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Abstract

It has recently been shown that if we take into account a class of higher derivative
corrections to the effective action of heterotic string theory, the entropy of the black hole
solution representing elementary string states correctly reproduces the statistical entropy
computed from the degeneracy of elementary string states. So far the form of the solution
has been analyzed at distance scales large and small compared to the string scale. We
analyze the solution that interpolates between these two limits and point out a subtlety in
constructing such a solution due to the presence of higher derivative terms in the effective
action. We also study the T-duality transformation rules to relate the moduli fields of
the effective field theory to the physical compactification radius in the presence of higher
derivative corrections and use these results to find the physical radius of compactification
near the horizon of the black hole. The radius approaches a finite value even though the
corresponding modulus field vanishes. Finally we discuss the non-leading contribution to
the black hole entropy due to space-time quantum corrections to the effective action and
the ambiguity involved in comparing this result to the statistical entropy.
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1 Introduction and Summary

The idea that a very massive elementary string state should describe a black hole is quite

old[1, 2, 3, 4, 5]. This leads one to wonder if the entropy associated with these black holes

could be given a statistical interpretation as the degeneracy of the elementary string states

of a given mass that the black hole represents. One of the problems in carrying out this

exercise is that due to large renormalization effects it is often difficult to identify the class

of elementary string states that represent a given black hole and vice versa[2, 3].

One way to avoid this problem is to focus attention on BPS states for which the

renormalization effects are under control. In particular one can consider heterotic string

theory compactified on a torus and consider a fundamental heterotic string wrapped

along one of the circles of the torus, carrying w units of winding charge and n units

of momentum along the same circle[6, 7]. This describes a BPS state provided we do

not excite right-moving world-sheet oscillators. The degeneracy of such states grow as

exp(4π
√
nw) for large nw, which suggests that we can assign a statistical entropy of

4π
√
nw to these states. On the other hand one can construct extremal BPS black hole
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solutions carrying the same charge quantum numbers as these states. Thus one might

hope that the entropy of the black hole, computed using the Bekenstein-Hawking formula,

might reproduce the statistical entropy computed from the degeneracy of the elementary

string states. Unfortunately the corresponding black hole has zero area of the event

horizon and consequently the Bekenstein-Hawking entropy vanishes[8].

This however is not the end of the story. The black hole solution that gave vanishing

entropy was constructed using tree level low energy effective action of the heterotic string

theory where we ignore all terms containing more than two derivatives. However if we

examine the solution carefully we discover that the Riemann curvature blows up at the

horizon and hence the higher derivative terms cannot be ignored. One also finds that in

the region where the curvature associated with the string metric is of order unity, the

string coupling constant is small for large nw. Thus we expect that for large nw the

full solution will receive corrections from higher derivative tree level contribution to the

effective action, but the effect of string loop corrections can be ignored.

Although we do not know the precise form of these higher derivative corrections, it

was shown in [8] using a simple scaling argument that any correction to the black hole

entropy due to these tree level higher derivative terms must be of the form a
√
nw where a

is a purely numerical constant. This clearly agrees with the form of the statistical entropy.

However the coefficient a could not be calculated at that time.

Recently in a beautiful paper[9] Dabholkar computed the coefficient a by including

in the effective action a class of higher derivative terms. These terms arise from the

supersymmetric generalization of the curvature squared term which is known to be present

in the tree level effective action of heterotic string theory[10, 11]. Following earlier work[12,

13, 14, 15, 16, 17], ref.[9] showed that the black hole solution is modified near the horizon

in a way that precisely reproduces the correct value 4π for the coefficient a. In arriving

at this result one needs to take into account not only the change in the area of the event

horizon (which only accounts for half of the entropy) but also a suitable modification of

the Bekenstein-Hawking entropy formula in the presence of the higher derivative terms[18,

19, 20].1 The key assumption behind this construction is that the solution close to the

horizon has maximal supersymmetry.

1In this context we note that the scaling argument of [8] holds even in the presence of such corrections
to the entropy formula. The only assumption required for this argument is that if we change the overall
normalization of the action by a constant, then the entropy associated with a given black hole solution
gets multiplied by the same constant. This will be reviewed in some detail in section 2.

3



The analysis of [9, 21] gives the form of the solution only very close to the horizon,

at distance scale much smaller than the string scale. On the other hand the near horizon

solution2 based on the low energy limit of the effective field theory, described in [8], is ex-

pected to be valid only at a distance scale large compared to the string scale where higher

derivative terms can be ignored. Thus an important question that arises is: is there a

smooth solution that interpolates between these two limits? It turns out that the relevant

equation that needs to be analyzed is a second order non-linear differential equation and

hence although both the near horizon and the large distance solutions satisfy this equa-

tion, it is not obvious that there is a solution that interpolates between the two limiting

solutions. One of the goals of this paper will be to analyze this issue. Numerical analysis

of the differential equation indicates that if we begin with the near horizon solution and

let it evolve according to the equations of motion, the solution does not approach the

expected form at large radius, but oscillates about this form. Naively this would indicate

that the solution does not approach the desired limit at large radius. However we argue

that the supergravity description uses a choice of fields whose propagators have additional

poles besides those implied by string theory, and once we make the correct choice of fields

by using an appropriate field redefinition, these oscillations disappear and the solution

approaches the correct asymptotic form at large radius.3

The form of the solution obtained in [9] indicates that the modulus field associated

with the radius of the circle along which the fundamental string is wrapped vanishes at

the horizon. Naively this would imply that the radius of this circle vanishes at the horizon.

However, by analyzing the T-duality transformation laws of various fields we show that

the relationship between the physical radius of the circle and the modulus field is modified

in such a way that the physical radius approaches a constant at the horizon even though

the associated modulus field vanishes.

Although for large charges the string coupling at the horizon is small and hence we

can ignore the effect of space-time quantum corrections, ref.[9] analyzes the non-leading

contribution to the entropy due to these quantum corrections. We reanalyze these effects

and show that if we define the statistical entropy as the logarithm of the degeneracy

of states of the elementary string, then the geometric entropy of the black hole fails to

2‘Near horizon’ here refers to distance scale small compared to the mass of the black hole.
3Although our discussion will focus on the case of two charge black hole representing elementary string

states, a similar subtlety is expected to arise for the three charge black hole which has a finite area of the
event horizon at the leading order.
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reproduce correctly the coefficient of the term proportinal to ln(nw) in the expression

for the statistical entropy. One should however keep in mind that there are alternative

definitions of the statistical entropy in terms of other ensembles, e.g. grand canonical

ensemble, where we first introduce a grand canonical partition function as a function of

the chemical potential conjugate to various charges, and then compute the entropy from

this partition function using the usual thermodynamic relations. These two definitions

of entropy differ from each other beyond the leading term, and it is not a priori clear as

to which definition of entropy should be compared to the geometric entropy of the black

hole. We show that one such definition of statistical entropy agrees with the geometric

entropy of the black hole beyond the leading order approximation.

The paper is organised as follows. We work in the α′ = 16 unit as in [8, 22]. In section

2 we review the arguments of [8] showing that the black hole entropy has the correct

dependence on various parameters up to an overall numerical constant, and also review

the recent results of [9, 21]. In section 3 we construct the complete near horizon solution,

study the T-duality transformation rules of various fields to determine the relation between

the moduli fields and the physical radius of compactification, and discuss the effect of

quantum corrections on the black hole entropy. We end in section 4 with some comments

on possible generalizations and open issues.

Possible importance of field redefinition in string theory (or equivalently renormal-

ization scheme dependence in two dimensional field theory) in obtaining non-singular

solution describing a fundamental string has been discussed earlier in [8, 23]. Modifica-

tion of black hole solutions and T-duality rules due to higher derivative corrections to the

string effective action have been discussed earlier in [24] in a different context.

2 Supergravity Solution for Two Charge Black Holes

and its Near Horizon Limit

Although the analysis of [9] is able to produce the complete formula for the geometric

entropy of the black holes describing elementary string states, it relies on the assumption

that the contribution to the geometric entropy comes only from certain higher derivative

terms in the effective action. In contrast, the scaling argument of [8] does not rely on any

such assumption, and hence is still of interest. In this section we shall first review the

scaling argument of ref.[8], and then briefly recall the results of [9].
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In [8] we analyzed the most general electrically charged extremal black hole solution

in heterotic string theory compactified on T 6. In order to keep our discussion simple,

we shall here consider only a special class of black hole solutions representing a heterotic

string wound on a circle. For this purpose we take heterotic string theory compactified

on T 5 × S1, T 5 being an arbitrary five-torus and S1 being a circle of coordinate radius√
α′ = 4. Let us denote by xµ (0 ≤ µ ≤ 3) the non-compact directions and by x4

the coordinate along S1. As in [22] we shall denote by G
(10)
MN , B

(10)
MN and Φ(10) the ten

dimensional string metric, anti-symmetric tensor field and dilaton respectively. For the

description of the black hole solution under study we shall only need to consider non-

trivial configurations of the fields G(10)
µν , B(10)

µν , G
(10)
4µ , G

(10)
44 , B

(10)
4µ and Φ(10). We freeze all

other field components to trivial background values, and define:4

Φ = Φ(10) − 1

2
ln(G

(10)
44 ) , S = e−Φ , T =

√
G

(10)
44 ,

Gµν = G(10)
µν − (G

(10)
44 )−1G

(10)
4µ G

(10)
4ν , gµν = e−ΦGµν ,

A(1)
µ =

1

2
(G

(10)
44 )−1G

(10)
4µ , A(2)

µ =
1

2
B

(10)
4µ ,

Bµν = B(10)
µν − 2(A(1)

µ A(2)
ν − A(1)

ν A(2)
µ ) . (2.1)

The low energy effective action involving these fields is then given by[25, 22]

S =
1

32π

∫
d4x

√
− det g

[
R − 1

2S2
gµν ∂µS∂νS − 1

T 2
gµν ∂µT∂νT

− 1

12
S2gµµ′

gνν′

gρρ′HµνρHµ′ν′ρ′ − ST 2 gµν gµ′ν′

F
(1)
µµ′F

(1)
νν′ − ST−2 gµν gµ′ν′

F
(2)
µµ′F

(2)
νν′

]
,

(2.2)

where

F (a)
µν = ∂µA

(a)
ν − ∂νA

(a)
µ , a = 1, 2 ,

Hµνρ =
[
∂µBνρ + 2

(
A(1)

µ F (2)
νρ + A(2)

µ F (1)
νρ

)]
+ cyclic permutations of µ, ν, ρ . (2.3)

In this normalization convention the Newton’s constant is given by

GN = 2 . (2.4)

4Our convention for normalization of the dilaton is the same as that in [8, 22], ı.e. eΦ represents the
effective closed string coupling constant.
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Also for Hµνρ = 0 the S- and T -duality transformations take the form[22]:

S → 1

S
, F (1)

µν → −S T−2F̃ (2)
µν , F (2)

µν → −S T 2F̃ (1)
µν , (2.5)

and

T → 1

T
, F (1)

µν → F (2)
µν , F (2)

µν → F (1)
µν , (2.6)

respectively. F̃ (a)
µν denotes the Hodge dual of F (a)

µν with respect to the canonical metric

gµν .

We now consider an heterotic string wound w times along the circle S1 labelled by x4

and carrying n units of momentum along the same circle. Suppose further that asymp-

totically the four dimensional string coupling takes value g and the radius of S1 measured

in the string metric takes value R. In our normalization convention this imposes the

asymptotic conditions:

gµν → ηµν

S → g−2, T → R/4 ,

F
(1)
ρt → 16 g2 n

R2

1

ρ2
, F

(2)
ρt → 1

16
g2wR2 1

ρ2
, (2.7)

where ρ is the radial distance from the black hole measured in the canonical metric gµν .

An extremal black hole solution satisfying these asymptotic conditions can be read out

from the general class of extremal black hole solutions constructed in [26, 8] (see also [27])

and takes the form5

ds2
c ≡ gµνdx

µdxν = −(F (ρ))−1/2ρdt2 + (F (ρ))1/2 ρ−1d~x2 , ρ2 = ~x2 ,

S = g−2 (F (ρ))1/2 ρ−1 ,

F (ρ) = (ρ+ gwR/2)(ρ+ 8gnR−1) ,

T =
1

4
R
√

(ρ+ 8gnR−1)/(ρ+ gwR/2) ,

5In using the results of [8] we should note that appropriate components of the right and the left-handed

gauge fields given there correspond to 1
√

2
(A

(1)
µ ± A

(2)
µ ) of the present paper, and an appropriate 2 × 2

block of the matrix M given in [8] can be identified to the matrix 1
2

(
T 2 + T−2 T−2 − T 2

T−2 − T 2 T 2 + T−2

)
in the

convention of the present paper. In order to produce the solution (2.8) from the one given in [8], we take

QR, QL of [8] to be 2
√

2g2(n/R± wR/16) and then rescale the fields T , A
(1)
µ and A

(2)
µ by R/4, 4/R and

R/4 respectively. The latter operation is a symmetry of the effective action (2.2), and is needed in order

to produce a solution for which the asymptotic value of G
(10)
44 is R2/16 so that the asymptotic radius of

S1 is R.
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F
(1)
ρt =

16g2R−2n

(ρ+ 8gnR−1)2
,

F
(2)
ρt =

1

16

g2wR2

(ρ+ gwR/2)2
,

Hµνρ = 0 . (2.8)

dsc denote the line element measured in the canonical metric gµν . The line element dsstring

measured in the string metric Gµν is given by:

ds2
string ≡ Gµνdx

µdxν = S−1ds2
c = −g2 ρ2 (F (ρ))−1dt2 + g2 d~x2 . (2.9)

The (singular) horizon for this solution is located at ρ = 0. The near horizon region

is defined as

ρ << 8gnR−1, gwR/2 . (2.10)

In this region the solution takes the form:

ds2
string = − ρ2

4nw
dt2 + g2 d~x2 ,

S =
2
√
nw

gρ
,

T =

√
n

w
,

F
(1)
ρt =

1

4n
,

F
(2)
ρt =

1

4w
,

ds2
c = − ρ

2 g
√
nw

dt2 +
2 g

√
nw

ρ
d~x2 . (2.11)

We now introduce rescaled coordinates:

~y = g ~x, r =
√
~y2 = g ρ , τ = g−1t/

√
nw . (2.12)

In this coordinate system the solution near the horizon takes the form:

ds2
string = −r

2

4
dτ 2 + d~y2 , r2 = ~y2 ,

S =
2
√
nw

r
,

T =

√
n

w
,
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F (1)
rτ =

1

4

√
w

n
,

F (2)
rτ =

1

4

√
n

w
.

(2.13)

Notice that in this new coordinate system the solution near the horizon is determined

completely by the charge quantum numbers n and w and is independent of the asymp-

totic value of the moduli g and R. This is an example of the attractor mechanism for

supersymmetric black holes[28, 29, 30].

We now note that the tree level low energy effective action involving charge neutral

fields is invariant under a rescaling of the form:

G
(10)
44 → e2βG

(10)
44 , G

(10)
4µ → eβG

(10)
4µ , B

(10)
4µ → eβB

(10)
4µ , (2.14)

keeping the four dimensional dilaton Φ fixed. Physically this corresponds to a rescaling of

the compactification radius by eβ. Clearly the full string theory is sensitive to the radius

of compactification and is not invarinat under this transformation. However the tree level

effective action involving charge neutral fields, which are involved in the construction of

the black hole solution, is not sensitive to the compactification radius, and the action as

well as all the quantities (e.g. the black hole entropy) computed from the effective action

will be unchanged under this rescaling. In terms of the four dimensional fields defined in

(2.1) this amount to:6

T → eβT, A(1)
µ → e−βA(1)

µ , A(2)
µ → eβA(2)

µ . (2.15)

Choosing eβ =
√
w/n we can map the near horizon solution (2.13) to:7

ďs
2

string = −r
2

4
dτ 2 + d~y2 , r2 = ~y2 ,

Š =
2
√
nw

r
,

Ť = 1 ,

6This is a special case of the O(6,22;R) transformation that was used in [8] to bring the near horizon
limit of a general black hole solution into the universal form.

7We would like to emphasize that the checked and hatted solutions discussed in this section are related
to the original solution (2.11) by transformations which are exact symmetries of the equations of motion
of tree level string theory, but are not exact symmetries of the full string theory.

9



F̌ (1)
rτ =

1

4
,

F̌ (2)
rτ =

1

4
.

(2.16)

We now note that except for the overall multiplicative factor of
√
nw in the expression for

Š, the solution has no dependence on any parameter and is completely universal. We also

note that the area of the event horizon, measured in the canonical metric gµν = SGµν , is

given by:

AH = 4πr2Š|r=0 = 8π
√
nw r|r=0 = 0 . (2.17)

Thus the area of the event horizon vanishes. As a result the black hole entropy also

vanishes to this approximation.

Before we proceed we would like to make the following observations:

• (2.16) is an exact solution of the classical low energy supergravity equations of

motion. This follows from the fact that (2.8) is a solution of these equations for all

n and w, and (2.16) is obtained from this solution by taking the limit n, w → ∞
and carrying out operations which are exact symmetries of the classical low energy

supergravity equations of motion.

• For r >> 1 the higher derivative corrections to the solution (2.16) are small and we

expect the solution of the complete classical equations of motion of string theory

to be approximated by (2.16) in this limit. This can be seen by introducing a new

coordinate η via the relation τ = 2η/r, and writing the solution as

ďs
2

string = −dη2 + d~y2 + 2
η

r
dηdr − η2

r2
dr2 , r2 = ~y2 ,

∂rŠ/Š = −1/r ,

Ť = 1 ,

F̌ (1)
rη =

1

2r
,

F̌ (2)
rη =

1

2r
.

(2.18)

Thus we see that for fixed η, the metric approaches flat metric and all other fields

become trivial for large r. Thus we expect the corrections due to higher derivative
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terms to be small. In fact from the structure of (2.18) it is clear that for fixed η

each derivative with respect to r brings down a factor of 1/r and hence the effect

of the four derivative terms in the action is suppressed by a factor of 1/r2 relative

to the two derivative terms. Thus we expect that the modification of the solution

(2.16) due to the higher derivative terms will be of order 1/r2 relative to the leading

term. This observation will be useful for our analysis later.

Let us now consider the effect of various corrections to the effective action[8]. First

of all we see that S → ∞ as r → 0 and even for r ∼ 1, S is of order
√
nw which is

large for large n and w. Since S measures the inverse of the string coupling we conclude

that stringy quantum corrections can be ignored for large n and w[8]. On the other hand

since various curvatures are of order unity for r ∼ 1 we expect that the tree level higher

derivative terms will affect the solution and the entropy. To study the general form of

these corrections, we recall that the complete tree level effective action of the heterotic

string theory in the subsector under study has the form:

S =
∫
d4x

√
− detGS L(Gµν , Bµν , T, A

(1)
µ , A(2)

µ , ∂µS/S) . (2.19)

Note in particular that under multiplication of S by a constant, the action gets multiplied

by the same constant. This shows that given any solution of the full equations of motion

derived from the action (2.19), we can get another solution by multiplying S by an arbi-

trary constant, leaving the rest of the fields unchanged. Thus in order to study possible

corrections to the solution (2.17) due to the higher derivative terms in the action (2.19),

we could first find corrections to a different solution

d̂s
2

string = −r
2

4
dτ 2 + d~y2 , r2 = ~y2 ,

Ŝ =
2

r
,

T̂ = 1 ,

F̂ (1)
rτ =

1

4
,

F̂ (2)
rτ =

1

4
,

(2.20)

and then multiply the Ŝ for the resulting solution by
√
nw to find the correction to

(2.16). Since (2.20) has a completely universal form without any parameter. and since
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furthermore the action (2.19) is also completely universal, it is clear that the higher

derivative terms in (2.19) will change (2.20) to a universal form:

d̂s
2

string = −f1(r)

f3(r)
dτ 2 +

f2(r)

f3(r)
d~y2 , r2 = ~y2 ,

Ŝ = f3(r) ,

T̂ = f4(r) ,

F̂ (1)
rτ = f5(r) ,

F̂ (2)
rτ = f6(r) ,

(2.21)

where f1(r), . . . f6(r) are a set of universal functions. This particular parametrization has

been chosen for later convenience. For large r these functions must agree with the solution

(2.20). This gives

f1(r) ≃
r

2
, f2(r) ≃

2

r
, f3(r) ≃

2

r
, f4(r) ≃ 1, f5(r) ≃

1

4
, f6(r) ≃

1

4
. (2.22)

The higher derivative corrections to (2.16) is now generated by multiplying S in (2.21)

by a factor of
√
nw:

ďs
2

string = −f1(r)

f3(r)
dτ 2 +

f2(r)

f3(r)
d~y2 , r2 = ~y2 ,

Š =
√
nw f3(r) ,

Ť = f4(r) ,

F̌ (1)
rτ = f5(r) ,

F̌ (2)
rτ = f6(r) . (2.23)

Using the inverse of the transformation (2.15) we can now generate the modified version

of the solution (2.13):

ds2
string = −f1(r)

f3(r)
dτ 2 +

f2(r)

f3(r)
d~y2 , r2 = ~y2 ,

S =
√
nw f3(r) ,

T =

√
n

w
f4(r) ,

F (1)
rτ =

√
w

n
f5(r) ,

F (2)
rτ =

√
n

w
f6(r) . (2.24)
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We now turn to the computation of entropy associated with this solution. In the

presence of higher derivative corrections the entropy is no longer proportional to the area

of the event horizon; there are additional corrections[18, 19, 20]. These corrections all have

the property that if the action is multiplied by a constant then the entropy associated

with a given solution also gets multiplied by the same constant. Now suppose a denote

the entropy associated with the solution (2.21). Then since the solution (2.21) and the

action (2.19) are both universal, a must be a purely numerical coefficient. Since (2.23)

differs from (2.21) in a multiplicative factor of
√
nw in the expression for S, and since

from (2.19) we see that the effect of this multiplicative factor is to multiply the action by
√
nw, the entropy associated with the solution (2.23) must be given by[8]:

SBH = a
√
nw . (2.25)

Since (2.23) and (2.24) are related by the transformation (2.15) which is an exact sym-

metry of the tree level effective action, (2.25) also gives the entropy associated with the

solution (2.24).

On the other hand counting of states of fundamental heterotic string carrying w units

of winding and n units of momentum along S1 shows that for large n and w the degeneracy

of states grows as e4π
√

nw. Thus the statistical entropy, defined as the logarithm of the

degeneracy of states, is given by:

Sstat ≃ 4π
√
nw , (2.26)

for large n and w. Thus we see that up to an overall multiplicative constant the statistical

entropy agrees with the Bekenstein-Hawking entropy of the black hole[8].

For later use, it will be convenient to use (2.12) to rewrite (2.24) in terms of the

original variables ρ and t:

ds2
string = − 1

g2nw

f1(gρ)

f3(gρ)
dt2 + g2 f2(gρ)

f3(gρ)
d~x2 , ρ =

√
~x2

S =
√
nwf3(gρ) ,

T =

√
n

w
f4(gρ) ,

F
(1)
ρt =

1

n
f5(gρ) ,

F
(2)
ρt =

1

w
f6(gρ) ,

ds2
c = S ds2

string = − 1

g2
√
nw

f1(gρ) dt
2 + g2

√
nw f2(gρ) d~x

2 . (2.27)
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This finishes our review of [8]. Let us now briefly mention the recent results of refs.[9,

21]. In these papers the authors compute the value of the coefficient a by taking into

account a special class of higher derivative terms in the effective action which are required

for the supersymmetric completion of the curvature squared term[10] that is known to

be present in the tree level effective action of the heterotic string theory[11]. Based on

earlier work[13, 14, 15, 16, 17, 31, 32] these papers concluded that in the presence of

the higher derivative terms the solution near r = 0 gets modified in such a way that the

horizon acquires a finite area. The naive entropy computed from this using the Bekenstein-

Hawking formula is 2π
√
nw. However, as was shown in [9, 21], there are corrections to

the entropy formula due to the presence of the higher derivative terms in the action, and

these give an additonal contribution of 2π
√
nw. Thus the net entropy of the extremal

black hole is given by 4π
√
nw in agreement with the statistical entropy (2.26).

The analysis of [9, 21] was based on the assumption that at the horizon the black hole

solution develops enhanced supersymmetry. While this leads to the solution close to the

horizon, this does not give us any information about the interpolating functions f1(r),

. . . f6(r) for finite values of r. In the next section we shall study the complete solution

in the presence of this special class of higher derivative terms, and find the functions

f1(r), . . . f6(r) which interpolate between the large r limit discussed in this section and

the small r results of refs.[9, 21].

3 Modification of the Solution by Higher Derivative

Terms and its Near Horizon Limit

In this section we shall find the modification of the solution (2.8) by taking into account

a special class of higher derivative corrections to the effective action. In order to do so,

we need to first rewrite the low energy effective action (2.2) in the language of N = 2

supergravity and then analyze the effect of higher derivative corrections.

3.1 The low energy effective action as N = 2 supergravity

The action of N = 2 supergravity coupled to n vector multiplets is governed by a pre-

potential F which is a function of (n + 1) complex scalars XI (0 ≤ I ≤ n). The XI ’s

are projective coordinates and F is a homogeneous function of the XI ’s of degree 2. The

gauge invariant bosonic degrees of freedom are the metric gµν , the complex scalars XI/X0,

14



and a set of (n+ 1) gauge fields AI
µ. Let us define

F I
µν ≡ ∂µAI

ν − ∂νAI
µ , (3.1)

FI ≡ ∂F

∂XI
, FIJ ≡ ∂2F

∂XI∂XJ
, (3.2)

LI ≡ (FIJX̄
J − F̄I), L ≡ F̄ − 1

2
FIJ X̄

IX̄J , NIJ ≡ 1

4
i
(
FIJ +

1

2

LILJ

L

)
, (3.3)

e−K ≡ i(X̄IFI −XIF̄I) , (3.4)

F I±
µν ≡ 1

2

(
F I

µν ± iF̃ I
µν

)
. (3.5)

GI±
µν ≡ ± 16π i

(√
− det g

)−1 δS

δF I±
µν

, GI
µν ≡ GI+

µν + GI−
µν , (3.6)

where F̃ I
µν denotes the Hodge dual of F I

µν , and in computing δS
δFI±

µν

we need to treat F I±
µν

as independent variables. Since XI ’s are projective coordinates, we can impose a gauge

condition on the XI ’s. The convenient gauge choice is the e−K = constant gauge. In this

gauge the bosonic part of the action takes the form[33, 13, 17]:8

S =
1

8π

∫
d4x

√
− det g

[
1

2
e−KR− igµν(∂µX

I∂νF̄I − ∂µX̄
I∂νFI)

+
{
NIJg

µµ′

gνν′F I−
µν FJ−

µ′ν′ + h.c.
} ]

, (3.7)

For the system we are considering, the prepotential is[35]

F = −X
1(X2)2

X0
. (3.8)

If we define the gauge invariant fields S and T through

X1

X0
= i S ,

X2

X0
= i T , (3.9)

and choose the gauge condition

e−K =
1

2
, (3.10)

8In writing down this action we have implicitly assumed a reality condition on the fields such that
the fields XI are either purely real or purely imaginary and the prepotential F is purely imaginary. In
the present example this amounts to restricting the fields S and T defined in (3.9) to be real. Otherwise
there will be additional contribution to the kinetic term for the scalar fields. I would like to thank S. Das
for drawing my attention to this issue.
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then from eqs.(3.4), (3.8) we get

X0 =
1

4 T
√
S
. (3.11)

For real S and T eqs.(3.1) - (3.7) now produce the action:

S =
1

32π

∫
d4x

√
− det g

[
R− 1

2S2
gµν ∂µS∂νS − 1

T 2
gµν ∂µT∂νT

−ST 2 gµν gµ′ν′ F0
µµ′F0

νν′ − S−1T 2 gµν gµ′ν′ F1
µµ′F1

νν′ − 2S gµν gµ′ν′ F2
µµ′ F2

νν′

]
.

(3.12)

This agrees with the action (2.2) after a duality transformation on the field F1
µν if we

make the identification:9

F (1)
µν = F0

µν , F (2)
µν = G1

µν =
T 2

S
F̃1

µν , (3.13)

and set A2
µ to 0. For a general configuration of XI ’s and AI

µ’s the imaginary parts of T

and S can be identified respectively with an appropriate off-diagonal component of the

internal metric and the axion field obtained by dualizing the field Bµν , whereas A2
µ can be

regarded as an appropriate linear combination of G(10)
mµ and B(10)

mµ for 5 ≤ m ≤ 9. During

the rest of our analysis we shall consider configurations where S and T are real.

3.2 Higher derivative corrections

The corrections associated with supersymmetrization of the curvature squared term can

be taken into account by modifying the prepotential to[13, 17]

F = −X
1(X2)2

X0
+ Â f

(
X1

X0

)
, (3.14)

where Â is a background chiral superfield whose highest component contains the square

of the Weyl tensor, and f is a function to be specified later (see eqs.(3.49) and (3.72)

below). It has the property

f(iS) + (f(iS))∗ = 0 for real S . (3.15)

We define

F
Â

=
∂F

∂Â
= f

(
X1

X0

)
, (3.16)

9Note that heterotic string theory compactified on T 6 has N = 4 supersymmetry, but here we are
considering a truncated version of the theory which has N = 2 supersymmetry.
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and various other quantities as in eqs.(3.1)-(3.6). An expression for the bosonic part of

the action for a general prepotential F (XI , Â) has been given in [17], but we shall not

review it here. Instead we shall focus our attention on a class of N = 1 supersymmetric

black hole solutions constructed in [17, 34] after taking into account the corrections given

in (3.16). In an appropriate gauge these solutions have the form:10

ds2
c = −e2G(ρ)dt2 + e−2G(ρ)d~x2 , ρ =

√
~x2 , (3.17)

e−G(XI − X̄I) = i

(
aI +

bI
ρ

)
, (3.18)

e−G(FI − F̄I) = i

(
cI +

dI

ρ

)
, (3.19)

where aI , bI , cI , dI are arbitrary real constants,11

F I
ρt = ∂ρ(e

G(XI + X̄I)) , (3.20)

GI
ρt = ∂ρ(e

G(FI + F̄I)) , (3.21)

Â = −64 e2G (∂ρG)2 , (3.22)

e−K +
1

2
χ = −128ie3G 1

ρ2
∂ρ

(
ρ2e−G∂ρG (F

Â
− F̄

Â
)
)
. (3.23)

Here χ is an arbitrary constant whose value is determined by the gauge condition. We

shall choose the gauge

χ = −1 , (3.24)

so that in the absence of coupling to the background superfield Â the gauge condition

agrees with (3.10).

The procedure for solving these equations is as follows. For given constants aI , bI , cI ,

dI , eqs. (3.18), (3.19) give 2n real equations which can be used to used to solve for the

n complex XI ’s in terms of G and Â. (3.22) gives Â in terms of G. Substituting these

in (3.23) we get a differential equation for G which can then be solved. Once G and the

XI ’s have been found, we can use (3.20), (3.21) to calculate the gauge field strengths F I
ρt

and GI
ρt.

10Ref.[17] considered a more general class of solutions by allowing the supersymmetry transformation
parameter to rotate by a phase as we move in space. Since we shall be interested in a solution for which
the fields S and T are real we shall set the phase to 1.

11Physically the constants aI and cI measure the asymptotic values of various fields whereas bI and dI

measure the charges carried by the black hole.
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Thus in order to find the black hole solution describing the elementary string states, we

first need to determine the constants aI , bI , cI and dI . For this we note that in the absence

of the coupling to the background superfield Â, ı.e. for f(X1/X0) = 0, the solution (2.8)

has the form given in eqs.(3.17)-(3.24) for the following choice of the constants:

a1 = 2g−1R−1, b1 = w, c0 = −R
8
g−1, d0 = −n, a2 =

1

2
g ,

a0 = b0 = b2 = 0, cI = dI = 0 for I = 1, 2 . (3.25)

In order to study the modification of the solution due to coupling to the background

superfield Â, we first note that for a given solution the constants aI , bI , cI , dI may be

determined by knowing the form of the solution at large ρ to order 1/ρ. As argued in

the last section, the modification of the solution due to the four and higher derivative

terms in the action appear at order 1/ρ2. Hence the constants aI , bI , cI and dI should

not change due to the higher derivative corrections and must have the same values as

given in eq.(3.25). With this choice X0 is real and X1, X2 are purely imaginary, and the

non-trivial components of eqs.(3.17)-(3.22) may be expressed as:12

e−GX0 S =
1

2

(
2g−1R−1 +

w

ρ

)

e−GX0 T =
g

4
,

e−GX0 S

(
T 2 +

Â

(X0)2
f ′(iS)

)
=

1

2

(
R

8
g−1 +

n

ρ

)
, (3.26)

Â = −64 e2G (∂ρG)2 , (3.27)

F
(1)
ρt = F0

ρt = 2∂ρ

(
eGX0

)
,

F
(2)
ρt = G1

ρt = 2∂ρ

[
eGX0

(
T 2 +

Â

(X0)2
f ′(iS)

)]
. (3.28)

For the choice of prepotential given in (3.14), we have, using (3.15),

e−K ≡ i(X̄IFI −XIF̄I) = 4S

(
2 T 2 +

Â

(X0)2
f ′(iS)

)
(X0)2 . (3.29)

12We continue to identify S, T , F
(1)
µν and F

(2)
µν with −iX1/X0, −iX2/X0, F0

µν and G1
µν respectively,

but the fields defined this way may no longer be related to the ten dimensional fields via eqs.(2.1), (2.3).
We shall elaborate on this in section 3.4.
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Eqs.(3.23), (3.24) now give:

4S

(
2 T 2 +

Â

(X0)2
f ′(iS)

)
(X0)2 =

1

2
− 256 i e3G 1

ρ2
∂ρ

[
ρ2 e−G ∂ρGf(iS)

]
. (3.30)

In order to solve these equations, we can first use eqs.(3.26), (3.27) to express S, T , X0

and Â in terms of G, and then substitute these into (3.30) to get a second order non-linear

differential equation for G.

We shall now study various aspects of these equations.

3.3 Near horizon geometry and entropy

In the ρ→ 0 limit we can rewrite the first two equations in (3.26) as:

X0 ≃ w

2ρ
eG S−1 ,

T ≃ g

2w
ρS . (3.31)

Using (3.27) and (3.31) the last equation of (3.26) now gives

ρ2

w2
S2

[
g2

4
− 256 (∂ρG)2 f ′(iS)

]
≃ n

w
. (3.32)

On the other hand eq.(3.30) takes the form:

S e2G

[
g2

2
− 256 (∂ρG)2f ′(iS)

]
=

1

2
− 256 i e3G 1

ρ2
∂ρ

[
ρ2 e−G ∂ρGf(iS)

]
. (3.33)

If we take the following ansatz for the solutions near ρ = 0

S ≃ S0, e2G ≃ K0ρ
2 , (3.34)

then by substituting this into (3.32), (3.33) we get

S2
0 f

′(iS0) = − 1

256
nw , S0K0 f

′(iS0) = − 1

512
. (3.35)

For a given function f these equations can be solved to find S0 and K0. Using (3.31),

(3.27), (3.28) and (3.35) we get

X0 ≃ w

2
K

1/2
0 S−1

0 , T ≃ g

2w
S0 ρ , F

(1)
ρt ≃ 1

2n
, F

(2)
ρt ≃ 1

2w
. (3.36)
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This determines the field configuration near ρ = 0.

Substituting (3.34) into the expression for the metric given in (3.17) we see that the

area of the event horizon, measured in the canonical metric, is

AH = 4 πK−1
0 . (3.37)

Thus the naive black hole entropy will be given by

AH

4GN
=
π

2
K−1

0 , (3.38)

where we have used GN = 2 as given in (2.4). However as shown in [13], due to the

presence of higher derivative terms in the action this expression gets modified to

SBH =
AH

4GN
− 256 π Im(F

Â
) , (3.39)

where F
Â

has been defined in (3.16). Using the expression (3.14) for F , and eqs.(3.37),

(2.4), (3.35) we can express (3.39) as:

SBH =
1

2
πK−1

0 − 256 π Im(f(iS0)) = −256 π (S0f
′(iS0) + Im(f(iS0))) . (3.40)

Thus once K0 and S0 have been determined from (3.35), eq.(3.40) can be used to compute

the black hole entropy. Note that although eqs.(3.26)-(3.30) represent the condition for

preserving half of the space-time supersymmetries of the vacuum, the solution (3.35),

(3.36) at the horizon ρ = 0 actually preserves larger number of supersymmetries[13, 17].

There is however a subtle point that we have overlooked. The remark below (3.30)

shows that G satisfies a second order non-linear differential equation. (3.34), (3.35) de-

scribes a particular solution of this equation near ρ = 0. In order to show that this

describes the correct behaviour of the black hole solution near ρ = 0, we need to ensure

that this solution approaches the correct asymptotic form (2.8) for large ρ where the ef-

fect of higher derivative corrections should be negligible. Since a general solution of the

differential equation has two integration constants, there is no a priori guarantee that the

choice of integration constants which lead to the form given in (3.34), (3.35) will also have

the correct asymptotic behaviour. We shall return to this issue in section 3.6.

3.4 T-duality

The near horizon expression for T given in (3.36) shows that it vanishes as ρ → 0. If

G
(10)
44 is identified with T 2 as in eq.(2.1), then this would imply that G

(10)
44 would vanish

20



as ρ → 0. This is somewhat surprising if we consider the fact that before including the

higher derivative corrections to the action, G
(10)
44 approached a finite value T 2 = n

w
as

ρ → 0 (see eq.(2.11)). Since unlike the field S, G
(10)
44 had already reached a fixed point

value, one would have expected that higher derivative corrections would not drastically

modify this behaviour.

We shall now argue that after inclusion of the higher derivative corrections given in

(3.14), the correct identification of G
(10)
44 is not T 2, but,

G
(10)
44 = T 2 +

Â

(X0)2
f ′(iS) . (3.41)

In that case the first and the last equations in (3.26) show that in the ρ→ 0 limit

G
(10)
44 → n

w
. (3.42)

This agrees with the near horizon value of G
(10)
44 in the absence of higher derivative cor-

rections.

In order to establish (3.41) we need to study how the T-duality transformation

G
(10)
44 → (G

(10)
44 )−1 , (3.43)

which is an exact symmetry of heterotic string theory on T 5 × S1, is realized in terms of

the fields XI . According to [35] this corresponds to the transformation:

X0 → X̃0 = −F1 =
(X2)2

X0
− Â

X0
f ′(iS) ,

X1 → X̃1 = F0 =
X1 (X2)2

(X0)2
− ÂX1

(X0)2
f ′(iS) ,

X2 → X̃2 = −X2 , (3.44)

F0 → F̃0 = X1 ,

F1 → F̃1 = −X0 ,

F2 → F̃2 = −F2 = −2X1X2

X0
, (3.45)

where

F̃I ≡ FI({X̃I}, Â) . (3.46)
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Eqs.(3.44) describes the transformation laws of the fields XI , whereas eqs.(3.45) are con-

sistency conditions which must be satisfied in order that the transformations (3.44) are

symmetries of the equations of motion. It can be easily verified that eqs.(3.45) follow

from eqs.(3.44).

Using (3.44) we see that

S̃ = −i X̃
1

X̃0
= −i X

1

X0
= S ,

T̃ = −iX̃
2

X̃0
= i

X2

(X2)2

X0 − Â
X0 f ′(iS)

=
T

T 2 + Â
(X0)2

f ′(iS)
. (3.47)

In the absence of higher derivative corrections, ı.e. when f(iS) = 0, this gives the familiar

T → T−1 duality transformation. However we see that the duality transformation law of

T gets modified by the higher derivative terms. Thus T can no longer by identified as√
G

(10)
44 which transforms as (3.43) even when higher derivative corrections are included.

On the other hand we note from (3.44) that

T̃ 2 +
Â

(X̃0)2
f ′(iS̃) =

1

T 2 + Â
(X0)2

f ′(iS)
. (3.48)

Comparing this to (3.43), and by using the requirement that for f(iS) = 0, G
(10)
44 should

reduce to T 2, we reach the identification given in (3.41).

3.5 Tree level heterotic string theory and universality

The higher derivative corrections to the tree level effective action of heterotic string theory

are given by the following choice of the function f(u)[9]:

f(u) = −C

64
u , C = 1 . (3.49)

Although the constant C is equal to unity, we shall analyze the solution assuming that it

is an arbitrary constant so that at various stages we can recover the leading α′ result by

setting C to 0. Eq.(3.35) now gives:

S0 =
1

2

√
nw

C
, K0 =

1

4
√
C nw

. (3.50)

Using eqs.(3.40) and (3.50) we get:

SBH = 4 π
√
C nw . (3.51)
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For C = 1 this reproduces the microscoic entropy (2.26) in agreement with the results of

[9]. Setting C = 0 we recover the supergravity result that the entropy vanishes.

We shall now explicitly check that this solution reproduces the scaling property en-

coded in eq.(2.27) in the limit of large n and w. For this we take the limit of large n and

w in eqs.(3.26) - (3.30), substitute the general form (2.27) into these equations, and use

the form (3.49) for f(u). First of all comparison between the form of the metric (2.27)

and (3.17) gives

f1(r)f2(r) = 1 . (3.52)

Eqs.(3.26)-(3.30) in this limit give

X0 =
1

2gρ

√
w

n
(nw)−1/4

√
f1(gρ)

f3(gρ)
, (3.53)

f3(r)

f4(r)
=

2

r
,

f3(r) f4(r)


1 + 4C

(
f ′

1(r)

f1(r)

)2

 =

2

r
,

1

2
f1(r) f3(r) =

1

2
− 2C

r2
f1(r) ∂r

[
r2 f3(r)

f ′
1(r)

f1(r)

]
,

f5(r) = ∂r

(
1

r

f1(r)

f3(r)

)
,

f6(r) = ∂r

(
1

r

f1(r)

f3(r)

)
. (3.54)

We see that eqs.(3.52) and (3.54) involving the functions fi(r) are completely independent

of any external parameters, as predicted by the scaling argument.

We can try to solve these equations by introducing a new function h(r) through

f1(r) = eh(r) . (3.55)

Then (3.52) and the first two and the last two equations of (3.54) give13

f2(r) = e−h(r) ,

13We could also have gotten eqs.(3.55)-(3.57) by directly substituting the general form (2.21) into
eqs.(3.17)-(3.24) with (ρ, ~x, t) replaced by (r, ~y, τ), and aI , bI , cI , dI determined from the asymptotic
form (2.22). In this case the n, w, g and R independence of the resulting equations would be manifest
from the beginning.
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f3(r) =
2

r

1√
1 + 4C (h′(r))2

,

f4(r) =
1√

1 + 4C (h′(r))2
,

f5(r) =
1

2
∂r

(
eh(r)

√
1 + 4C (h′(r))2

)
,

f6(r) =
1

2
∂r

(
eh(r)

√
1 + 4C (h′(r))2

)
.

(3.56)

Finally, substituting these into the third equation of (3.54) we get a differential equation

for h:

C h′
(
1 + 4C (h′)2

)
+ C r h′′ =

r2

8
e−h

(
1 + 4C (h′)2

)3/2 − r

4

(
1 + 4C (h′)2

)
. (3.57)

The boundary condition on h follows from (2.22)

eh ≃ r

2
for large r . (3.58)

One can easily verify that (3.58) satisfies (3.57) for large r.

For small r eq.(3.57) admits a solution

eh ≃ r2

4
√
C
, (3.59)

which leads to the solution (3.50). However since (3.57) is a second order differential

equation for h, there is no a priori guarantee that there is a smooth solution that interpo-

lates between (3.58) and (3.59). We shall analyze this issue in section 3.6. Note that for

C = 0 eq.(3.57) becomes a purely algebraic equation for h which admits a unique solution

eh = r/2 and reproduces the result of section 2.

3.6 The analysis of the interpolating solution

We shall now analyze the differential equation (3.57) for C = 1 and analyze the possibility

of a solution that interpolates between (3.58) for large r and (3.59) for small r. We shall

begin by analyzing fluctuations around the asymptotic solutions. For large r, if we make

the ansatz

h(r) = ln
r

2
+ φ , (3.60)
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Figure 1: Trajectories neighbouring h = 2 ln r
2

for small r.

and assume that φ and all its derivatives are of order unity, then (3.57) gives, for C = 1,

φ′′ =
1

4
e−φ {1 + 4(φ′)2}3/2 − 1

4
{1 + 4(φ′)2} . (3.61)

φ = 0 is a solution of this equation as expected. For small φ the equation reduces to

φ′′ = −1

4
φ+ O(φ2) , (3.62)

which has, as solutions

φ = A cos
(
r

2
+B

)
+ O(A2) , (3.63)

for arbitrary integration constants A, B. Thus φ = 0 is an elliptic fixed point of the second

order autonomous system described by (3.61) and we expect that there is a generic set of

initial conditions for which the solution to (3.57) at large r will have periodic oscillations

around h = ln r
2
:

h = ln
r

2
+ A cos

(
r

2
+B

)
+ O(A2) . (3.64)

Analyzing the fluctuations of the solutions around the solution (3.59) near r = 0

is more difficult. Numerical analysis suggests that the behaviour of the solution around

r = 0 is highly unstable and for slight changes in the initial condition the solution develops

spontaneous singularities at some value of r close to zero. This has been illustrated in

Fig.1 where we have displayed some trajectories neighbouring the solution (3.59) for small

r.
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Figure 2: Numerical result for the solution to (3.57) satisfying the boundary condition
h = 2 ln r

2
for small r. The smooth curve represents h = ln r

2
.

For this reason, in order to study if there is a solution to (3.57) that interpolates

between (3.58) and (3.59), we begin with the solution (3.59) for small r and numerically

integrate it to study its behaviour at large r. The result is shown in Fig.2. We see from

this that the solution does not approach (3.58), but oscillates around it, as is expected

for a generic initial condition. This seems unlikely to be a numerical error, and seems to

indicate that the solution that has the correct near horizon behaviour does not approach

the desired form at large r.

We shall now argue however that there is a subtlety in this interpretation and that once

this subtlety is taken into account, the asymptotic behaviour of the solution is consistent

with the desired form. For this we note that for small A, the solution (3.63) implies the

following asymptotic forms for the fi’s:

f1 ≃
r

2

(
1 + A cos

(
r

2
+B

))
, f2 ≃

2

r

(
1 − A cos

(
r

2
+B

))
, f3 ≃

2

r
, f4 ≃ 1 ,

f5 = f6 ≃
1

4
− Ar

8
sin

(
r

2
+B

)
+
A

4
cos

(
r

2
+B

)
. (3.65)

Substituting these into (2.21) we see that at large r, and to linear order in A, the modifi-

cation of the solution appears only in the expression for the metric and the gauge fields.

In particular, we have

d̂s
2

string ≃ −r
2

4

(
1 + A cos

(
r

2
+B

))
dτ 2 +

(
1 − A cos

(
r

2
+B

))
d~x2 ,
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F̂
(1)
rt = F̂

(2)
rt ≃ 1

4
− Ar

8
sin

(
r

2
+B

)
+
A

4
cos

(
r

2
+B

)
. (3.66)

Under the change of variable τ = 2η/r, the metric and the gauge fields take the form

d̂s
2

string = −dη2 + d~x2 −A cos
(
r

2
+B

)
(dη2 + d~x2) + O

(
1

r

)

F̂ (1)
rη = F̂ (2)

rη ≃ −A
4

sin
(
r

2
+B

)
+ O

(
1

r

)
. (3.67)

This shows that for small A the asymptotic solution differs from the (locally) flat

background by an oscillatory piece proportional to A. Hence this must represent a solution

of the linearized equations of motion.14 This might seem surprising since normally the

only solution of linearized equations of motion for the graviton and the gauge fields are

gravitational and electromagnetic wave solutions. However in the present circumstances

there can be additional solutions because the action has higher derivative terms. In order

to illustrate this we consider the simpler example of a scalar field ψ with action:

1

2

∫
d4xψ2

(
1 − 2

M2

)
ψ . (3.68)

The equations of motion for ψ has solutions of the form Aeik.x with

k2 = 0 or −M2 . (3.69)

Thus a single scalar field can describe plane waves of different masses in the presence of

higher derivative terms. Similar phenomenon occurs for gravity and gauge fields in the

presence of higher derivative terms in the action.

Note however that the presence of such additional oscillatory solutions will, upon

quantization, give rise to additional quantum states which are not present in the spectrum

of string theory. Thus there is an apparent contradiction between field theory and string

theory results. This problem was resolved by Zwiebach[10] who argued that these higher

derivative terms should be removed by appropriate field redefinition. For example by

making a field redefinition

gµν → gµν + aRµν + bR gµν , (3.70)

14Although (3.56), (3.57) were derived using the requirement of supersymmetry preservation, it has
been argued in [17] that a solution of these equations also satisfy the classical field equations. We have
checked explicitly that the metric fluctuations given in (3.67) does satisfy the linearized equations of
motion around the flat background, but we shall not demonstrate it here.
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for appropriate constants a and b, we can ensure that the curvature squared terms appear

in the action in the Gauss-Bonnet combination. This particular combination of terms has

the property that when we expand this in the weak field approximation, the quadratic

term involving the graviton field does not receive any contribution from the curvature

squared term. As a result the linearized equations of motion of the graviton field remain

unmodified and we only get the usual plane wave solutions. Since this is what string

spectrum predicts, we see that this redefined metric is the correct variable to be used to

make direct contact with string theory. A similar field redefinition must be carried out

for the gauge fields as well.

Under such field redefinitions the oscillatory solutions of the type given in (3.67) are

mapped to zero. We shall illustrate this in the context of the scalar field action (3.68).

The field redefinition that brings the action to the standard action for a massless scalar

field is

ψ̃ =
(
1 − 2

M2

)1/2

ψ . (3.71)

Under this map the solution ψ = Aeik.x gets mapped to Aeik.x for k2 = 0 and to 0 for

k2 = −M2. Thus in terms of the variable ψ̃ only the plane wave solutions with k2 = 0

are present.

This discussion shows that the fluctuations proportional to A in (3.67) are unphysical

and are in fact mapped to zero when we use the correct field variables. It should be

emphasized that we have not explicitly constructed the field redefinition, but are relying

on the fact that the effective field theory that correctly describes tree level string theory

must admit such field redefinitions. Although our discussion has been focussed at the

linearized level, we expect that the result should be valid beyond the linear approximation,

and that when we use the right field variables, the two parameter family of solutions of

the differential equation (3.61), valid for large r, will map to a single solution. This in

turn would imply that the oscillations that we see in Fig.2 are due to the wrong choice

of field variables, and should disappear once we make the right choice. Presumably when

we use the right choice of field variables the differential equation (3.57) will be replaced

by an ordinary equation with a unique solution which will interpolate correctly between

the desired asymptotic limits.
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3.7 Effect of quantum corrections and holomorphic anomaly

Finally let us consider the contribution to the black hole entropy obtained after taking

into account the full quantum corrections to the function f(u).15,16 In this case[11]

f(u) = − 1

128 π i
ln ∆

(
e2πiu

)
, (3.72)

where

∆(q) = (η(q))24, η(q) = q
1

24

∞∏

n=1

(1 − qn) . (3.73)

Eqs.(3.35), (3.40) now give

S2
0

∆′
(
e−2πS0

)

∆ (e−2πS0)
=
nw

4
, SBH = 4π


S0

∆′
(
e−2πS0

)

∆ (e−2πS0)
− 1

2π
ln ∆

(
e−2πS0

)

 , (3.74)

where

∆′(q) ≡ q
∂∆(q)

∂q
. (3.75)

Note that for small q

ln(∆(q)) = ln q + O(q) . (3.76)

This gives, for large S,

f(iS) ≃ − i

64
S + O

(
e−2πS

)
. (3.77)

This agrees with (3.49) for large S. Thus for large S0 the quantum corrected answer for

the entropy, computed from eqs.(3.35), (3.40), reduces to the tree level answer (3.50),

(3.51), as is expected. We can take into account the corrections by solving the equations

for K0 and S0 iteratively as a power series expansion in e−2πS0 . Since to leading order S0

is given by 1
2

√
nw we see that the quantum corrections to the black hole entropy from

this special class of higher derivative terms is of order e−π
√

nw for large nw. Thus we have

SBH = 4 π
√
nw + O

(
e−π

√
nw
)
. (3.78)

15Note however that this takes into account only a special class of corrections and does not correspond
to the full quantum corrected black hole entropy.

16Ref.[9] follows a somewhat different approach for relating the quantum corrected black hole entropy
to the statistical entropy. This uses a mixed ensemble[32] and does not explicitly take into account the
effect of holomorphic anomaly. Presumably the two approaches are related but the relationship is not
completely clear to us.
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This however is not the complete story.17 As was pointed out in [14, 15], there are

corrections to the above formula due to holomorphic anomaly[36, 37]. The effect of this is

to add a non-holomorphic piece 3i
32π

ln(S + S̄) to f(iS). The modified black hole entropy

(see eqs.(4.12), (4.15) of [15]) reduces to, in the present case,

SBH = 2π
nw

S0 + S̄0

− 12 ln
[
(S0 + S̄0) η

(
e−2πS0

)4
]
, (3.79)

where now S0 is given by the solution of the equation

−6

π

[
2 ∂S0

ln η
(
e−2πS0

)
+

1

S0 + S̄0

]
=

nw

(S0 + S̄0)2
. (3.80)

The effect of holomorphic anomaly is represented by the term proportional to ln(S0 + S̄0)

in (3.79) and the term proportional to (S0 + S̄0)
−1 in (3.80). For real S0, (3.80) gives,

S0 =
1

2

√
nw + O (1) , (3.81)

and hence from (3.79)

SBH = 4π
√
nw − 12 ln

√
nw + O(1) . (3.82)

We can try to compare this with the logarithm of the degeneracy of elementary string

states. For a given n and w the degeneracy dnw is determined by the formula[6, 7]:18

16

∆(q)
= q−1

∞∑

N=0

dN−1 q
N . (3.83)

For large N , dN behaves as

dN ∼ 8
√

2N−27/4 exp(4π
√
N) . (3.84)

Thus

Sstat = ln(dnw) ≃ 4 π
√
nw − 27

2
ln
√
nw + O(1) . (3.85)

Comparing (3.78) with (3.85) we see that the quantum corrected Bekenstein-Hawking

entropy does not correctly reproduce the logarithmic corrections to the statistical entropy.

17I would like to thank R. Gopakumar for drawing my attention to the role of holomorphic anomaly
in producing logarithmic corrections.

18Note the N − 1 in the subscript of d. This is due to the fact that for given n and w, the required
level of left-moving oscillators is N = nw + 1. Thus the associated degeneracy is dnw = dN−1.
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We should note however that the definition of statistical entropy itself can be ambigu-

ous when we consider non-leading corrections. Had we used the definition of statistical

entropy based on a different kind of ensemble instead of the microcanonical ensemble, we

would have gotten an answer that differs from (3.85). Consider for example the analog

of the grand canonical ensemble where we introduce a chemical potential µ conjugate to

nw and introduce the partition function

eF(µ) =
∞∑

N=0

dN−1 e
−µ(N−1) . (3.86)

Then we can define the statistical entropy through the thermodynamic relations

S̃stat = F(µ) + µnw , (3.87)

where µ is obtained by solving the equation

∂F
∂µ

= −nw . (3.88)

For large nw we can approximate the sum in (3.86) as dN0−1e
−µ(N0−1) where N0 is the

value of N that maximizes the summand. (3.88) now yields the result N0 − 1 ≃ nw and

(3.87) gives Sstat ≃ ln dnw to leading order. This agrees with the definition of entropy

based on the microcanonical ensemble. However there are non-leading corrections to this

formula. To see this in the present context, note that (3.83), (3.86) give

F(µ) = ln
16

∆(e−µ)
= ln

16

∆(e−4π2/µ)
(

µ
2π

)−12 =
4π2

µ
+12 ln

µ

2π
+ln 16+O(e−4π2/µ) , (3.89)

where we have used the modular transformation law of ∆(e−µ) under µ → 4π2/µ.

Eq.(3.88), (3.87) then give,

µ =
2π√
nw

+ O
(

1√
nw

)
, S̃stat = 4π

√
nw − 12 ln

√
nw + O(1) . (3.90)

Thus we see that the logarithmic corrections present in (3.85) and (3.90) are different. In

particular (3.90) agrees with the black hole entropy given in (3.82).

We can in fact do better and show that S̃stat agrees with SBH up to an additive constant

of ln 16 and exponentially suppressed corrections. For this we note that for F(µ) given in

(3.89), eqs.(3.87), (3.88) take the form

S̃stat ≃
4π2

µ
+ 12 ln

µ

2π
+ ln 16 + µnw, −4π2

µ2
+

12

µ
≃ −nw , (3.91)
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where we have only ignored corrections of order exp(−4π2/µ). On the other hand, ignoring

terms of order e−2πS0 , and taking S0 to be real, eqs.(3.79), (3.80) can be rewritten as

SBH ≃ 4 π S0 − 12 ln(2S0) +
πnw

S0

, 4S2
0 −

12S0

π
≃ nw . (3.92)

Comparing (3.91) and (3.92) we see that they are identical up to an additive constant of

ln 16 in the expression for S̃stat, if we make the identification

S0 =
π

µ
. (3.93)

We would like to add however that it is not a priori obvious which definition of

the statistical entropy should be compared directly with the geometric entropy. Thus

comparison of the black hole and statistical entropy beyond heterotic string tree level

remains ambiguous.

4 Generalizations and Open Questions

1. Other four dimensional heterotic string theories: Instead of considering

toroidal compactification of heterotic string theory one could consider some other

N = 2 or N = 4 compactification of heterotic string theory for which the compact

manifold has the form S1 × K5 for some compact space K5. It was argued in [38]

that in all such cases if we consider a fundamental string wrapped around the circle

S1 carrying w units of winding and n units of momentum along S1, the entropy

of the corresponding black hole solution continues to be given by (2.25) with the

same universal constant a. On the other hand the statistical entropy, computed

from the spectrum of the fundamental string wrapped on S1, is also given by the

same formula (2.26) for large n and w. Thus once the agreement between (2.25) and

(2.26) has been established for the toroidally compactified heterotic string theory,

it must continue to hold for all other compactifications.

2. Higher dimensional heterotic string theories: It was shown in [39] that the

scaling argument of [8], reviewed in section 2, continues to hold for toroidally com-

pactified heterotic string theory with higher number of non-compact dimensions.

Thus it is natural to ask if the modification of the black hole solution, induced by

the supersymmetric generalization of the curvature squared term in higher dimen-

sion, produces the correct coefficient of the black hole entropy so that it agrees with
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the statistical entropy obtained from computing the degeneracy of elementary string

states. At present the answer to this question is not known.

3. Other higher derivative corrections: In [9, 21] as well as in the present paper

we have taken into account only a specific class of higher derivative terms which

arise from supersymmetrization of the curvature squared term. Since the non-trivial

modification of the solution takes place at r ∼ 1 where the higher derivative cor-

rections are of order unity, there is no a priori reason why further higher derivative

corrections cannot completely change the results. It will be interesing to explore if it

is possible to analyze the effect of these higher derivative terms by directly working

with the σ-model that describes string propagation in this background[40].

4. Type II string theories: One can carry out a similar analysis for toroidal or other

compactification of type II superstring theories which have at least two supersym-

metries from the right-moving sector of the world-sheet and for which the compact

space has a free circle on which one can wrap the fundamental string. It was shown

in [38] that the scaling argument of [8] can be generalized to this case to yield a

formula similar to (2.25):

SBH = a′
√
nw , (4.1)

where the constant a′ is universal for all superstring compactifications of the type

mentioned above, but could differ from the constant a for heterotic string compact-

ifications. On the other hand the calculation of the degeneracy of the elementary

string states yields the following expression for the statistical entropy:

Sstat = 2
√

2 π
√
nw . (4.2)

Thus it is natural to ask if higher derivative corrections similar to the one studied

here could give rise to the a′ = 2
√

2 relation in superstring theory.

Unfortunately however tree level type II string theory has no curvature squared

term of the type discussed here and as a result the analog of the term that gave the

correct value of a in heterotic string compactification does not exist in type II string

theory. Hence a′ continues to vanish. The resolution of this puzzle is not clear to us.

It is of course possible that type II string theory will have other higher derivative

corrections which modify the solution and gives us a finite entropy in agreement
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with (4.2), but then the question that would arise is: why are such corrections not

present in the heterotic string theory?

Although we do not have an answer to this puzzle, the following observation may be

useful. First note that the geometric entropy formula given in [13, 17] always agrees

with the apparent statistical entropy computed in [31]. Thus a discrepancy between

the geometric entropy and statistical entropy can be regarded as a mismatch between

the apparent statistical entropy computed in [31] and the correct statistical entropy,

and understanding the origin of the latter disagreement may give us some insight

into the origin of the former discrepancy. To this end we note that the analysis of

[31] was carried out by describing the theory under consideration as an M-theory

compactified on S1 ×K6 for some six dimensional Calabi-Yau manifold K6, and the

system whose entropy is being computed as an M5-brane wrapped on S1×K4 where

K4 is a 4-cycle in K6. One then takes the limit of large S1 to regard this as a string

wrapped on S1, where the string is identified as the M5-brane wrapped on K4. The

degeneracy of BPS states, with the string carrying certain momentum along S1, is

then given by exp
(
2π
√
cLn/6

)
where cL is the central charge associated with the

left moving modes on the string. Thus the statistical entropy is given by 2π
√
cLn/6.

The subtlety in this computation lies in the determination of cL. This requires

knowing the number of left-moving massless modes living on the M5-brane wrapped

on K4. In [31] this computation was done by using certain genericity assumption

under which the computation of the number of massless degrees of freedom reduces

to computation of certain topological index. However in a non-generic case the

number of massless modes may differ from this index, and in that case the entropy

formula given in [31] will not be correct. Since the entropy formula of [31] is identical

to the formula for the geometric entropy computed in[13, 17], this would imply that

in these cases the geometric entropy formula of [13, 17] will differ from the statistical

entropy.

Let us now examine the computation of [31] both for the case of heterotic string on

T 4 × S̃1 × S1 and type IIA on T 4 × S̃1 × S1. In the first case using string-string

duality[41, 42, 43, 44, 45] we can map the theory to type IIA on K3 × S̃1 × S1,

which in turn is equivalent to M-theory on Ŝ1 ×K3 × S̃1 × S1. Under this duality

the fundamental heterotic string wrapped on S1 gets mapped to M5-brane wrapped
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on K3 × S1. In this case the formula given in [31] gives cL = c2(K3) where c2(M)

denotes the second Chern class of M. Since c2(K3) = 24, we get the correct

answer for the central charge associated with the left-moving degrees of freedom

of a fundamental heterotic string. As a result geometric entropy agrees with the

statistical entropy.

On the other hand using an analog of the string-string duality formula we can map

type IIA on T 4×S̃1×S1 to type IIA on T̃ 4×S̃1×S1 or M-theory on Ŝ1×T̃ 4×S̃1×S1

so that the fundamental type IIA string wrapped on S1 in the first theory gets

mapped to the M5-brane wrapped on T̃ 4 × S1[46]. The formula given in [31] now

gives cL = c2(T
4) = 0. This clearly is not the correct answer for the central charge of

the left-moving modes on a type IIA string. This is responsible for the disagreement

between the geometric entropy formula of [13, 17] and the statistical entropy.

This analysis shows that agreement between the geometric entropy computed in [13,

17] and the statistical entropy depends on whether the genericity assumption of [31]

holds or not. Thus in order to argue that the geometric entropy always reproduces

the statistical entropy, we need to show that when the genericity assumption holds,

there is a non-renormalization theorem that prevents any correction to the entropy

formula by higher derivative terms which were not included in the analysis of [13, 17].

On the other hand, when the genericity assumption fails, the non-renormalization

theorems must also break down, and the higher derivative terms should become

important.

Acknowledgement: I wish to thank A. Dabholkar, B. de Wit, R. Gopakumar and

D. Jatkar for useful discussions.
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