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Abstract

Synaptic signaling comprises a complex molecular network. Such networks carry out diverse operations such as molecular logic,

signal amplification, memory and other aspects of cellular decision-making (Bray, 1995). The synapse in particular encounters

complex input patterns that have different temporal sequences. Different input patterns to the synapse are known to give rise to a

range of synaptic responses, including facilitation, depression and various forms of short and long-term potentiation. In many cases

the stimuli that generate these disparate responses are tens of seconds or more in length, much greater than the typical time-courses

of calcium dynamics. In this paper I propose that the synaptic signaling network can perform temporal computation operations such

as tuning for stimulus duration or interval. Using simulation methods I show that the simple time-courses of individual signaling

pathways combine in the network to give rise to different temporally selective responses. Downstream pathways that exhibit

temporal integration or amplitude thresholding select different input patterns and thus perform temporal computation.
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1. Introduction

Temporally patterned synaptic input gives rise to

multiple forms of synaptic change, such as short-term

potentiation, multiple forms of long-term potentiation

(Bliss and Collingridge, 1993; Cavus and Teyler, 1996;

Grover and Teyler, 1990; Winder et al., 1999), synaptic

depression and depotentiation (Barr et al., 1995; Bol-

shakov et al., 2000), and morphological change (Wu et

al., 2001; LeMasson et al., 1993; Markram and Tsodyks,

1996; Turrigiano et al., 1994). To a large extent the

difference between these responses is determined by the

temporal pattern of the input stimulus (Abbott and

Nelson, 2000). The discrimination between input pat-

terns is probably a result of interaction between cellular

biophysics especially calcium signaling, and synaptic

signaling. The output effect of these patterns is mediated

by a complex network of signaling molecules in inter-

action with protein synthesis machinery and cell biolo-

gical processes such as receptor insertion into synaptic

membranes. There is evidence that the pattern discrimi-

nation, especially on longer time-scales, involves the

synaptic signaling network (Aszodi et al., 1991; Fields et

al., 1997).

Synaptic signaling is relatively well characterized

because the electrophysiological response provides an

excellent assay for the role of different signaling

molecules (Bliss and Collingridge 1993). Specific roles

and functional interconnectivity of these pathways have

been proposed by Lisman (1994), based on biochemical

interactions as well as functional assays at the synapse.

Using published biochemical data we have developed a

model of some important synaptic signaling molecules

that exhibits potentially interesting properties such as

bistability, which we suggest may lead to protein

synthesis independent short-term storage of information

(Bhalla and Iyengar, 1999). I have recently considered

temporal responses of the synaptic signaling network

and propose that the signaling pathways can perform

temporal tuning and filtering functions (Bhalla,

2002a,c). In this paper I examine how the output of

these tuning pathways may be discriminated by down-

stream pathways. I consider amplitude thresholding and

integrative functions of these downstream pathways and

suggest that these, coupled with the tuning properties of

signaling pathways, could give rise to temporal compu-
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tation operations such as pattern discrimination. I also

show that these tuning properties are an emergent

property of the network and apparently peripheral

molecules may significantly affect tuning properties.

2. Methods

A signaling network of pathways based on the

synaptic signaling literature was used as the basis for

the model (Lisman, 1994). A network of 17 signaling

enzymes and their regulators was modeled (Fig. 1)

(Bhalla, 2002a; Bhalla and Iyengar, 1999). Each path-
way block was represented as a number of mass-action

chemical reactions and enzymatic interactions, based on

biochemical data. The entire library of signaling models

is publicly available on-line at a signaling database site

http://doqcs.ncbs.res.in in accession number 16. The

representation of each signaling pathway was based

closely on biochemical experiments involving binding

assays, response time-courses, enzymatic assays, and

purifications from tissues. Most data are from mamma-

lian brain preparations. The chemistry and kinetics of

each individual pathway were defined independently to

form a library of pathways. On average, each pathway

definition involved 8.7 distinct molecular species, 4.9

reactions, and 3.8 Michaelis�/Menten enzymatic steps.

Pathways from this library were interconnected accord-

ing to Fig. 1, again using known binding reactions and

biochemically defined interactions between pathways.

The overall model contains 148 molecular species, 84

reactions, 65 enzyme steps and can be represented as 199

differential equations. The details of the model devel-

opment process have previously been described (Bhalla,

2000, 2002b).

Simulations were carried out using the Kinetikit

interface to the simulator GENESIS (Bhalla 2002b;

Bower and Beeman 1998). Computations were per-

formed on PCs running Linux. The exponential Euler

integration method was used for numerical integration.

All pathways were represented using mass-action chem-

istry for binding and enzyme-catalyzed reactions:

Fig. 1. Block diagram of signaling pathways in model. Reproduced with permission from J. Comput. Neurosci. (Bhalla 2002c). Each block was

modeled in terms of several binding and enzyme reactions. The complete network of pathways was modeled for all simulations. Abbreviations: RTK:

receptor tyrosine kinase; mGluR: metabotropic glutamate recptor; GPCR: G-protein coupled receptor; NMDAR: N -methyl D-aspartate Receptor;

Gq: G-protein type q; Gs: G-protein type s; PLCb: phospholipase C b; PLCg: phospholipase C g; IP3: inositol trisphosphate; DAG: diacylglycerol;

Sos/GEF: Son of Sevenless/guanine nucleotide exchange factor; Ca: Calcium; PKC: protein kinase C; AC: adenylyl cyclase; PDE: phosphodiesterase;

CaM: calmodulin; CaMKII: calcium calmodulin kinase type II; cAMP: cyclic adenosine monophosphate; CaN: calcineurin; AA: arachidonic acid;

PLA2: phospholipase A2; MAPK: mitogen activated protein kinase; MKP-1: MAP-Kinase phosphatase type 1; PKA: protein kinase A; PP1: protein

phosphatase type 1.
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Both these equations can be expressed as differential
equations of the form:

d[A]=dt��kf [A][B]�kb[C] (3)

The enzyme reactions in Eq. (2) are equivalent to two

reactions in sequence, the second reaction having a zero

value for kb.

Temporal patterns of input to the model were

delivered as Ca2� pulses of appropriate amplitude,
duration and spacing.

3. Results

3.1. Time-course of responses to different input patterns

I first simulated the time-course of responses of the

network to different input patterns of Ca2� input. Two

simple patterns were chosen: calcium input pulses of

fixed total flux, but different duration, and paired

calcium pulses each of 1 s duration, but different

intervals between pulses (Fig. 2). More complex patterns

could be regarded as composites of these two basic

patterns. In both cases the total calcium flux is un-

changed from pattern to pattern, so the response

changes are purely a function of time-course of the
input. The outputs from two representative signaling

molecules were monitored: protein kinase A (PKA) and

the mitogen-activated protein kinase (MAPK).

In Fig. 2a�/c, calcium inputs of different durations are

delivered such that the total flux remains constant. As

flux�/amplitude�/duration, this means that a brief

input has a high amplitude and a long input has a lower

amplitude. PKA responds strongly to a brief input, but
weakly to a longer one. This is due to the high threshold

for calcium activation of calmodulin (CaM), acting

through type 1 adenylyl cyclase (AC1) and cyclic

adenosinemonophosphate (cAMP): Ca0/CaM0/

AC10/cAMP0/PKA

MAPK, on the other hand, responds both to brief and

to prolonged inputs. The activation of MAPK is also

very slow compared to PKA. Thus MAPK acts as a
slow integrator whereas PKA responds well to brief

stimuli.

In Fig. 2d�/f, calcium inputs were delivered as two

successive pulses. Each pulse was 1 s in duration and 5

mM in amplitude. The interval between pulses was

varied. PKA shows some buildup of responses especially

at short time-intervals. MAPK builds up as well, but at

rather longer intervals. Thus in this respect as well, PKA
and MAPK differ and MAPK tends to slower re-

sponses.

Other signaling pathways (data not shown) also

exhibit a variety of distinctive responses that include

rapid responses (e.g. phospholipase-C b), slow build-up

(e.g. type II calcium�/CaM activated protein kinase) and

combinations of rapid and slow components of the

response (e.g., protein kinase C) (Bhalla, 2002a,c).

3.2. Amplitude and pattern thresholding

These qualitative assessments of pathway responses to

different stimulus duration were quantified using two

measures: average activation and peak. First, the

average activation of each pathway was assessed. This

was calculated as the average of the ratio of the pathway

activity to its baseline activity. Second, the peak
amplitude of activation was found. The calculation of

average activation and peak was made from the time of

the beginning of the stimulus, till 3000 s following the

end of the stimulus. The period of 3000 s was chosen as

it exceeds the time-course of all the pathway responses

of the system so they would be expected to settle within

this time.

Using these measures, it is seen that there are
distinctive tuning profiles for PKA (Fig. 3). PKA

responds selectively to short duration stimuli as de-

scribed above (Fig. 3a and b). Both the average

Fig. 2. Time courses of Ca2�, PKA and MAPK activity. (a) Ca2�

stimulus delivered for different durations, such that duration�/

amplitude is constant at 20 mM s. (b) PKA responses to the Ca2�

stimulus. The response to the 1 and 10 s stimuli are almost identical

and are both large, the remaining responses are small. (c) MAPK

responses to the Ca2� stimulus. Response profiles vary considerably

with amplitude and duration. (d) Paired-pulse Ca2� stimulus. The first

pulse is always at t�/0, and the second pulse is at varying intervals

following the first pulse. (e) PKA responses to paired-pulse stimuli.

There is a gradual decline in response amplitude as interval increases.

(f) MAPK responses to paired-pulse stimuli. The largest response is for

an interval of 300 s. Reproduced with permission from Biophys. J.

(Bhalla 2002a).
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activation and the peak response follow the same

pattern, and the response drops at around 10 s. The

response of PKA to different pulse intervals is more

interesting. The average response of PKA rises with

increasing inter-pulse interval (Fig. 3c). However, the

maximal response is a complex function of inter-pulse

interval and has two peaks: one at very short intervals

(10 s) and another at intermediate intervals (300 s) (Fig.

3d). Thus a pathway downstream of PKA would exhibit

different tuning depending on whether its response

builds up in a slow integrative way (average response)

as opposed to amplitude thresholding (maximal re-

sponse).

MAPK also exhibits distinctive tuning profiles (Fig.

4). MAPK average activation is high for short and long

stimuli, and low at around 60 s both in terms of average

activation and amplitude (Fig. 4a and b). The amplitude

response shows a greater reduction at 60 s, and also

declines at very long stimulus durations (900 s). When

inter-pulse interval tuning is considered, the MAPK

response builds up to a peak for stimulus intervals of

600 s (Fig. 4c). The MAPK amplitude response also has

a similar peak, occurring at almost the same interval of

300 s (Fig. 4d). Thus a pathway downstream of MAPK

would respond well to short duration as well as long-

duration stimuli, but relatively poorly to 60 s duration

stimuli. If repetitive stimuli were given a downstream

pathway would be preferentially activated for stimulus
durations of around 600 s.

The entire signaling network exerts a complex control

over the tuning responses. In Fig. 3 and Fig. 4, various

key signaling molecules were removed from the model to

examine their roles in tuning. Even molecules such as

Gq and CaMKII, which do not exert direct control over

either PKA or MAPK, strongly affect their tuning

responses through cross-talk in the network. The tuning
responses therefore do not arise in any particular subset

of the signaling network, but are emergent properties of

the network as a whole. Regulatory inputs to the

network via hormonal, growth factor, or G-protein

coupled receptor inputs have also been shown to

strongly modulate responses (Bhalla, 2002a,c).

4. Discussion

4.1. Temporal computation and learning

Natural stimuli are characterized by complex timing.

This is reflected in many studies of learning, where

complex causal sequences of events are necessary to give

rise to robust conditioning (Gallistel and Gibbon, 2000).
Electrophysiological properties of neurons may form the

basis for some aspects of temporal pattern recognition

at short time-scales (Hooper, 1998). Network properties

Fig. 3. Temporal pattern selectivity of PKA. In each panel four plots

are shown: Diamonds: Basal activity; triangles: CaMKII enzyme

removed; �/: Gq removed; �/: PKC removed. Calcium stimuli are

as in Fig. 2. (a) Average activation as a function of Ca2� stimulus

duration. The basal activation declines by 50% starting at about 10 s

stimulus duration. (b) Peak amplitude of PKA response as a function

of Ca2� stimulus duration. There is a very large decline in basal

response amplitude again starting at about 10 s stimulus duration. (c)

Activation as a function of Ca2� inter-pulse interval according to Fig.

2d. There is a small rise in basal activation for intervals of over 300 s.

(d) Peak amplitude of PKA response as a function of inter-stimulus

interval. There is a peak in basal response between 300 and 900 s. In

each panel, removal of other pathways leads to changes in tuning as

well as in amplitude of responses.

Fig. 4. Temporal pattern selectivity of MAPK. In each panel four

plots are shown: Diamonds: Basal activity; open squares: AC removed;

triangles: CaMKII enzyme removed; �/: Gq removed. (a) Basal

activation as a function of Ca2� stimulus duration as per Fig. 2a.

There is a small dip at around 60 s for the basal response. (b) Peak

amplitude of basal MAPK response undergoes a reduction again

around 60 s stimulus duration. (c) Average basal activation as a

function of inter-pulse interval for paired Ca2� pulses, as per Fig. 2d.

There is a peak at around 600 s. (d) Peak amplitude of basal MAPK

response also has a peak at 600 s inter-pulse interval. In each panel,

removal of pathways alters tuning as well as amplitude of responses.

Removal of AC releases inhibition of MAPK response, giving rise to

very large amplitude responses in the 180�/600 s interval range.
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can also give rise to some aspects of temporal decoding

(Buonomano, 2000). The current paper considers tem-

poral tuning properties of signaling pathways and

suggests that these may give rise to temporal pattern
selectivity at time-scales of seconds to tens of minutes.

This form of computation is especially interesting in the

context of learning for two reasons. First, the same set

of synaptic signaling molecules are also implicated in

synaptic plasticity. Second, the time-scales of their

temporal selectivity is in the same range as natural

stimuli leading to learning. It is also intriguing that such

molecular tuning circuits may be present at all synapses,
thus forming a highly distributed substrate for temporal

computation.

4.2. Synaptic consequences

The current model includes several signaling path-

ways at the synapse which are stimulated by Ca2�. The

inputs to the simulations are therefore Ca2� pulses of

different duration and interval. The output of the model
is considered in terms of the activity of key signaling

molecules, but the assumption is that these would feed

into downstream effector processes leading to synaptic

change. For example, PKA and MAPK activity leads on

the one hand to phosphorylation of cytoskeletal com-

ponents and signaling molecules that may be involved in

restructuring the synapse and insertion of new receptors.

The other effect of both PKA and MAPK is to induce
transcription of proteins, many of which may contribute

to synaptic plasticity. In the simulations we explicitly

consider the signaling effects on downstream pathways

that act as integrators or threshold detectors for

signaling activity. The prediction is that such down-

stream pathways would be selectively stimulated for

distinct patterns of input (Ca2�) activity to the synapse.

Thus the signaling network performs a temporal com-
putation leading to synaptic change.

4.3. Model interpretation

In this and other modeling studies, it is clear that we

are only able to model a subset of signaling molecules

with imperfect accuracy. The major approximations in

our model are incompleteness, reaction kinetics, and
spatial considerations. To the extent that test-tube

biochemistry can approximate cellular signaling, we

feel confident that the model represents the basic

signaling effects, as the biochemistry is tightly con-

strained by experiments. Thus we would suggest that

such models are semi-quantitative given the limitations

of current techniques and knowledge about signaling.

The key point is that even this small subset of molecules
interacting in very simple, spatially homogenous ap-

proximations, gives rise to complex and biologically

interesting computational properties. Thus we propose

that this model, by showing that signaling pathways can

perform temporal computations, may provide insights

into the far richer signaling computations occurring at

the synapse and other cellular systems.
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