this vector bundle. While there
are many possible connections, a natural choice for open string field theory is the canonical
connection I [B]. On surface states, the associated covariant derivative D, acts as the
integration of the exactly marginal perturbation O, over the boundary of the Riemann
surface, excluding from the integration region the segments around the punctures where
local coordinates are defined:

D, (3| = —/ 42 (3:2']0,) . (4.31)
BE—UZ- D;

Here ¥ is a disk with n punctures on its boundary 9% with some global coordinate z.
The regions D; C 0Y are the images of the diameters of local coordinates half-disks
{1&] < 1,3(§) = 0}. The surface state (3; 2’| is the n + 1-punctured disk obtained by
introducing an extra puncture on ¥ at the boundary point z = 2/, with local coordinate
¢ =z — 7. Finally O, is an exactly marginal operator of the boundary CFT inserted at
this new puncture.

The reflector state[? 12(R| and the cubic vertex 193(V3| are covariantly constant with
respect to this connection:

—~

Dy1a(R| =0,  Dyya3(Vs| =0. (4.32)

This follows immediately from the fact that the local coordinate patches cover completely
the two and three punctured disks associated to 13(R| and 123(V3|, so that in both cases
0¥ —U; D; is the empty set. We can rephrase (f.39) by saying that D\s acts as a derivation
of the * product:

/D\s(¢1 * (hy) = /D\s¢1 * Qg + @1 * ﬁs¢2 ’ (4.33)

where ¢; and ¢4 are two sections of the vector bundle.
At each point z in theory space, exactly marginal deformations are represented by
dimension one primaries Oy of the matter BCF'T. Thus for each exactly marginal direction

15The reflector 12(R)| is the two-punctured disk with punctures at z = 0 and z = oo in UHP coordinates,
with local coordinates & = z around z = 0 and & = —1/z around z = co. The reflector provides the
definition of the BPZ inner product: (¢|¢) = 12(R]| )1 |®)2.
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s, the covariant derivative D, does not involve any ghosts and commutes with the purely
ghost kinetic operator Q of vacuum string field theory,

[D,, Q] =0. (4.34)

The string field action (B.]) is naturally a function on the vector bundle. S(¥) is indeed
S(y', x) where 1" are components along the vectors in H,. It can be written as

S(W.2) = = = [ SRIB Q) + WMD) (4.35)

It follows from the definition of a covariant derivative of functions on a vector bundle

(such derivative measures how the function changes as we move on the base, and on the
fiber by parallel transport) and relations (f.33) and (£.34) that

D,S=0. (4.36)

This is the statement of manifest background independence of the vacuum string field
theory: there is a (canonical) connection I' so that the action is covariantly constant.
This means that vacuum string field theory is independent of the choice of the reference
boundary conformal field theory BCFT, — string field actions using nearby BCFT's are
identical when the string fields are related by an homogeneous field redefinition generated
by parallel transport with the connection . This is simpler than for conventional string
field theory [BJ], where the covariant derivative of the action is nonvanishing and the
requisite field redefinition includes a constant shift and other terms in addition to parallel
transport.

Consider now a solution ¥* = W, ® W7 of the vacuum string field theory equations
corresponding to a certain BCFT background labeled by z, expressed as an element of
H,. |¥Z) is simply the matter part of the sliver state |=7,) associated with this conformal
field theory. Thus we have

QUT + ¥ %« U* =0, UZ 5™ pr =Pt (4.37)

m m m

Since U* is defined as an element of H, for every x, we have a section of the vector bundle
introduced earlier. Using the fact that D|W¥,) = 0, we have

Dy|U%) = |¥,) @ Dg|=E ). (4.38)

Since |=F) is a surface state, its covariant derivative is given by eq.(f.:3])). Comparing
this with ([.29) we see that this is just [AWO:). Thus we have

D,|¥%) = |¥,) @ |ATO:) . (4.39)
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The small deformation of the sliver solution considered in the previous subsection is simply
the covariant derivative of ¥* with the connection I'. Indeed, applying D, on the second

of eq.(l.37), and using egs.(.33), one gets
(DWE ) ™ WF 4 U2 5™ (DU ) = DU . (4.40)

This shows that D,U” satisfies the small fluctuation equation (I-28).

Although we have been careful in phrasing the discussion in terms of exactly marginal
deformations, as only for those it makes sense to talk about connections in theory space,
for infinitesimal deformations we can nevertheless consider the generalization that Oy is
a generic dimension one matter primary. The operator D, is still well-defined and obeys
(F33) and (E34). So we obtain a solution D,¥” of the small fluctuation equations for each
dimension one matter primary. These states are promising candidates for the spectrum
of physical excitations around the D-brane background. We shall discuss this in detail in
section 5.

It is intriguing that some of the previous analysis appears to apply formally to closed
string deformations. A closed string deformation of a surface state is obtained by inte-
grating a closed string marginal operator Os over the bulk of the surface state, leaving
out the local coordinate regions. It would seem that such deformation of the sliver would
satisfy the small fluctuation equation. In this case, however, this integral is plagued with
ultraviolet divergences from the region of integration where the operator Oz comes close
to the boundary of the disk, and it is not a priori clear how such divergences should be
regulated. This deformation — if it can be defined — might just be the open string by-
product of a shift in the closed string background, as is possibly the case in open/closed
string field theory [p3]. But perhaps it represents some true encoding of closed string
physics into the open string state space. It is worth noting that the sliver, as opposed to
the identity string field used earlier for encoding closed string deformations in open string
theory [63], has plenty of bulk to insert closed string states. Clearly this issue deserves
further investigation.

5 Physical states around D-brane backgrounds

Given a candidate solution representing a specific D-brane, one would like to find the
spectrum of physical states around the D-brane background and compare this with the
known spectrum of physical open string states in that particular D-brane background.
Let ¥y = ¥, ® ¥,, be a solution representing a particular D-brane in the string field
theory around the tachyon vacuum [B(]. After shifting the string field ¥ = ¥y + ®, the
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action takes the form:

171 1

95 L2 3
where the action of the BRST operator Qp in the new background on any state |A) in H
is given as

QoA =QA+TyxA— (=) AxU,. (5.2)

Around the new background the physical state condition, corresponding to the linearized
equations of motion, is then

QP =09 +Vyxd+DxVy=0, (5.3)
while the linearized gauge symmetries are given as

Physical states around ¥, are identified with the cohomology classes of Q.

Clearly a full solution of this problem requires the knowledge of Q, and the solution
U, including its ghost part, which are not available to us at present. In this section we
shall try to get some insight into this problem.

5.1 Factorization ansatz for fluctuations

Clearly there are two parts to the problem. First we need to find solutions to the lin-
earized equations of motion (b.J) and then we need to determine which of these are
related by gauge transformations. For the first problem, we could look at a subset of field
configurations of the form:

®=V,®00,, (5.5)

where 0¥, is a matter state. Replacing (5.5) into (b.3) and using eq.(B.G) we find the
condition

U ™ 6, + 6, 5™ W, = 50, (5.6)

Note that this condition does not involve the operator Q. Clearly not every solution of
(B.3) is of the form (B.J). However it is conceivable that every solution of (p.3) can be
brought to this form using a gauge transformation (p.4), i.e. there is a representative
element of the form (F.5) in every cohomology class of Qy.

It is possible to find solutions to eq.(b.§). For definiteness we shall take ¥,, to be
Zm, — the matter part of the sliver state associated with BCFT,, — and suppose that it
represents a particular D-brane in a moduli space that includes some marginal directions.
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As discussed in section [, the various points in this moduli space can be obtained as
deformed sliver solutions. Defining A=Y as the matter part of A=Y defined in section [£j
and using eq.(£:26) we see that §¥,, o AZY satisfies eq.(b.6). Although the argument
given above uses an exactly marginal deformation, the explicit analysis of section [,
showing that AZY satisfied eq.(f:20), goes through if we choose V to be an arbitrary
dimension one primary operator. As a result §W,, oc AZY still satisfies eq.(f.6). Thus we
seem to have gotten a solution of the linearized equations of motion for every dimension
one matter primary operator in BCF'T).

While this is encouraging, there are some subtleties which we now discuss. First of
all, we compute the inner product (AZV|AZY) as in eq.(20). This is given by:

(AZV|AZYY = m}%@m« / e V (@n2) A yn2)
1
m+n71ﬂ__£
(/(E_Ql)ﬂ 4 V($m+n—2)d$m+n—2)>5m+n72 . (57)
2 4

The correlation functions are computed in the matter sector only. In the m,n — oo limit
the range of integration over x,,.,_o is infinite, but this is easily avoided by going to a
new coordinate system u = ip+ 6 = 4(zpin_s — 7/4)/(m+n — 2) which maps Cy,4p_s to
a seminfinite cylinder C' of circumference 27. Dimension one primary fields will not pick
up any factor under this rescaling, and we get

(AZY]AZY) = {( /0 "V (0)do)( / 7 V(#)de')),.. (5.8)

Note now that the range of integration over # and €’ coincide at two points, # = 0 and
6 = m. Since (V(0)V (0')) ~ |0 —6'|~2 for small |§ —@’|, this gives logarithmically divergent
integrals. Thus the BPZ norm of AZY in the matter sector is logarithmically divergent.
This of course is related to the ultraviolet divergence discussed in section f] and one could
try to regularize this by taking the limit of 2’ integration in eq.(.25) to be in the range
|2'] > % + €. As discussed in section [, AZY satisfies eq.([E26) even when e is finite.
However unlike ZV:*

m

which has finite norm for finite € (when measured with respect to
the norm of =,,), AZY has infinite norm even for finite e. To see this we note that the
rescaling needed to go from the x,,,,_» coordinate to the # coordinate shrinks a region
of finite width to zero width. More precisely, with the regulator ¢ in place and after the
rescaling, we get

w—4¢/(m+n—2) 2m—4¢e/(m+n—2)
(AZVIAZY) = lim <( / v(o)ae)( | V(é”)d@’)> o (5.9)
m,n—00 4e/(m+n—2) m+4e/(m+n—2) C

Thus even for finite € the integral has logarithmic divergences in the m,n — oo limit,
since the integration limits approach each other. This divergence is actually needed for
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consistency. Indeed, note that for a marginal deformation Z%:* can be identified with =/
associated with a deformed BCFT’ discussed in section I.]. The norm of =/, being equal
to (2¢)~*" times the partition function of BCFT’ on the cylinder, approaches that of Z,,
for small A since as A — 0, h — 0 and the partition functions of BCFT" and BCFT, are
equal. The orthonormality of =, and =V* = =/ (section ({1])) then leads to the result
that the norm of (2} — Z,,) is twice the norm of Z,, in the A — 0 limit. Given that
EVA =2, + MAZY + O()\?), we reach the conclusion that A\? times the norm of AZ} is
twice the norm of =, in the small A limit. If this has to be true for arbitrarily small A,
then AZY must have infinite norm.

This divergence is not necessarily problematic, since it is not clear a priori that having
finite norm in the matter sector is a requirement on physical deformations. As we have
seen in section ([]), the deformed solution =/ does have finite norm, even if AZY has
divergent norm. We shall also argue later that having a logarithmically divergent norm
of this kind may be a necessary condition for a physical deformation not to be pure
gauge. From a physical viewpoint, since we have seen that for exactly marginal V', AZY
represents some small deformation of BCFT, we are led to believe that such deformations
must be allowed in the computation of the spectrum.

The second subtlety arises because the manipulations in section -] leading to eq.([:24)
actually hold without any constraint on V' as the gluing in the z,, coordinate system does
not require us to make any conformal transformations at all. So one might ask: why can’t
we use the matter part of these states to find new solutions of eq.(5.6)? The answer to
this question may again be hidden in the normalization of the state. For this, let us write
down the norm of AZY for an operator V of arbitrary dimension h:

. - . +n — 2\2(1-h) w—4¢/(m+n—2)
<A:X@|A:X@> B mvlrl‘rl’loo [(%)2 - <([LE/(m+n—2) V(e)de)
2m—4e/(m+n—2) ,
(~/7r+4e/(m+n—2) V(e/)de )>C} ) (510)

Note the prefactor coming from the conformal transformation of the vertex operators
when we make the final conversion from z,,,, o to 6 coordinate. For h < 1 there is
no short distance divergence from the limits of integration of 8, #’, but the contribution
from the finite 6 region has power law divergence due to the infinite prefactor in the
m,n — oo limit. Thus the divergence in the norm of such states is worse than that
of a marginal deformation, and clearly originates from the large distance region (in the
original Z,,,_o coordinate system.) In fact this divergence is precisely the reason why a
small perturbation by V drives the system all the way to the infrared fixed point. Thus
we can conclude with reasonable degree of confidence that for h < 1 the A=Y does not
represent small deformation. On the other hand for h > 1 the integral is finite for finite
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¢ as the short distance singularity coming from the region of integration 6 ~ 6" at 0 or
7 cancel the conformal factor exactly. Thus AZ" has finite norm. This seems to make
irrelevant perturbations better behaved. As we shall see below, however, these are most
likely pure gauge deformations, precisely because they have finite norm.

5.2 Factorization ansatz for gauge transformations

Not all solutions of (B.f) represent inequivalent physical states, since we still need to
consider the linearized gauge invariances (5.4). A gauge transformation (5.4) with generic
parameter A will not respect the form (p-3) of the fluctuations. While there may be more
general gauge parameters respecting (b.J) we now restrict ourselves to factored gauge
parameters A = A, ® A,,, where A,, is a matter state and A, is a ghost state satisfying

OA, =0, A9, =W, x9N, =T, (5.11)
For such a Ay, (B.4) gives

W®) = QA RN, + (V%9 Ay) @ (E, *™ Ay, — Ay ™ Ey)
— U, @00V, = UV, @ E,«" A, — A, " Z,). (5.12)

It follows from this equation and from (p.0) that we can study physical states around
D-brane backgrounds by considering the space of equivalence classes Hgy of matter string
fields 0W,, which satisfy the equations:

S K™ 6U,, + 60, #™ S, = 60, (5.13)
oV, 2oV, +=, " A, — A, " =,,. (5.14)

We should keep in mind, however, that there may be gauge transformation parameters
other than those of the form A, ® A,, which generate factorized deformations of the form
U, ® 0V¥,,. These will generate further equivalence relations between the deformations
oV,,.

Does a A, satisfying (b.11) exist? Let Z, denote the ghost part of the identity string
state, normalized so that Z, x9 7, = Z,. If Q annihilates the identity state, then Ay = 7,
clearly satisfies eq.(B.11]). We shall now argue that A, = Z, is also the most natural
choice. From the analysis of refs. [56, B4, B3, B9, B0, B1, {9, 1] we know that barring the
complications of the string mid-point coordinate and/or zero modes, it is natural to think
of the string field as a matrix acting on the half string state space. In particular we can
think of the factored string field of the form (B.§) as the direct product of two matrices,
one acting on the ghost sector of the half-string state and the other acting on the matter
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sector of the half-string state space. Since the identity string field Z can be regarded
as an identity matrix on the half string state space, choosing A = 7, ® A,,, corresponds
to a matrix which is a direct product of the identity matrix in the ghost sector of the
half-string state space and generator of a non-trivial rotation in the matter sector of the
half-string state space. This is precisely how we would represent the rotation generator
on a product of two vector spaces if we want to construct generators that act on only one
of the two vector spaces. Thus from this physical point of view choosing A, = Z, would
be most natural. This in turn, would require us to choose Q that annihilates Z,. We take
this as a strong argument in favor of choosing such Q[ Given this choice we can now
proceed by taking (p.I4) to be a valid gauge equivalence relation between different 0W,,,.

Since these equations refer to matter fluctuations 0W,,, without risk of confusion we
shall from now on drop all m subscripts and superscripts referring to matter and write
these equations as

=400 + 60 % S = 60 (5.15)
U U +ZxA—Ax=. (5.16)

In the next two subsections we discuss some consequences of these equations. All states,
x-products and correlation functions in these subsections will refer to matter sector only.

5.3 Deformed projectors and rules for physical states

The physical state conditions (5.15) obtained above have the interpretation of deformation
equations for projectors, with a familiar equivalence relation. Indeed this equation is
clearly equivalent to the condition that (= 4 dW) be a projector:

(E460) % (2 +60) = (2 + ) + O(V?) . (5.17)
Similarly, equation (B-10) is equivalent to
Z4+00 ~e M xExed 4 0N, (5.18)

where in the expansion of e* products correspond to *-products. Therefore our physical
state conditions are conditions for deformed projectors with a U (o) local gauge symmetry.

This leads to a puzzle. It is simple to show formally that the above physical state
problem has no nontrivial solutions! Indeed, we multiply (B.13) from the left by = and
use associativity and the projector condition for = to obtain

S0 xE=0. (5.19)

6The result of ref. @], showing that around the tachyon vacuum 7 is a pure gauge state, also requires
us to choose such a Q.
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It then suffices to take
A=Z%0V -0V =x*EZ, (5.20)

to verify that

* A — Ax = Zx0U 220U x=+0Ux=

— S0 40U xE =00, (5.21)

[1]
[1]
|

where we used associativity, equation (B.19) and (p-I7). It follows that §W is trivial.

This clearly shows that if eq.(p.1) is the correct equivalence relation, we cannot get
non-trivial elements of the cohomology using states which are completely regular. One
way to avoid this problem is to use a non-normalizable )W. This will typically give rise to
non-normalizable A of the same type via eq.(5.20). If the requirement of normalizability
on string field fluctuations is different from that on the gauge transformation parameters
(which is not improbable considering that the two are multiplied by different ghost sector
states) it is possible to have a non-normalizable 0¥ which is an allowed deformation, while
the corresponding A constructed through eq.(f.2() is not an allowed gauge transformation
parameter.

Indeed, this suggestion is physically motivated. We have argued earlier that de-
1%

., associated with

spite having logarithmically divergent norms, deformations 0¥ oc AZ=
marginal operators V' should be considered as physical deformations. It is easy to verify
that A constructed from such a ¥ through eq.(5.20) also has logarithmically divergent
norm. If such non-normalizable A’s did generate gauge transformations, then we would be
forced to conclude that two different BCF'T’s related by a marginal deformation are gauge
equivalent. Since this is not physically acceptable, we are led to the conclusion that matter
sector states A with logarithmically divergent norms are not valid gauge transformation
parameters. This principle will also explain why the state associated with deformations
by irrelevant operators, found at the end of section p.]|, are pure gauge; they have finite
norm and the corresponding gauge transformation parameter A defined through eq.(p-20)
also has finite norm. Thus such deformations can be gauged away.

While this principle leads us to identify deformations of the sliver by dimension-one pri-
maries as physical states, it also includes in the list deformations by unwanted dimension-
one operators — the vertex operators of null states and non-primary states. At present it

is not clear how to eliminate them and reproduce the correct spectrum of physical states
on the D-brane.[]

17 Although a null state has vanishing two point function with itself, its two point function with a vertex
operator which is neither a primary nor a secondary, could be non-zero.
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6 Discussion

In this concluding section we make some general remarks about the string field theory
action given in eq.(R.1]) and also discuss the implication of the results of the present paper
in a general context. We end with a discussion of some of the open problems in this
subject.

e Typically the formulation of cubic open string field theory requires a choice of back-
ground, determining the form of the quadratic term in the action. In that sense the
action (B.1)) represents the choice of the tachyon vacuum as the background around
which we expand. But this clearly is a special background being the end-point of
tachyon condensation of any D-brane. The action is formally independent of the
choice of BCFT whose basis we use to expand the string field, as is apparent from the
fact that Q is made purely of ghost operators, and the x-product, defined through
overlap conditions on string wave-functionals, is formally independent of the choice
of open string background. At least for backgrounds related by exactly marginal
deformations, this notion of manifest background independence can be made precise
using the language of connections in theory space [bll, B3], as we demonstrated in
section f.4. Starting from the tachyon vacuum we can reach any D-brane configu-
ration by simply considering the sliver associated with that particular BCFT. Note,
however, that the spirit here is somewhat different from that of boundary string
field theory, — in our approach we always represent the string field as an element
of the state space of a specific reference BCFT. At the end it should not matter
which basis we use to expand the string field. Indeed, we have seen in section [ that
physical quantities like ratios of tensions of D-branes do not depend on this choice.

e The structure of the string field theory action (B.1)) is very similar in spirit to the
action of p-adic string theory [f4, 63, BG]. Both are non-local, and in both cases
the action expanded around the tachyon vacuum is perfectly non-singular and has
no physical excitations. Yet in both cases the theory admits lump solutions which
support open string excitations. The D-p-brane solutions are gaussian in the case of
p-adic string theory, and also in the case of vacuum string field theory, although in
this case the string field has many components corresponding to different oscillator
excitations. It will be interesting to explore if there is any deeper significance to
this similarity.

e Vacuum string field theory is much simpler than conventional cubic open string field
theory. Explicit analytic solutions of equations of motion are possible, as we saw in
this and the earlier papers. Also in this theory off-shell ‘tachyon’ amplitudes (and
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perhaps other amplitudes as well) around the tachyon vacuum can be computed
exactly up to overall normalization. All this is commensurate with the fact that we
have chosen to expand the action around a simpler background. In this context we
would like to note that even the p-adic string action takes a simple form only when
expended about the tachyon vacuum. Once we introduce shifted fields to expand the
action around the D-brane background, the action looks much more complicated.

e Clearly the most pressing problem at this stage is understanding the ghost sector.
This is needed not merely to complete the construction of the action, but also
for understanding gauge transformations in this theory. This, in turn is needed
for classifying inequivalent classical solutions and the spectrum of physical states
around D-brane backgrounds. The knowledge of O will also enable us to calculate
quantum effects in this theory and determine whether the theory contains in its full
spectrum, the elusive closed string states. On this issue, at the end of section [£.q we
speculated whether integration of dimension (1, 1) closed string primaries over the
bulk of the sliver could yield a representation of closed string degrees of freedom in
the open string state space.

In this paper we have seen that vacuum SFT incorporates nicely the most attractive
features of boundary SF'T — the automatic generation of correct tensions, and the de-
scription of solutions in terms of renormalization group ideas. These features arise in
vacuum string field theory by taking into account the unusual geometrical definition of
the sliver state. The two present shortcomings of boundary SFT — the tachyon vacuum
being a singular endpoint of the configuration space, and the difficulty of defining the
theory in the space of all backgrounds — are avoided in vacuum SF'T. In a previous paper
[BT], we noted the remarkable simplicity of the algebraic approach to the construction of
D-brane configurations in vacuum SFT. All in all, we are led to believe that vacuum string
field theory may provide a surprisingly powerful and flexible approach to non-perturbative
string theory.
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