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Abstract

We prove that, in a general higher derivative theory of gravity coupled to abelian gauge

fields and neutral scalar fields, the entropy and the near horizon background of a rotating

extremal black hole is obtained by extremizing an entropy function which depends only

on the parameters labeling the near horizon background and the electric and magnetic

charges and angular momentum carried by the black hole. If the entropy function has a

unique extremum then this extremum must be independent of the asymptotic values of the

moduli scalar fields and the solution exhibits attractor behaviour. If the entropy function

has flat directions then the near horizon background is not uniquely determined by the

extremization equations and could depend on the asymptotic data on the moduli fields,

but the value of the entropy is still independent of this asymptotic data. We illustrate

these results in the context of two derivative theories of gravity in several examples. These

include Kerr black hole, Kerr-Newman black hole, black holes in Kaluza-Klein theory, and

black holes in toroidally compactified heterotic string theory.
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1 Introduction and Summary

The attractor mechanism has played an important role in recent studies of black holes in

string theory [1, 2, 3]. According to this the geometry and other field configurations of an

extremal black hole near its horizon is to a large extent insensitive to the asymptotic data

on the scalar fields of the theory. More precisely, if the theory contains a set of massless

scalars with flat potential — known as the moduli fields — then the black hole entropy

and often the near horizon field configuration is independent of the asymptotic values of

these scalar fields.
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Although initial studies of the attractor mechanism were carried out in the context

of spherically symmetric supersymmetric extremal black holes in supergravity theories

in 3+1 dimensions with two derivative action, by now it has been generalized to many

other cases. These examples include non-supersymmetric theories, actions with higher

derivative corrections, extremal black holes in higher dimensions etc.[4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39]. In particular it has been shown that in an arbitrary theory of gravity

coupled to abelian gauge fields, neutral scalar fields and p-form gauge fields with a gauge

and general coordinate invariant local Lagrangian density, the entropy of a spherically

symmetric extremal black hole remains invariant under continuous deformation of the

asymptotic data for the moduli fields [30, 31], although occasional discrete jumps are not

ruled out. In a generic situation the complete near horizon background is independent of

this asymptotic data and depends only on the charges carried by the black hole, but in

special cases (which happen to be quite generic in supersymmetric string theories) there

may be some dependence of the near horizon background on this asymptotic data.

Most of the studies on the attractor mechanism however have been carried out in the

context of spherically symmetric black holes — for some exceptions see [40, 41, 34, 42].

The goal of this paper is to remedy this situation and generalize the study of the attractor

mechanism to rotating black hole solutions. Our starting point is an observation made in

[43] that the near horizon geometries of extremal Kerr and Kerr-Newman black holes have

SO(2,1)×U(1) isometry. Armed with this observation we prove a general result that is as

powerful as its non-rotating counterpart. In the context of 3+1 dimensional theories, our

analysis shows that in an arbitrary theory of gravity coupled to abelian gauge fields and

neutral scalar fields with a gauge and general coordinate invariant local Lagrangian density,

the entropy of a rotating extremal black hole remains invariant, except for occasional

jumps, under continuous deformation of the asymptotic data for the moduli fields if an

extremal black hole is defined to be the one whose near horizon field configuration has

SO(2, 1)×U(1) isometry. In a generic situation the complete near horizon background is

independent of this asymptotic data and depends only on the charges carried by the black

hole, but in special cases there may be some dependence of the near horizon background

on this asymptotic data.

The strategy for obtaining this result, elaborated in detail in section 2, is to use the

entropy function formalism [30, 31]. As in the case of non-rotating black holes we find that
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the near horizon background of a rotating extremal black hole is obtained by extremizing a

functional of the background fields on the horizon, and that Wald’s entropy [44, 45, 46, 47]

is given by precisely the same functional evaluated at its extremum. Thus if this functional

has a unique extremum with no flat directions then the near horizon field configuration is

determined completely in terms of the charges and angular momentum, with no possibility

of any dependence on the asymptotic data on the moduli fields. On the other hand if the

functional has flat directions so that the extremization equations do not determine the near

horizon background completely, then there can be some dependence of this background

on the asymptotic data, but the entropy, being equal to the value of the functional at the

extremum, is still independent of this data. Finally, if the functional has several extrema

at which it takes different values, then for different ranges of asymptotic values of the

moduli fields the near horizon geometry could correspond to different extrema. In this

case as we move in the space of asymptotic data the entropy would change discontinuously

as we cross the boundary between two different domains of attraction, although within

a given domain it stays fixed. As in the case of non-rotating black holes, these results

are valid given the existence of a black hole solution with SO(2,1)×U(1) symmetric near

horizon geometry, but our analysis by itself does not tell us whether a solution of this

form exists. For this, one needs to carry out a more detailed analysis of the full solution

along the lines of [4].

Although in this paper we focus our attention on four dimensional rotating black

holes with horizons of spherical topology, the strategy outlined above is valid for extremal

black holes in any dimension with horizon of any compact topology, provided we define an

extremal black hole to be the one whose near horizon geometry has an SO(2,1) isometry.

The analysis is also valid for extremal black holes in asymptotically anti de-Sitter space as

long as Wald’s formula for black hole entropy continues to hold. In particular the proof

that the entropy of an extremal rotating black hole in any higher derivative theory of

gravity does not change, except for occasional jumps, under continuous variation of the

asymptotic values of the moduli fields is valid in this general context. All that changes

is that when we try to explicitly solve the differential equations which arise out of the

extremization conditions, we need to use boundary conditions which are appropriate to the

horizon of a given topology. Equivalently if we carry out the analysis by expanding various

functions describing the near horizon background in a complete set of basis functions, then

we must use basis functions which are appropriate to that given topology. We should note
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however that as we vary the asymptotic values of the moduli fields, we must hold fixed all

the conserved charges appropriate to the particular near horizon geometry of the black

hole. This point has been elaborated further in footnote 2.

In section 3 we explore this formalism in detail in the context of an arbitrary two

derivative theory of gravity coupled to scalar and abelian vector fields. The extremization

conditions now reduce to a set of second order differential equations with parameters and

boundary conditions which depend only on the charges and the angular momentum. Thus

the only ambiguity in the solution to these differential equations arise from undetermined

integration constants. We prove explicitly that in a generic situation all the integration

constants are fixed once we impose the appropriate boundary conditions and smoothness

requirement on the solutions. We also show that even in a non-generic situation where

some of the integration constants are not fixed (and hence could depend on the asymptotic

data on the moduli fields), the value of the entropy is independent of these undetermined

integration constants.

In section 4 we specialize even further to a class of black holes for which all the scalar

fields are constant on the horizon. This, of course, happens automatically in theories

without any scalar fields, but also happens for purely electrically charged black holes in

theories without any FF̃ type coupling in the Lagrangian density. In this case we can

solve all the differential equations explicitly and determine the near horizon background

completely, with the constant values of the scalar fields being determined by extremizing

an effective potential — the same potential that appears in the determination of the

attractor values in the case of non-rotating black holes [4]. We use these general results

to compute the entropy and near horizon geometry of extremal Kerr as well as extremal

Kerr-Newman black holes, and reproduce the known results in these cases.

In section 5 we use a different strategy for testing our general results. Here we take

some of the known extremal rotating black hole solutions in two derivative theories of

gravity coupled to matter, and study their near horizon geometry to determine if they

exhibit attractor behaviour. We focus on two particular classes of examples — the Kaluza-

Klein black holes studied in [48, 49, 50] and black holes in toroidally compactified heterotic

string theory studied in [51] (see, also, [52] for a restricted class of such black holes).1

In both these examples, we find two kinds of extremal limits. One of these branches,

1Both types of black holes are special cases of general black hole solutions in toroidally compactified
heterotic string theory and, as we show, various formulæ involving entropy and near horizon metric can
be regarded as special cases of general duality invariant formulæ for these quantities.
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corresponding to the surface W in [48], does not have an ergo-sphere and can exist only

for angular momentum of magnitude less than a certain upper bound. We call this the

ergo-free branch. The other branch, corresponding to the surface S in [48], does have

an ergo-sphere and can exist for angular momentum of magnitude larger than a certain

lower bound. We call this the ergo-branch. On both branches the entropy turns out to be

independent of the asymptotic values of the moduli fields, in accordance with our general

arguments. We find however that while on the ergo-free branch the scalar and all other

background fields at the horizon are independent of the asymptotic data on the moduli

fields, this is not the case for the ergo-branch. Thus on the ergo-free branch we have

the full attractor behaviour, whereas on the ergo-branch only the entropy is attracted to

a fixed value independent of the asymptotic data. On general grounds we expect that

once higher derivative corrections originating at tree, loop, and non-perturbative level are

taken into account these flat directions of the entropy function will be lifted and we shall

get a unique near horizon background even on the ergo-branch.

2 General Analysis

We begin by considering a general four dimensional theory of gravity coupled to a set of

abelian gauge fields A(i)
µ and neutral scalar fields {φs} with action

S =
∫
d4x

√
− det gL , (2.1)

where
√
− det gL is the lagrangian density, expressed as a function of the metric gµν ,

the scalar fields {Φs}, the gauge field strengths F (i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ , and covariant

derivatives of these fields. In general L will contain terms with more than two derivatives.

We consider a rotating extremal black hole solution whose near horizon geometry has

the symmetries of AdS2 × S1. The most general field configuration consistent with the

SO(2, 1) × U(1) symmetry of AdS2 × S1 is of the form:

ds2 ≡ gµνdx
µdxν = v1(θ)

(
−r2dt2 +

dr2

r2

)
+ β2 dθ2 + β2 v2(θ)(dφ− αrdt)2

Φs = us(θ)
1

2
F (i)
µν dx

µ ∧ dxν = (ei − αbi(θ))dr ∧ dt+ ∂θbi(θ)dθ ∧ (dφ− αrdt) , (2.2)

where α, β and ei are constants, and v1, v2, us and bi are functions of θ. Here φ is a

periodic coordinate with period 2π and θ takes value in the range 0 ≤ θ ≤ π. The SO(2,1)
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isometry of AdS2 is generated by the Killing vectors[43]:

L1 = ∂t, L0 = t∂t − r∂r, L−1 = (1/2)(1/r2 + t2)∂t − (tr)∂r + (α/r)∂φ . (2.3)

The form of the metric given in (2.2) implies that the black hole has zero temperature.

We shall assume that the deformed horizon, labelled by the coordinates θ and φ, is a

smooth deformation of the sphere.2 This requires

v2(θ) = θ2 + O(θ4) for θ ≃ 0

= (π − θ)2 + O((π − θ)4) for θ ≃ π . (2.4)

For the configuration given in (2.2) the magnetic charge associated with the ith gauge

field is given by

pi =
∫
dθdφF

(i)
θφ = 2π(bi(π) − bi(0)) . (2.5)

Since an additive constant in bi can be absorbed into the parameters ei, we can set

bi(0) = −pi/4π. This, together with (2.5), now gives

bi(0) = − pi
4π
, bi(π) =

pi
4π

. (2.6)

Requiring that the gauge field strength is smooth at the north and the south poles we get

bi(θ) = − pi
4π

+ O(θ2) for θ ≃ 0

=
pi
4π

+ O((π − θ)2) for θ ≃ π . (2.7)

Finally requiring that the near horizon scalar fields are smooth at the poles gives

us(θ) = us(0) + O(θ2) for θ ≃ 0

= us(π) + O((π − θ)2) for θ ≃ π . (2.8)

2Although in two derivative theories the horizon of a four dimensional black hole is known to have
spherical topology, once higher derivative terms are added to the action there may be other possibilities.
Our analysis can be easily generalized to the case where the horizon has the topology of a torus rather
than a sphere. All we need is to take the θ coordinate to be a periodic variable with period 2π and
expand the various functions in the basis of periodic functions of θ. However if the near horizon geometry
is invariant under both φ and θ translations, then in the expression for L

−1 given in (2.3) we could
add a term of the form −(γ/r)∂θ, and the entropy could have an additional dependence on the charge
conjugate to the variable γ. This represents the Noether charge associated with θ translation, but does
not correspond to a physical charge from the point of view of the asymptotic observer since the full
solution is not invariant under θ translation.
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Note that the smoothness of the background requires the Taylor series expansion around

θ = 0, π to contain only even powers of θ and (π − θ) respectively.

A simple way to see the SO(2, 1) × U(1) symmetry of the configuration (2.2) is as

follows. The U(1) transformation acts as a translation of φ and is clearly a symmetry of

this configuration. In order to see the SO(2,1) symmetry of this background we regard

φ as a compact direction and interprete this as a theory in three dimensions labelled by

coordinates {xm} ≡ (r, θ, t) with metric ĝmn, vectors a(i)
m and am (coming from the φ-m

component of the metric) and scalar fields Φs, ψ ≡ gφφ and χi ≡ A
(i)
φ . If we denote by

f (i)
mn and fmn the field strengths associated with the three dimensional gauge fields a(i)

m

and am respectively, then the background (2.2) can be interpreted as the following three

dimensional background:

d̂s
2 ≡ ĝmndx

mdxn = v1(θ)

(
−r2dt2 +

dr2

r2

)
+ β2 dθ2

Φs = us(θ), ψ = β2 v2(θ), χi = bi(θ) ,
1

2
f (i)
mndx

m ∧ dxn = ei dr ∧ dt,
1

2
fmndx

m ∧ dxn = −αdr ∧ dt . (2.9)

The (r, t) coordinates now describe an AdS2 space and this background is manifestly

SO(2, 1) invariant. In this description the Killing vectors take the standard form

L1 = ∂t, L0 = t∂t − r∂r, L−1 = (1/2)(1/r2 + t2)∂t − (tr)∂r . (2.10)

Eq.(2.9) and hence (2.2) describes the most general field configuration consistent with

the SO(2, 1) × U(1) symmetry. Thus in order to derive the equations of motion we can

evaluate the action on this background and then extremize the resulting expression with

respect to the parameters labelling the background (2.2). The only exception to this are

the parameters ei and α labelling the field strengths. The variation of the action with

respect to these parameters do not vanish, but give the corresponding conserved electric

charges qi and the angular momentum J (which can be regarded as the electric charge

associated with the three dimensional gauge field am.)

To implement this procedure we define:

f [α, β,~e, v1(θ), v2(θ), ~u(θ),~b(θ)] =
∫
dθdφ

√
− det gL . (2.11)

Note that f is a function of α, β, ei and a functional of v1(θ), v2(θ), us(θ) and bi(θ). The
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equations of motion now correspond to3

∂f

∂α
= J,

∂f

∂β
= 0,

∂f

∂ei
= qi ,

δf

δv1(θ)
= 0 ,

δf

δv2(θ)
= 0,

δf

δus(θ)
= 0,

δf

δbi(θ)
= 0 .

(2.12)

Equivalently, if we define:

E [J, ~q, α, β, ~e, v1(θ), v2(θ), ~u(θ),~b(θ)] = 2π
(
Jα + ~q · ~e− f [α, β,~e, v1(θ), v2(θ), ~u(θ),~b(θ)]

)
,

(2.13)

then the equations of motion take the form:

∂E
∂α

= 0,
∂E
∂β

= 0,
∂E
∂ei

= 0 ,
δE

δv1(θ)
= 0 ,

δE
δv2(θ)

= 0,
δE

δus(θ)
= 0,

δE
δbi(θ)

= 0 .

(2.14)

These equations are subject to the boundary conditions (2.4), (2.7), (2.8). For for-

mal arguments it will be useful to express the various functions of θ appearing here by

expanding them as a linear combination of appropriate basis states which make the con-

straints (2.4), (2.7) manifest, and then varying E with respect to the coefficients appearing

in this expansion. The natural functions in terms of which we can expand an arbitrary

φ-independent function on a sphere are the Legendre polynomials Pl(cos θ). We take

v1(θ) =
∞∑

l=0

ṽ1(l)Pl(cos θ) , v2(θ) = sin2 θ + sin4 θ
∞∑

l=0

ṽ2(l)Pl(cos θ) ,

us(θ) =
∞∑

l=0

ũs(l)Pl(cos θ) , bi(θ) = − pi
4π

cos θ + sin2 θ
∞∑

l=0

b̃i(l)Pl(cos θ) .

(2.15)

This expansion explicitly implements the constraints (2.4), (2.7) and (2.8). Substituting

this into (2.13) gives E as a function of J , qi, α, β, ei, ṽ1(l), ṽ2(l), ũs(l) and b̃i(l). Thus

the equations (2.14) may now be reexpressed as

∂E
∂α

= 0,
∂E
∂β

= 0,
∂E
∂ei

= 0 ,
∂E

∂ṽ1(l)
= 0 ,

∂E
∂ṽ2(l)

= 0,
∂E

∂ũs(l)
= 0,

∂E
∂b̃i(l)

= 0 .

(2.16)

Let us now turn to the analysis of the entropy associated with this black hole. For

this it will be most convenient to regard this configuration as a two dimensional extremal

black hole by regarding the θ and φ directions as compact. In this interpretation the

3Our definition of the angular momentum differs from the standard one by a − sign.
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zero mode of the metric ĝαβ given in (2.9), with α, β = r, t, is interpreted as the two

dimensional metric hαβ :

hαβ =
1

2

∫ π

0
dθ sin θ ĝαβ , (2.17)

whereas all the non-zero modes of ĝαβ are interpreted as massive symmetric rank two

tensor fields. This gives

hαβdx
αdxβ = v1(−r2dt2 + dr2/r2) , v1 = ṽ1(0) . (2.18)

Thus the near horizon configuration, regarded from two dimensions, involves AdS2 metric,

accompanied by background electric fields f
(i)
αβ and fαβ , a set of massless and massive scalar

fields originating from the fields us(θ), v2(θ) and bi(θ), and a set of massive symmetric

rank two tensor fields originating from v1(θ). According to the general results derived in

[44, 45, 46, 47], the entropy of this black hole is given by:

SBH = −8π
δS(2)

δR
(2)
rtrt

√
−hrr htt , (2.19)

where R
(2)
αβγδ is the two dimensional Riemann tensor associated with the metric hαβ , and

S(2) is the general coordinate invariant action of this two dimensional field theory. In

taking the functional derivative with respect to Rαβγδ in (2.19) we need to express all

multiple covariant derivatives in terms of symmetrized covariant derivatives and the Rie-

mann tensor, and then regard the components of the Riemann tensor as independent

variables.

We now note that for this two dimensional configuration that we have, the electric field

strengths f
(i)
αβ and fαβ are proportional to the volume form on AdS2, the scalar fields are

constants and the tensor fields are proportional to the AdS2 metric. Thus the covariant

derivatives of all gauge and generally covariant tensors which one can construct out of

these two dimensional fields vanish. In this case (2.19) simplifies to:

SBH = −8π
√
− det h

∂L(2)

∂R
(2)
rtrt

√
−hrr htt (2.20)

where
√
− det hL(2) is the two dimensional Lagrangian density, related to the four dimen-

sional Lagrangian density via the formula:

√
− det hL(2) =

∫
dθdφ

√
− det gL . (2.21)
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Also while computing (2.20) we set to zero all terms in L(2) which involve covariant

derivatives of the Riemann tensor and other gauge and general coordinate covariant com-

binations of fields.

We can now proceed in a manner identical to that in [30] to show that the right hand

side of (2.20) is the entropy function at its extremum. First of all from (2.18) it follows

that

R
(2)
rtrt = v1 =

√
−hrrhtt . (2.22)

Using this we can express (2.20) as

SBH = −8π
√
− det h

∂L(2)

∂R
(2)
rtrt

R
(2)
rtrt . (2.23)

Let us denote by L(2)
λ a deformation of L(2) in which we replace all factors of R

(2)
αβγδ for

α, β, γ, δ = r, t by λR
(2)
αβγδ, and define

f
(2)
λ ≡

√
− det hL(2)

λ , (2.24)

evaluated on the near horizon geometry. Then

λ
∂f

(2)
λ

∂λ
=

√
− det hR

(2)
αβγδ

∂L(2)

δR
(2)
αβγδ

= 4
√
− det hR

(2)
rtrt

∂L(2)

∂R
(2)
rtrt

. (2.25)

Using this (2.23) may be rewritten as

SBH = −2πλ
∂f

(2)
λ

∂λ

∣∣∣∣
λ=1

. (2.26)

Let us now consider the effect of the scaling

λ→ sλ, ei → sei, α→ sα, ṽ1(l) → sṽ1(l) for 0 ≤ l <∞ , (2.27)

under which λR
(2)
αβγδ → s2 λR

(2)
αβγδ. Now since L(2) does not involve any explicit covariant

derivatives, all indices of hαβ must contract with the indices in f
(i)
αβ , fαβ, R

(2)
αβγδ or the

indices of the rank two symmetric tensor fields whose near horizon values are given by

the parameters ṽ1(l). From this and the definition of the parameters ei, ṽ1(l), and α it

follows that L(2)
λ remains invariant under this scaling, and hence f

(2)
λ transforms to sf

(2)
λ ,

with the overall factor of s coming from the
√
− det h factor in the definition of f

(2)
λ . Thus

we have:

λ
∂f

(2)
λ

∂λ
+ ei

∂f
(2)
λ

∂ei
+ α

∂f
(2)
λ

∂α
+

∞∑

l=0

ṽ1(l)
∂f

(2)
λ

∂ṽ1(l)
= f

(2)
λ . (2.28)
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Now it follows from (2.11), (2.21) and (2.24) that

f [α, β,~e, v1(θ), v2(θ), ~u(θ),~b(θ)] = f
(2)
λ=1 . (2.29)

Thus the extremization equations (2.12) implies that

∂f
(2)
λ

∂ei
= qi,

∂f
(2)
λ

∂α
= J,

∂f
(2)
λ

∂ṽ1(l)
= 0 , at λ = 1 . (2.30)

Hence setting λ = 1 in (2.28) we get

λ
∂f

(2)
λ

∂λ

∣∣∣∣
λ=1

= −eiqi − Jα + f
(2)
λ=1 = −eiqi − Jα + f [α, β,~e, v1(θ), v2(θ), ~u(θ),~b(θ)] . (2.31)

Eqs.(2.26) and the definition (2.13) of the entropy function now gives

SBH = E (2.32)

at its extremum.

Using the fact that the black hole entropy is equal to the value of the entropy function

at its extremum, we can derive some useful results following the analysis of [30, 31]. If the

entropy function has a unique extremum with no flat directions then the extremization

equations (2.16) determine the near horizon field configuration completely and the entropy

as well as the near horizon field configuration is independent of the asymptotic moduli

since the entropy function depends only on the near horizon quantities. On the other

hand if the entropy function has flat directions then the extremization equations do not

determine all the near horizon parameters, and these undetermined parameters could

depend on the asymptotic values of the moduli fields. However even in this case the

entropy, being independent of the flat directions, will be independent of the asymptotic

values of the moduli fields.

Although expanding various θ-dependent functions in the basis of Legendre polynomi-

als is useful for general argument leading to attractor behaviour, for practical computation

it is often more convenient to directly solve the differential equation in θ. For this we

shall need to carefully take into account the effect of the boundary terms. We shall see

this while studying explicit examples.
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3 Extremal Rotating Black Hole in General Two Deriva-

tive Theory

We now consider a four dimensional theory of gravity coupled to a set of scalar fields {Φs}
and gauge fields A(i)

µ with a general two derivative action of the form:4

S =
∫
d4x

√
− det gL , (3.1)

L = R− hrs(~Φ)gµν∂µΦs∂νΦr − fij(~Φ)gµρgνσF (i)
µν F

(j)
ρσ − 1

2
f̃ij(~Φ) (

√
− det g)−1ǫµνρσF (i)

µν F
(j)
ρσ ,

(3.2)

where ǫµνρσ is the totally anti-symmetric symbol with ǫtrθφ = 1 and hrs, fij and f̃ij are

fixed functions of the scalar fields {Φs}. We use the following ansatz for the near horizon

configuration of the scalar and gauge fields5

ds2 = Ω(θ)2e2ψ(θ)(−r2dt2 + dr2/r2 + β2dθ2) + e−2ψ(θ)(dφ− αrdt)2

Φs = us(θ)
1

2
F (i)
µν dx

µ ∧ dxν = (ei − αbi(θ))dr ∧ dt+ ∂θbi(θ)dθ ∧ (dφ− αrdt) , (3.3)

with 0 ≤ φ < 2π, 0 ≤ θ ≤ π. Regularity at θ = 0 and θ = π requires that

Ω(θ)eψ(θ) → constant as θ → 0, π , (3.4)

and

βΩ(θ)e2ψ(θ) sin θ → 1 as θ → 0, π . (3.5)

This gives

Ω(θ) → a0 sin θ, eψ(θ) → 1√
βa0 sin θ

, as θ → 0,

Ω(θ) → aπ sin θ, eψ(θ) → 1√
βaπ sin θ

, as θ → π , (3.6)

where a0 and aπ are arbitrary constants. In the next two sections we shall describe

examples of rotating extremal black holes in various two derivative theories of gravity

with near horizon geometry of the form described above. However none of these black

4In the rest of the paper we shall be using the normalization of the Einstein-Hilbert term as given in
eq.(3.2). This corresponds to choosing the Newton’s constant GN to be 1/16π.

5This is related to the ansatz (2.2) by a reparametrization of the θ coordinate.
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holes will be supersymmetric even though many of them will be found in supersymmetric

theories.

Using (3.2), (3.3) and (3.5) we get

E ≡ 2π(Jα + ~q · ~e−
∫
dθdφ

√
− det gL)

= 2πJα + 2π~q · ~e− 4π2
∫
dθ

[
2Ω(θ)−1β−1(Ω′(θ))2 − 2Ω(θ)β − 2Ω(θ)β−1(ψ′(θ))2

+
1

2
α2Ω(θ)−1βe−4ψ(θ) − β−1Ω(θ)hrs(~u(θ))u

′
r(θ)u

′
s(θ) + 4f̃ij(~u(θ))(ei − αbi(θ))b

′
j(θ)

+2fij(~u(θ))
{
βΩ(θ)−1e−2ψ(θ)(ei − αbi(θ))(ej − αbj(θ)) − β−1Ω(θ)e2ψ(θ)b′i(θ)b

′
j(θ)

} ]

+8π2
[
Ω(θ)2e2ψ(θ) sin θ(ψ′(θ) + 2Ω′(θ)/Ω(θ))

]θ=π
θ=0

. (3.7)

The boundary terms in the last line of (3.7) arise from integration by parts in
∫ √− det gL.

Eq.(3.7) has the property that under a variation of Ω for which δΩ/Ω does not vanish

at the boundary and/or a variation of ψ for which δψ does not vanish at the boundary,

the boundary terms in δE cancel if (3.6) is satisfied. This ensures that once the E is

extremized under variations of ψ and Ω for which δψ and δΩ vanish at the boundary, it is

also extremized with respect to the constants a0 and aπ appearing in (3.6) which changes

the boundary values of Ω and ψ. Also due to this property we can now extremize the

entropy function with respect to β without worrying about the constraint (3.5) since the

additional term that comes from the compensating variation in Ω and/or ψ will vanish

due to Ω and/or ψ equations of motion.

The equations of motion of various fields may now be obtained by extremizing the en-

tropy function E with respect to the functions Ω(θ), ψ(θ), us(θ), bi(θ) and the parameters

ei, α, β labelling the near horizon geometry. This gives

−4β−1Ω′′(θ)/Ω(θ) + 2β−1(Ω′(θ)/Ω(θ))2 − 2β − 2β−1(ψ′(θ))2 − 1

2
α2Ω(θ)−2βe−4ψ(θ)

−β−1hrs(~u(θ))u
′
r(θ)u

′
s(θ)

+2fij(~u(θ))
{
−βΩ(θ)−2e−2ψ(θ)(ei − αbi(θ))(ej − αbj(θ)) − β−1e2ψ(θ)b′i(θ)b

′
j(θ)

}

= 0 , (3.8)

4β−1Ω(θ)ψ′′(θ) + 4β−1Ω′(θ)ψ′(θ) − 2α2Ω(θ)−1βe−4ψ(θ)

+2fij(~u(θ))
{
−2βΩ(θ)−1e−2ψ(θ)(ei − αbi(θ))(ej − αbj(θ)) −2β−1Ω(θ)e2ψ(θ)b′i(θ)b

′
j(θ)

}

= 0 , (3.9)
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2
(
β−1Ω(θ)hrs(~u(θ))u

′
s(θ)

)′ − β−1Ω(θ)∂rhts(~u(θ))u
′
t(θ)u

′
s(θ)

+2∂rfij(~u(θ))
{
βΩ(θ)−1e−2ψ(θ)(ei − αbi(θ))(ej − αbj(θ)) − β−1Ω(θ)e2ψ(θ)b′i(θ)b

′
j(θ)

}

+4∂rf̃ij(~u(θ))(ei − αbi(θ))b
′
j(θ)

= 0 , (3.10)

−4αβfij(~u(θ))Ω(θ)−1e−2ψ(θ)(ej − αbj(θ)) + 4β−1
(
fij(~u(θ))Ω(θ)e2ψ(θ)b′j(θ)

)′

−4∂rf̃ij(~u(θ))u
′
r(θ)(ej − αbj(θ)) = 0 , (3.11)

qi = 8π
∫
dθ

[
fij(~u(θ))βΩ(θ)−1e−2ψ(θ)(ej − αbj(θ)) + f̃ij(~u(θ))b

′
j(θ)

]
, (3.12)

J = 2π
∫ π

0
dθ
[
αΩ(θ)−1βe−4ψ(θ) − 4βfij(~u(θ))Ω(θ)−1e−2ψ(θ)(ei − αbi(θ))bj(θ)

−4f̃ij(~u(θ))bi(θ)b
′
j(θ)

]
, (3.13)

∫
dθ I(θ) = 0 , (3.14)

I(θ) ≡ −2Ω(θ)−1β−2(Ω′(θ))2 − 2Ω(θ) + 2Ω(θ)β−2(ψ′(θ))2 +
1

2
α2Ω(θ)−1e−4ψ(θ)

+β−2Ω(θ)hrs(~u(θ))u
′
r(θ)u

′
s(θ)

+2fij(~u(θ))
{
Ω(θ)−1e−2ψ(θ)(ei − αbi(θ))(ej − αbj(θ)) + β−2Ω(θ)e2ψ(θ)b′i(θ)b

′
j(θ)

}
.

(3.15)

Here ′ denotes derivative with respect to θ. The required boundary conditions, following

from the requirement of the regularity of the solution at θ = 0, π, and that the magnetic

charge vector be ~p, are:

bi(0) = − pi
4π
, bi(π) =

pi
4π

, (3.16)

Ω(θ)eψ(θ) → constant as θ → 0, π , (3.17)

βΩ(θ)e2ψ(θ) sin θ → 1 as θ → 0, π . (3.18)

us(θ) → constant as θ → 0, π . (3.19)

Using eqs.(3.8)-(3.11) one can show that

I ′(θ) = 0 . (3.20)
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Thus I(θ) is independent of θ. As a consequence of eq.(3.14) we now have

I(θ) = 0 . (3.21)

Combining eqs.(3.8) and (3.21) we get

Ω′′ + β2Ω = 0 . (3.22)

A general solution to this equation is of the form

Ω = a sin(βθ + b) , (3.23)

where a and b are integration constants. In order that Ω has the behaviour given in (3.6)

for θ near 0 and π, and not vanish at any other value of θ, we must have

b = 0, β = 1 , (3.24)

and hence

Ω(θ) = a sin θ . (3.25)

In order to analyze the rest of the equations, it will be useful to consider the Taylor

series expansion of ur(θ) and bi(θ) around θ = 0, π

ur(θ) = ur(0) +
1

2
θ2u′′r(0) + · · ·

ur(θ) = ur(π) +
1

2
(θ − π)2u′′r(π) + · · ·

bi(θ) = bi(0) +
1

2
θ2b′′i (0) + · · ·

bi(θ) = bi(π) +
1

2
(θ − π)2b′′i (π) + · · · , (3.26)

where we have made use of (2.7), (2.8). We now substitute (3.26) into (3.11) and study

the equation near θ = 0 by expanding the left hand side of the equation in powers of θ

and using the boundary conditions (3.6). Only odd powers of θ are non-zero. The first

non-trivial equation, appearing as the coefficient of the order θ term, involves bi(0), b′′i (0)

and b′′′′i (0) and can be used to determine b′′′′i (0) in terms of bi(0) and b′′i (0). Higher order

terms determine higher derivatives of bi at θ = 0 in terms of bi(0) and b′′i (0). As a result

b′′i (0) is not determined in terms of bi(0) by solving the equations of motion near θ = 0

and we can choose bi(0) and b′′i (0) as the two independent integration constants of this
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equation. Of these bi(0) is determined directly from (3.16). On the other hand for a

given configuration of the other fields, b′′i (0) is also determined from (3.16) indirectly by

requiring that bi(π) be pi/4π. Thus we expect that generically the integration constants

associated with the solutions to eqs.(3.11) are fixed by the boundary conditions (3.16).

Let us now analyze eqs.(3.10) and (3.21) together, – eq.(3.9) holds automatically when

the other equations are satisfied. For this it will be useful to introduce a new variable

τ = ln tan
θ

2
, (3.27)

satisfying
dτ

dθ
=

1

sin θ
. (3.28)

As θ varies from 0 to π, τ varies from −∞ to ∞. We denote by · derivative with respect

to τ and rewrite eqs.(3.10) and (3.21) in this variable. This gives

2a2(hrs(~u)u̇s)
· − a2∂thrs(~u)u̇tu̇s + 4a∂rf̃ij(~u)(ei − αbi)ḃj

+2∂rfij(~u)
{
e−2ψ(ei − αbi)(ej − αbj) − a2e2ψ ḃiḃj

}
= 0 , (3.29)

and

−2a2+2a2ψ̇2+
1

2
α2e−4ψ+a2hrs(~u)u̇ru̇s+2fij(~u)

{
e−2ψ(ei − αbi)(ej − αbj) + a2e2ψ ḃiḃj

}
= 0 .

(3.30)

If we denote by m the number of scalars then we have a set of m second order differential

equations and one first order differential equation, giving altogether 2m+ 1 constants of

integration. We want to see in a generic situation how many of these constants are fixed

by the required boundary conditions on ~u and ψ. We shall do this by requiring that the

equations and the boundary conditions are consistent. Thus for example if ψ, {bi} and

{us} satisfy their required boundary conditions then we can express the equations near

θ = 0 (or θ = π) as:

2a2(ĥrsu̇s)
· ≃ 0 , (3.31)

and

− 2a2 + a2ĥrsu̇ru̇s + 2a2ψ̇2 ≃ 0 . (3.32)

Here ĥrs are constants giving the value of hrs(~u) at ~u = ~u(0) (or ~u = ~u(π)). Note that

we have used the boundary conditions to set some of the terms to zero but have kept the
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terms containing highest derivatives of ψ and ur even if they are required to vanish due

to the boundary conditions. The general solutions to these equations near θ = 0 are

us(θ) ≃ cs + vsτ , ψ(θ) ≃ c− τ

√

1 − 1

2
ĥrsvsvs . (3.33)

where cs, vs and c are the 2m + 1 integration constants. Since τ → −∞ as θ → 0, in

order that us approaches a constant value us(0) as θ → 0, we must require all the vs

to vanish. On the other hand requiring that ψ satisfies the boundary condition (3.18)

determines c to be − ln(2
√
a). This gives altogether m + 1 conditions on the (2m + 1)

integration constants. Carrying out the same analysis near θ = π gives another (m + 1)

conditions among the integration constants. Thus the boundary conditions on ~u and ψ not

only determine all (2m+ 1) integration constants of (3.29), (3.30), but give an additional

condition among the as yet unknown parameters a, α and ei entering the equations.

This constraint, together with the remaining equations (3.12) and (3.13), gives alto-

gether n + 2 constraints on the n + 2 variables ei, a and α, where n is the number of

U(1) gauge fields. Since generically (n + 2) equations in (n + 2) variables have only a

discrete number of solutions we expect that generically the solution to eqs.(3.8)-(3.19)

has no continuous parameters.

In special cases however some of the integration constants may remain undetermined,

reflecting a family of solutions corresponding to the same set of charges. As discussed in

section 2, these represent flat directions of the entropy function and hence the entropy

associated with all members of this family will have identical values. We shall now give a

more direct argument to this effect. Suppose as we go from one member of the family to

a neighbouring member, each scalar field changes to

ur(θ) → ur(θ) + δur(θ), (3.34)

and suppose all the other fields and parameters change in response, keeping the electric

charges qi, magnetic charges pi and angular momentum fixed:

Ω → Ω + δΩ, ψ → ψ + δψ, bi → bi + δbi,

ei → ei + δei, α → α + δα, β → β + δβ . (3.35)

Let us calculate the resulting change in the entropy E . The changes in ei, α, β do not

contribute to any change in E , since ∂ei
E = 0, ∂αE = 0 and ∂βE = 0. The only possible
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contributions from varying Ω, ψ, bi, ur can come from boundary terms, since the bulk

equations are satisfied. Varying E subject to the equations of motion, one finds the

following boundary terms at the poles:

δE = 8π2
[
β−1Ωhrsu

′
rδus − 2f̃ij(ei − αbi)δbj + 2fij

{
β−1Ωe2ψb′i

}
δbj

+β−1
(
−2Ω−1Ω′δΩ + 2Ωψ′δψ + δ(Ωψ′ + 2Ω′)

)]θ=π
θ=0

. (3.36)

Terms involving δbi at the boundary vanish since the boundary conditions (3.16), (3.26)

imply that for fixed magnetic charges δbi and b′i must vanish at θ = 0 and θ = π. Our

boundary conditions imply that variations of Ω and ψ at the poles are not independent.

From the boundary condition (3.5) it follows that

δΩ = −2Ωδψ (3.37)

at θ = 0, π, while from (3.6) one can see that at the poles

δψ′ = 0 . (3.38)

Combining the previous two equations gives

δΩ′ = −2Ω′δψ (3.39)

at the poles. If we vary just Ω and ψ one finds

δ{Ω,ψ}E = 8π2β−1
[
−2Ω−1Ω′δΩ + 2Ωψ′δψ + δ(Ωψ′ + 2Ω′)

]θ=π
θ=0

= 8π2β−1 [4Ω′δψ + 2Ωψ′δψ + ψ′δΩ + 2δΩ′]
θ=π
θ=0

= 0 . (3.40)

Finally, the boundary terms proportional to δur go like,

δ~uE ∝
[
Ωhrsu

′
rδus

]π
0
. (3.41)

Since Ω → 0 as θ → 0, π, these too vanish. Thus we learn that the entropy is independent

of any undetermined constant of integration.

Before concluding this section we would like to note that using the equations of motion

for various fields we can express the charges qi, the angular momentum J as well as the
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black hole entropy, ı.e. the value of the entropy function at its extremum, as boundary

terms evaluated at θ = 0 and θ = π. For example using (3.11) we can express (3.12) as

qi =
8π

α

[
fijΩe

2ψb′j − f̃ij(ej − αbj)
]θ=π
θ=0

(3.42)

Similarly using (3.9) and (3.11) we can express (3.13) as

J =
4π

α

[
Ωψ′ − Ωfije

2ψbib
′
j + f̃ijbi(ej − αbj)

]θ=π
θ=0

− qiei
2α

(3.43)

Finally using (3.8), (3.9) we can express the entropy function E given in (3.7) as

E = 8π2

[
−2Ω′ + Ω2e2ψ sin θ

(
ψ′ + 2

Ω′

Ω

)]θ=π

θ=0

(3.44)

Using eq.(3.25) and the boundary conditions (3.6) this gives,

E = 16π2a (3.45)

Using eqs. (3.3) and (3.25) it is easy to see that E = A/4GN where A is the area of the

event horizon. (Note that in our conventions GN = 1/16π). This is the expected result

for theories with two derivative action.

4 Solutions with Constant Scalars

In this section we shall solve the equations derived in section 3 in special cases where

there are no scalars or where the scalars us(θ) are constants:

~u(θ) = ~u0 . (4.1)

In this case we can combine (3.9), (3.21), (3.24) and (3.25) to get

sin2 θ(ψ′′ + (ψ′)2) + sin θ cos θψ′ − α2

4a2
e−4ψ − 1 = 0 . (4.2)

The unique solution to this equation subject to the boundary conditions (3.18) is:

e−2ψ(θ) =
2a sin2 θ

2 − (1 −
√

1 − α2) sin2 θ
. (4.3)

We now define the coordinate ξ through the relation:

ξ = − 2

α
tan−1

(
α

1 +
√

1 − α2
cos θ

)
, (4.4)
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so that

dξ =
dθ

Ω(θ)e2ψ(θ)
. (4.5)

As θ varies from 0 to π, ξ varies from −ξ0 to ξ0, with ξ0 given by

ξ0 =
1

α
sin−1 α . (4.6)

In terms of this new coordinate ξ, (3.11) takes the form:

d2

dξ2
(ei − αbi(θ)) + α2(ei − αbi(θ)) = 0 . (4.7)

This has solution:

(ei − αbi(θ)) = Ai sin (αξ +Bi) , (4.8)

where Ai and Bi are integration constants. These can be determined using the boundary

condition (3.16):

Ai sin(−αξ0 +Bi) = ei + α
pi
4π

, Ai sin(αξ0 +Bi) = ei − α
pi
4π

. (4.9)

This gives

Bi = tan−1

(
−4πei
αpi

tan(αξ0)

)
= tan−1

(
− 4πei

pi
√

1 − α2

)
,

Ai =

(
e2i

cos2(αξ0)
+

α2p2
i

16π2 sin2(αξ0)

)1/2

=

(
e2i

1 − α2
+

p2
i

16π2

)1/2

. (4.10)

Using (3.42) we now get:

qi = 16π
∑

j

(
fij(~u0) sinBj − f̃ij(~u0) cosBj

)
Aj = 16 π

∑

j

{
fij(~u0)

ej√
1 − α2

+ f̃ij(~u0)
pj
4π

}
.

(4.11)

This gives Ai, Bi and ei in terms of a, α, ~u0 and the charges ~q, ~p, J .

Substituting the known solutions for Ω(θ), ψ(θ) and bi(θ) into eq.(3.21) and evaluating

the left hand side of this equation at θ = π/2 we get

a
√

1 − α2 =
∑

i,j

fij(~u0)AiAj cos(Bi − Bj) =
∑

i,j

fij(~u0)
{
pipj
16π2

+
eiej

1 − α2

}
. (4.12)

On the other hand (3.43) gives

J = 8πaα . (4.13)
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Since Ai, Bi and ei are known in terms of a, α, ~u0 and ~q, ~p, J , we can use (4.12) and

(4.13) to solve for α and a in terms of ~u0, ~q, ~p and J . (3.45) then gives the black hole

entropy in terms of ~u0, ~q, ~p and J . The final results are:

α =
J

√
J2 + Veff(~u0, ~q, ~p)2

, a =

√
J2 + Veff (~u0, ~q, ~p)2

8π
, (4.14)

and

SBH = 2π
√
J2 + Veff(~u0, ~q, ~p)2 , (4.15)

where

Veff(~u0, ~q, ~p) =
1

32π
f ij(~u0)q̂iq̂j +

1

2π
fij(~u0)pipj (4.16)

is the effective potential introduced in [4]. Here f ij(~u0) is the matrix inverse of fij(~u0)

and

q̂i ≡ qi − 4 f̃ij(~u0) pj . (4.17)

Finally we turn to the determination of ~u0. If there are no scalars present in the theory

then of course there are no further equations to be solved. In the presence of scalars we

need to solve the remaining set of equations (3.10). In the special case when all the fij

and f̃ij are independent of ~u these equations are satisfied by any constant ~u = ~u0. Thus

~u0 is undetermined and represent flat directions of the entropy function. However if fij

and f̃ij depend on ~u then there will be constraints on ~u0. First of all note that since

the entropy must be extremized with respect to all possible deformations consistent with

the SO(2, 1) × U(1) symmetry, it must be extremized with respect to ~u0. This in turn

requires that ~u0 be an extremum of Veff (~u0, ~q, ~p) as in [4]. In this case however there are

further conditions coming from (3.10) since the entropy function must also be extremized

with respect to variations for which the scalar fields are not constant on the horizon. In

fact in the generic situation it is almost impossible to satisfy (3.10) with constant ~u(θ).

We shall now discuss a special case where it is possible to satisfy these equations, – this

happens for purely electrically charged black holes when there are no FF̃ coupling in the

theory (ı.e. when f̃ij(~u) = 0).6 In this case (4.10) gives

Bi =
π

2
, Ai =

ei
cos(αξ0)

=
ei√

1 − α2
, (4.18)

6Clearly there are other examples with non-vanishing pi and/or f̃ij related to this one by electric-
magnetic duality rotation.
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and eqs.(4.11), (4.8) give, respectively,

Ai =
1

16π
f ij(~u0)qj , ei =

√
1 − α2

16π
f ij(~u0)qj , (4.19)

(ei − αbi(θ)) = Ai cos(αξ) =
1

16π
f ij(~u0)qj cos(αξ)

=
1

16π
f ij(~u0)qj

2
√

1 − α2 + (1 −
√

1 − α2) sin2 θ

2 − (1 −
√

1 − α2) sin2 θ
. (4.20)

If following (4.16) we now define:

Veff(~u, ~q) =
1

32π
f ij(~u)qiqj , (4.21)

then substituting the known solutions for Ω and ψ into eq.(3.10) and using (4.20) we can

see that (3.10) is satisfied if the scalars are at an extremum ~u0 of Veff , ı.e.

∂rVeff (~u0, ~q) = 0 . (4.22)

With the help of (4.19), eq.(4.12) now takes the form:

a
√

1 − α2 =
1

256π2
f ij(~u0, ~q)qiqj =

1

8π
Veff(~u0, ~q) , (4.23)

Using (4.13), (4.23) we get

α =
J

√
J2 + (Veff(~u0, ~q))

2
, a =

√
J2 + (Veff(~u0, ~q))

2

8π
, (4.24)

Ω =

√
J2 + (Veff(~u0, ~q))

2

8π
sin θ,

e−2ψ =
1

4π

(
J2 + (Veff(~u0, ~q))

2
)

sin2 θ

(1 + cos2 θ)
√
J2 + (Veff(~u0, ~q))

2 + Veff(~u0, ~q) sin2 θ
, (4.25)

(ei − bi(θ)) =
1

16π
f ij(~u0)qj

2Veff + (
√
J2 + V 2

eff − Veff) sin2 θ

2
√
J2 + V 2

eff − (
√
J2 + V 2

eff − Veff) sin2 θ
(4.26)

Eq.(3.45) now gives the black hole entropy to be

SBH = 2π
√
J2 + (Veff(~u0, ~q))2 . (4.27)

We shall now illustrate the results using explicit examples of extremal Kerr black hole

and extremal Kerr-Newman black hole.
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4.1 Extremal Kerr Black Hole in Einstein Gravity

We consider ordinary Einstein gravity in four dimensions with action

S =
∫
d4x

√
− det gL, L = R . (4.28)

In this case since there are no matter fields we have Veff(~u0, ~q) = 0. Let us for definiteness

consider the case where J > 0. It then follows from the general results derived earlier

that

α = 1, a =
J

8π
, (4.29)

Ω =
J

8π
sin θ, e−2ψ =

J

4π

sin2 θ

1 + cos2 θ
, (4.30)

and

SBH = 2πJ . (4.31)

Thus determines the near horizon geometry and the entropy of an extremal Kerr black

hole and agrees with the results of [43].

4.2 Extremal Kerr-Newman Black Hole in Einstein-Maxwell The-

ory

Here we consider Einstein gravity in four dimensions coupled to a single Maxwell field:

S =
∫
d4x

√
− det gL, L = R− 1

4
FµνF

µν . (4.32)

In this case we have f11 = 1
4
. Hence f 11 = 4 and

Veff(~u0, ~q) =
q2

8π
. (4.33)

Thus we have

α =
J

√
J2 + (q2/8π)2

, a =

√
J2 + (q2/8π)2

8π
. (4.34)

Ω = a sin θ, e−2ψ =
2a sin2 θ

1 + cos2 θ + q2 sin2 θ/
(
8π
√
J2 + (q2/8π)2

) , (4.35)

and

SBH = 2π
√
J2 + (q2/8π)2 . (4.36)
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The near horizon geometry given in (4.34), (4.35) agrees with the results of [43].

Comparing (4.24)-(4.27) with (4.34)-(4.36) we see that the results for the general case

of constant scalar field background is obtained from the results for extremal Kerr-Newman

black hole carrying electric charge q via the replacement of q by qeff where

qeff =
√

8π Veff(~u0, ~q) . (4.37)

5 Examples of Attractor Behaviour in Full Black Hole

Solutions

The set of equations (3.8)-(3.13) and (3.21) are difficult to solve explicitly in the general

case. However there are many known examples of rotating extremal black hole solutions

in a variety of two derivative theories of gravity. In this section we shall examine the near

horizon geometry of these solutions and check that they obey the consequences of the

generalized attractor mechanism discussed in sections 2 and 3.

5.1 Rotating Kaluza-Klein Black Holes

In this section we consider the four dimensional theory obtained by dimensional reduction

of the five dimensional pure gravity theory on a circle. The relevant four dimensional fields

include the metric gµν , a scalar field Φ associated with the radius of the fifth dimension

and a U(1) gauge field Aµ. The lagrangian density is given by

L = R− 2gµν∂µΦ∂νΦ − e2
√

3Φgµρgνσ FµνFρσ . (5.1)

Identifying Φ as Φ1 and Aµ as A(1)
µ and comparing (3.2) and (5.1) we see that we have in

this example

h11 = 2, f11 = e2
√

3Φ . (5.2)

Suppose we have an extremal rotating black hole solution in this theory with near

horizon geometry of the form given in (3.3). Let us define τ = ln tan(θ/2) as in (3.27),

denote by · derivative with respect to τ and define

χ(θ) = e− αb(θ) . (5.3)

Using (3.24) and (3.25) we can now express appropriate linear combinations of eqs.(3.9)

- (3.11) and (3.21) as

ψ̈ =
α2

4a2
e−4ψ + 1 − ψ̇2 − Φ̇2 (5.4)
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Φ̈ +
√

3e2
√

3Φ
{
e−2ψa−2χ2 − α−2e2ψχ̇2

}
= 0 (5.5)

α2a−2e2
√

3Φ−2ψχ+
(
e2

√
3Φ+2ψχ̇

)
˙ = 0 . (5.6)

− 2a2 + 2a2ψ̇2 +
1

2
α2e−4ψ + 2a2Φ̇2 + 2

{
e2

√
3Φ−2ψχ2 + a2α−2e2

√
3Φ+2ψχ̇2

}
= 0 . (5.7)

Refs.[48, 49, 50] explicitly constructed rotating charged black hole solutions in this theory.

Later we shall analyze the near horizon geometry of these black holes in extremal limit

and verify that they satisfy eqs.(5.4)-(5.7).

Next we note that the lagrangian density (5.1) has a scaling symmetry:

Φ → Φ + λ, Fµν → e−
√

3λFµν . (5.8)

Since the magnetic and electric charges p and q are proportional to Fθφ and ∂L/∂Frt
respectively, we see that under the transformation (5.8), q and p transforms to e

√
3λq

and e−
√

3λp respectively. Thus if we want to keep the electric and the magnetic charges

fixed, we need to make a compensating transformation of the parameters labelling the

electric and magnetic charges of the solution. This shows that we can generate a one

parameter family of solutions carrying fixed electric and magnetic charges by using the

transformation:

Φ → Φ + λ, Fµν → e−
√

3λFµν , Q→ e−
√

3λQ, P → e
√

3λP , (5.9)

where Q and P are electric and magnetic charges labelling the original solution. This

transformation will change the asymptotic value of the scalar field Φ leaving the electric

and magnetic charges fixed. Thus according to the general arguments given in section 2,

the entropy associated with the solution should not change under the deformation (5.9).

On the other hand since (5.8) is a symmetry of the theory, the entropy is also invariant

under this transformation. Combining these two results we see that the entropy must be

invariant under

Q→ e−
√

3λQ, P → e
√

3λP . (5.10)

Furthermore if the entropy function has no flat direction so that the near horizon geometry

is fixed completely by extremizing the entropy function then the near horizon geometry,

including the scalar field configuration, should be invariant under the transformation (5.9).
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5.1.1 The black hole solution

We now turn to the black hole solution described in [48, 49, 50]. The metric associated

with this solution is given by

ds2 = − ∆̃
√
fpfq

(dt− wdφ)2 +

√
fpfq

∆
dr2 +

√
fpfqdθ

2 +
∆
√
fpfq

∆̃
sin2 θdφ2 (5.11)

where

fp = r2 + a2
K cos2 θ + r(p̃− 2MK) +

p̃

p̃+ q̃

(p̃− 2MK) (q̃ − 2MK)

2

−
p̃
√

(p̃2 − 4M2
K) (q̃2 − 4M2

K)

2(p̃+ q̃)

aK
MK

cos θ (5.12)

fq = r2 + a2
K cos2 θ + r(q̃ − 2MK) +

q̃

p̃+ q̃

(p̃− 2MK) (q̃ − 2MK)

2

+
q̃
√

(p̃2 − 4M2
K) (q̃2 − 4M2

K)

2(p̃+ q̃)

aK
MK

cos θ (5.13)

w =
√
p̃q̃

(p̃q̃ + 4M2
K)r −MK(p̃− 2MK)(q̃ − 2MK)

2(p̃+ q̃)∆̃

aK
MK

sin2 θ (5.14)

∆ = r2 − 2MKr + a2
K (5.15)

∆̃ = r2 − 2MKr + a2
K cos2 θ . (5.16)

MK , aK , p̃ and q̃ are four parameters labelling the solution. The solution for the dilaton

is of the form

exp(−4Φ/
√

3) =
fp
fq
. (5.17)

The dilaton has been asymptotically set to 0, but this can be changed using the transfor-

mation (5.9). Finally, the gauge field is given by

At = −f−1
q



 Q

4
√
π

(
r +

p̃− 2MK

2

)
+

1

2

aK
MK

√√√√ q̃3 (p̃2 − 4M2
K)

4 (p̃+ q̃)
cos θ



 (5.18)

Aφ = − P

4
√
π

cos θ − f−1
q

P

4
√
π
a2
K sin2 θ cos θ

−1

2
f−1
q sin2 θ

aK
MK

√√√√ p̃ (q̃2 − 4M2
K)

4 (p̃+ q̃)3

[
(p̃+ q̃)(p̃r −MK(p̃− 2MK)) + q̃(p̃2 − 4M2

K)
]

(5.19)
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where Q and P , labelling the electric and magnetic charges of the black hole, are given

by,

Q2 = 4π
q̃(q̃2 − 4M2

K)

(p̃+ q̃)
(5.20)

P 2 = 4π
p̃(p̃2 − 4M2

K)

(p̃+ q̃)
. (5.21)

The mass and angular momentum of the black hole can be expressed in terms of MK , aK ,

p̃ and q̃ as follows:7

M = 4π (q̃ + p̃) (5.22)

J = 4π aK (p̃q̃)1/2 p̃q̃ + 4M2
K

MK(p̃+ q̃)
. (5.23)

5.1.2 Extremal limit: The ergo-free branch

As first discussed in [48], in this case the moduli space of extremal black holes consist

of two branches. Let us first concentrate on one of these branches corresponding to the

surface W in [48]. We consider the limit: MK , aK → 0 with aK/MK , q̃ and p̃ held finite.

In this limit q̃, p̃ and aK/MK can be taken as the independent parameters labelling the

solution. Then (5.20-5.23) become

M = 4π (q̃ + p̃) (5.24)

Q2 = 4π
q̃3

(q̃ + p̃)
(5.25)

P 2 = 4π
p̃3

(q̃ + p̃)
(5.26)

J = 4π
aK
MK

(p̃q̃)3/2

p̃+ q̃
=

aK
MK

|PQ| . (5.27)

For definiteness we shall take P and Q to be positive from now on.

In this limit ∆, ∆̃, fp, fq, w and Aµ become

∆ = ∆̃ = r2 (5.28)

7In defining the mass and angular momentum we have taken into account the fact that we have
GN = 1/16π. At present the normalization of the charges Q and P have been chosen arbitrarily, but
later we shall relate them to the charges q and p introduced in section 3.
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fp = r2 + p̃r +
p̃2q̃

2(p̃+ q̃)

(
1 − aK

MK

cos θ
)

(5.29)

fq = r2 + q̃r +
q̃2p̃

2(p̃+ q̃)

(
1 +

aK
MK

cos θ
)

(5.30)

w =
(p̃q̃)

3

2

2(p̃+ q̃)

aK
MK

sin2 θ

r
=

J

8π

sin2 θ

r
(5.31)

At = − Q

4
√
π
f−1
q

((
r +

p̃

2

)
+

1

2

(
aK
MK

)
p̃ cos θ

)
(5.32)

Aφ = − P

4
√
π

[
cos θ +

1

2
f−1
q sin2 θ

(
aK
MK

)
q̃

(p̃+ q̃)
((p̃+ q̃)r + q̃p̃)

]
(5.33)

In order that the scalar field configuration is well defined everywhere outside the

horizon, we need fp/fq to be positive in this region. This gives

aK ≤MK . (5.34)

This in turn implies that the coefficient of gtt, being proportional to ∆̃/
√
fpfq remains

positive everywhere outside the horizon. Thus there is no ergo-sphere for this black hole.

We call this branch of solutions the ergo-free branch.

5.1.3 Near horizon behaviour

In our coordinate system the horizon is at r = 0. To find the near horizon geometry, we

consider the limit

r → sr, t→ s−1t s→ 0 . (5.35)

Metric The near horizon behaviour of the metric is given by:

ds2 = − r2

v1(θ)
(dt− b

r
dφ)2 + v1(θ)

(
dr2

r2
+ dθ2 + sin2 θdφ2

)
(5.36)

with

v1(θ) = lim
r→0

√
fpfq =

1

8π

√
P 2Q2 − J2 cos2 θ, b =

J

8π
sin2 θ . (5.37)

By straightforward algebraic manipulation this metric can be rewritten as

ds2 =
a2 sin2 θ

v1(θ)
(dφ− αrdt′)

2
+ v1(θ)

(
−r2dt′2 +

dr2

r2
+ dθ2

)
(5.38)
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Figure 1: Radial evolution of the scalar field starting with different asymptotic values at
three different values of θ. We take P = Q = 4

√
π, J = 16π/3 for Φ∞ = 0, and then

change Φ∞ and P , Q using the transformation (5.9).

with

t′ = t/a , (5.39)

a =
1

8π

√
P 2Q2 − J2 , (5.40)

α = −J/
√
P 2Q2 − J2 . (5.41)

Gauge fields Near the horizon the gauge fields behave like

1

2
Fµνdx

µdxν =

[
2a

√
π

Q

1

(1 + µ cos θ)
dr ∧ dt′ + 1

4
√
π
P sin θ

(1 − µ2)

(1 + µ cos θ)2dθ ∧ (dφ− αrdt′)

]
,

(5.42)

where

µ =
J

PQ
. (5.43)

Scalar Field In the near horizon limit the scalar field becomes

e−4Φ/
√

3
∣∣∣
r=M

=

(
P

Q

) 2

3 PQ− J cos θ

PQ+ J cos θ
(5.44)
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Figure 2: Scalar field profile at the horizon of the Kaluza-Klein black hole. We take
P = Q = 4

√
π, J = 16π/3 for Φ∞ = 0, and then change Φ∞ and P , Q using the

transformation (5.9). The figure shows that the scalar field profile at the horizon is
independent of Φ∞.

Entropy Finally the entropy associated with this solution is given by

SBH = 4π
∫
dθdφ

√
gθθ gφφ = 16π2a = 2π

√
P 2Q2 − J2 . (5.45)

We now see that the entropy is invariant under (5.10) and the near horizon back-

ground, including the scalar field configuration given in (5.44), is invariant under the

transformation (5.9).8 This shows that the near horizon field configuration is indepen-

dent of the asymptotic value of the modulus field Φ. This can also be seen explicitly by

studying the radial evolution of Φ for various asymptotic values of Φ; numerical results

for this evolution have been plotted in fig.1. Fig.2 shows the plot of Φ(θ) vs. θ at the

horizon of the black hole.

5.1.4 Entropy function analysis

The analysis of section 5.1.3 shows that the near horizon field configuration is precisely

of the form described in eq.(3.3) with

Ω(θ) = a sin θ, e−2ψ(θ) =
8π a2 sin2 θ√

P 2Q2 − J2 cos2 θ
, e− αb(θ) =

2
√
π a

Q

1

(1 + µ cos θ)
,

8As described in eqs.(5.48), (5.49), the charges q, p are related to the parameters Q, P by some
normalization factors. These factors do not affect the transformation laws of the charges given in (5.9),
(5.10).
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e−4Φ/
√

3 =

(
P

Q

) 2

3 PQ− J cos θ

PQ+ J cos θ
, a =

1

8π

√
P 2Q2 − J2, α = − J√

P 2Q2 − J2
.

(5.46)

We can easily verify that this configuration satisfies eqs.(5.4)-(5.7) obtained by extremizing

the entropy function.

Using eq.(3.16) with values of h11 and f11 given in (5.2) we get

e =
1

2
[(e− αb(π)) + (e− αb(0))] =

P 2Q

4
√
π
√
P 2Q2 − J2

, (5.47)

and

p = −2π

α
[(e− αb(π)) − (e− αb(0))] =

√
π P . (5.48)

Eq.(3.42) now gives

q =
8π

α



e
2
√

3Φb′

sin θ




π

0

= 4
√
π Q . (5.49)

Finally the right hand side of eq.(3.43) evaluated for the background (5.46) gives the

answer J showing that we have correctly identified the parameter J as the angular mo-

mentum carried by the black hole.

5.1.5 The ergo-branch

The extremal limit on this branch, corresponding to the surface S in [48], amounts to

taking

aK = MK (5.50)

in the black hole solution. Thus we have the relations

Q2 = 4π
q̃(q̃2 − 4M2

K)

(p̃+ q̃)
, P 2 = 4π

p̃(p̃2 − 4M2
K)

(p̃+ q̃)
, J = 4π

√
p̃q̃
p̃q̃ + 4M2

K

(p̃+ q̃)
. (5.51)

In order to take the near horizon limit of this solution we first let

r → r +MK (5.52)

which shifts the horizon to r = 0. Near the horizon ∆, ∆̃ and w become

∆ = r2 (5.53)

∆̃ = −M2
K sin2 θ + O(r2) (5.54)

w = −
√
q̃p̃ (1 + w̄r) + O(r2) (5.55)
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with

w̄ =
p̃q̃ + 4M2

K

2(p̃+ q̃)M2
K

. (5.56)

Note that ∆̃ changes from being positive at large distance to negative at the horizon. Thus

gtt changes sign as we go from the asymptotic region to the horizon and the solution has

an ergo-sphere. We call this branch of solutions the ergo-branch. Using eqs.(5.53)-(5.56)

we can write the metric as

ds2 =
M2

K sin2 θ
√
fpfq

(
dt+

√
q̃p̃(1 + w̄r)dφ

)2

+
√
fpfq

(
dr2

r2
+ dθ2 − r2

M2
K

dφ2

)
+ · · · (5.57)

where · · · denote terms which will eventually vanish in the near horizon limit that we are

going to describe below. After letting

φ→ φ− t/
√
q̃p̃ (5.58)

and taking the near horizon limit

r → s r, t→ s−1 t, s→ 0 , (5.59)

the metric becomes

ds2 =
M2

K sin2 θ

v1(θ)
(
√
q̃p̃dφ− w̄rdt)2 + v1(θ)

(
dr2

r2
+ dθ2 − r2

M2
K q̃p̃

dt2
)

(5.60)

where

v1(θ) = lim
r→0

√
fp fq . (5.61)

Finally rescaling

t→ MK

√
q̃p̃ t (5.62)

the metric becomes of the form given in (3.3) with

Ω = MK

√
p̃q̃ sin θ, e−2ψ =

M2
K p̃q̃ sin2 θ

v1(θ)
, α = MK w̄ . (5.63)

Using eqs.(5.56) and (5.51) we find that

α =
J√

J2 − P 2Q2
, Ω =

1

8π

√
J2 − P 2Q2 sin θ, e−2ψ =

(J2 − P 2Q2) sin2 θ

64π2v1(θ)
. (5.64)
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Figure 3: Radial evolution of the scalar field for an ergo-branch black hole starting with
different asymptotic values at five different values of θ. We take P = Q = 2

√
π and

J = 4π
√

2 for Φ∞ = 0, and then change Φ∞ and P , Q using the transformation (5.9).

The scalar field Φ becomes in this limit

e−4Φ/
√

3 =
fp
fq
, (5.65)

where fp and fq now refer to the functions fp and fq at the horizon:

fp = −M2
K sin2 θ+MK p̃+

p̃

p̃+ q̃

(p̃− 2MK) (q̃ − 2MK)

2
−
p̃
√

(p̃2 − 4M2
K) (q̃2 − 4M2

K)

2(p̃+ q̃)
cos θ

(5.66)

fq = −M2
K sin2 θ+MK q̃+

q̃

p̃+ q̃

(p̃− 2MK) (q̃ − 2MK)

2
+
q̃
√

(p̃2 − 4M2
K) (q̃2 − 4M2

K)

2(p̃+ q̃)
cos θ .

(5.67)

The near horizon gauge field can also be calculated by a tedious but straightforward

procedure after taking into account the change in coordinates described above. The final

result is of the form given in (3.3) with

e− αb(θ) =
MK

√
p̃q̃

4
√
π fq

(
1

2

p̃

q̃
Q sin2 θ + P

√
q̃

p̃
cos θ

)
. (5.68)

This gives

e =
1

2
[(e− αb(π)) + (e− αb(0))] = − P 2Q

4
√
π
√
J2 − P 2Q2

, (5.69)
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Figure 4: Scalar field profile at the horizon for a black hole on the ergo-branch for different
asymptotic values of Φ. We take P = Q = 2

√
π and J = 4π

√
2 for Φ∞ = 0, and then

change Φ∞ and P , Q using the transformation (5.9). Clearly the scalar field profile at
the horizon depends on its asymptotic value.

p = −2π

α
[(e− αb(π)) − (e− αb(0))] =

√
π P , (5.70)

and

q =
8π

α



e
2
√

3Φb′

sin θ




π

0

= 4
√
π Q . (5.71)

Finally, the entropy associated with this solution can be easily calculated by computing

the area of the horizon, and is given by

SBH = 2π
√
J2 − P 2Q2 . (5.72)

We have explicitly checked that the near horizon ergo-branch field configurations described

above satisfy the differential equations (5.4)-(5.7).

The entropy is clearly invariant under the transformation (5.10). However in this

case the near horizon background is not invariant under the transformation (5.9). One

way to see this is to note that under the transformation (5.10) the combination M2
K p̃q̃ =

(J2 −P 2Q2)/64π2 remains invariant. This shows that MK cannot remain invariant under

this transformation, since if MK had been invariant then p̃q̃ would be invariant, and the

invariance of J given in (5.51) would imply that p̃ + q̃ is also invariant. This in turn

would mean that MK , p̃ and q̃ are all invariant under (5.10) and hence P and Q would

be invariant which is clearly a contradiction. Given the fact that MK is not invariant
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under this transformation we see that the coefficient of the sin2 θ term in fp and fq are

not invariant under (5.10). This in turn shows that ψ, and hence the background metric,

is not invariant under the transformation (5.9). This is also seen from figures 3 and 4

where we have shown respectively the radial evolution of the scalar field and the scalar

field profile at the horizon for different asymptotic values of Φ. Nevertheless several

components of the near horizon background, e.g. Ω(θ) and the parameters α and e do

remain invariant under this transformation, indicating that at least these components do

get attracted towards fixed values as we approach the horizon.

5.2 Black Holes in Toroidally Compactified Heterotic String

Theory

The theory under consideration is a four dimensional theory of gravity coupled to a

complex scalar S = S1 + iS2, a 4×4 matrix valued scalar field M satisfying the constraint

MLMT = L, L =
(

0 I2
I2 0

)
, (5.73)

and four U(1) gauge fields A(i)
µ (1 ≤ i ≤ 4).9 Here I2 denotes 2 × 2 identity matrix. The

bosonic part of the lagrangian density is

L = R− 1

2
gµνS−2

2 ∂µS̄∂νS +
1

8
gµνTr(∂µML∂νML)

−1

4
S2g

µρgνσF (i)
µν (LML)ijF

(j)
ρσ +

1

4
S1g

µρgνσF (i)
µν LijF̃

(j)
ρσ , (5.74)

where

F̃ (i)µν =
1

2
(
√
− det g)−1ǫµνρσ F̃ (i)

ρσ . (5.75)

General rotating black solution in this theory, carrying electric charge vector ~q and mag-

netic charge vector ~p, has been constructed in [51]. Before we begin analyzing the solution,

we would like to note that the lagrangian density (5.74) is invariant under an SO(2,2)

rotation:

M → ΩMΩT , F (i)
µν → ΩijF

(j)
µν , (5.76)

where Ω is a 4×4 matrix satisfying

ΩLΩT = L . (5.77)

9Actual heterotic string theory has 28 gauge fields and a 28×28 matrix valued scalar field, but the
truncated theory discussed here contains all the non-trivial information about the theory.
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Thus given a classical solution, we can generate a class of classical solutions using this

transformation. Since the magnetic and electric charges pi and qi are proportional to

F
(i)
θφ and ∂L/∂F (i)

rt respectively, we see that under the transformation (5.76), pi → Ωijpj ,

qi → (ΩT )−1
ij qj. Thus if we want the new solution to have the same electric and magnetic

charges, we must make compensating transformation in the parameters labelling the elec-

tric and magnetic charges. This shows that we can generate a family of solutions carrying

the same electric and magnetic charges by making the transformation:

M → ΩMΩT , F (i)
µν → ΩijF

(j)
µν , Qi → ΩT

ijQj, Pi → Ω−1
ij Pj , (5.78)

where ~Q and ~P are the parameters which label electric and magnetic charges in the

original solution. This transformation changes the asymptotic value of M leaving the

charges unchanged. Thus the general argument of section 2 will imply that the entropy

must remain invariant under such a transformation. Invariance of the entropy under the

transformation (5.76), which is a symmetry of the theory, will then imply that the entropy

must be invariant under

Qi → ΩT
ijQj , Pi → Ω−1

ij Pj . (5.79)

On the other hand if there is a unique background for a given set of charges then the

background itself must be invariant under the transformation (5.78).

The equations of motion derived from the lagrangian density (5.74) is also invariant

under the electric magnetic duality transformation:

S → aS + b

cS + d
, F (i)

µν → (cS1 + d)F (i)
µν + cS2(ML)ijF̃

(j)
µν , (5.80)

where a, b, c, d are real numbers satisfying ad − bc = 1. We can use this transformation

to generate a family of black hole solutions from a given solution. From the definition of

electric and magnetic charges it follows that under this transformation the electric and

magnetic charge vectors ~q, ~p transform as:

~q → (a~q − bL~p), ~p→ (−cL~q + d~p) . (5.81)

Thus if we want the new solution to have the same charges as the old solution we must

perform compensating transformation on the electric and magnetic charge parameters ~Q

and ~P . We can get a family of solutions with the same electric and magnetic charges but

different asymptotic values of the scalar field S by the transformation:

S → aS + b

cS + d
, F (i)

µν → (cS1+d)F
(i)
µν +cS2(ML)ijF̃

(j)
µν , ~Q→ d ~Q+bL~P , ~P → cL~Q+a~P .

(5.82)
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Arguments similar to the one given for the O(2,2) transformation shows that the entropy

must remain invariant under the transformation

~Q→ d ~Q+ bL~P , ~P → cL~Q+ a~P . (5.83)

Furthermore if the entropy function has a unique extremum then the near horizon field

configuration must also remain invariant under the transformation (5.82).

5.2.1 The black hole solution

Ref.[51] constructed rotating black hole solutions in this theory carrying the following

charges:

Q =




0
Q2

0
Q4


 , P =




P1

0
P3

0


 . (5.84)

These black holes break all the supersymmetries of the theory. In order to describe the

solution we parametrize the matrix valued scalar field M as

M =
(
G−1 −G−1B
BG−1 G−BG−1B

)
(5.85)

where G and B are 2 × 2 matrices of the form

G =
(
G11 G12

G12 G22

)
, B =

(
0 B12

−B12 0

)
. (5.86)

Physically G and B represent components of the string metric and the anti-symmetric

tensor field along an internal two dimensional torus. The solution is given by

G11 =
(r + 2msinh2δ4)(r + 2msinh2δ2) + l2cos2θ

(r + 2msinh2δ3)(r + 2msinh2δ2) + l2cos2θ
,

G12 =
2mlcosθ(sinhδ3coshδ4sinhδ1coshδ2 − coshδ3sinhδ4coshδ1sinhδ2)

(r + 2msinh2δ3)(r + 2msinh2δ2) + l2cos2θ
,

G22 =
(r + 2msinh2δ3)(r + 2msinh2δ1) + l2cos2θ

(r + 2msinh2δ3)(r + 2msinh2δ2) + l2cos2θ
,

B12 = −2mlcosθ(sinhδ3coshδ4coshδ1sinhδ2 − coshδ3sinhδ4sinhδ1coshδ2)

(r + 2msinh2δ3)(r + 2msinh2δ2) + l2cos2θ
,

ImS =
∆

1

2

(r + 2msinh2δ3)(r + 2msinh2δ4) + l2cos2θ
,

ds2 = ∆
1

2 [−r
2 − 2mr + l2cos2θ

∆
dt2 +

dr2

r2 − 2mr + l2
+ dθ2 +

sin2θ

∆
{(r + 2msinh2δ3)
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× (r + 2msinh2δ4)(r + 2msinh2δ1)(r + 2msinh2δ2) + l2(1 + cos2θ)r2 +W

+ 2ml2rsin2θ}dφ2 − 4ml

∆
{(coshδ3coshδ4coshδ1coshδ2

− sinhδ3sinhδ4sinhδ1sinhδ2)r + 2msinhδ3sinhδ4sinhδ1sinhδ2}sin2θdtdφ],

(5.87)

where

∆ ≡ (r + 2msinh2δ3)(r + 2msinh2δ4)(r + 2msinh2δ1)(r + 2msinh2δ2)

+ (2l2r2 +W )cos2θ,

W ≡ 2ml2(sinh2δ3 + sinh2δ4 + sinh2δ1 + sinh2δ2)r

+ 4m2l2(2coshδ3coshδ4coshδ1coshδ2sinhδ3sinhδ4sinhδ1sinhδ2

− 2sinh2δ3sinh2δ4sinh2δ1sinh2δ2 − sinh2δ4sinh2δ1sinh2δ2

− sinh2δ3sinh2δ1sinh2δ2 − sinh2δ3sinh2δ4sinh2δ2 − sinh2δ3sinh2δ4sinh2δ1)

+ l4cos2θ. (5.88)

a, m, δ1, δ2, δ3 and δ4 are parameters labelling the solution. Ref.[51] did not explicitly

present the results for Re S and the gauge fields.

The ADM massM , electric and magnetic charges {Qi, Pi}, and the angular momentum

J are given by:10

M = 8πm(cosh2δ1 + cosh2δ2 + cosh2δ3 + cosh2δ4) − 16πm,

Q2 = 4
√

2πm coshδ1sinhδ1, Q4 = 4
√

2πm coshδ2sinhδ2,

P1 = 4
√

2πm coshδ3sinhδ3, P3 = 4
√

2πm coshδ4sinhδ4,

J = −16π lm(coshδ1coshδ2coshδ3coshδ4 − sinhδ1sinhδ2sinhδ3sinhδ4). (5.89)

The entropy associated with this solution was computed in [51] to be

SBH = 32π2
[
m2(

4∏

i=1

cosh δi +
4∏

i=1

sinh δi) +m
√
m2 − l2(

4∏

i=1

cosh δi −
4∏

i=1

sinh δi)
]
. (5.90)

As in the case of Kaluza-Klein black hole this solution also has two different kinds

of extremal limit which we shall denote by ergo-branch and ergo-free branch. The ergo-

branch was discussed in [51].

10In defining M and J we have taken into account our convention GN = 16π, and also the fact that
our definition of the angular momentum differs from the standard one by a minus sign. Normalizations
of ~Q and ~P are arbitrary at this stage.
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5.2.2 The ergo-branch

The extremal limit corresponding to the ergo-branch is obtained by taking the limit

l → m. In this limit the second term in the expression for the entropy vanishes and the

first term gives

SBH = 2π
√
J2 +Q2Q4P1P3 . (5.91)

Now the most general transformation of the form (5.79) which does not take the charges

given in (5.84) outside this family is:

Ω =




eγ 0 0 0
0 eβ 0 0
0 0 e−γ 0
0 0 0 e−β


 , (5.92)

for real parameters γ, β. This gives

P1 → e−γP1, P3 → eγP3, Q2 → eβQ2, Q4 → e−βQ4 . (5.93)

On the other hand most general transformation of the type (5.83) which keeps the charge

vector within the same family is

(
a b
c d

)
=
(
a 0
0 a−1

)
. (5.94)

This gives

P1 → aP1, P3 → aP3, Q2 → a−1Q2, Q4 → a−1Q4 . (5.95)

It is easy to see that the entropy given in (5.91) does not change under the transformations

(5.93), (5.95).11

After some tedious manipulations along the lines described in section 5.1.5, the near

horizon metric can be brought into the form given in eq.(3.3) with

Ω =
1

8π

√
J2 +Q2Q4P1P3 sin θ, e−2ψ =

1

64π2
(J2 +Q2Q4P1P3) sin2 θ∆−1/2 ,

α =
J√

J2 +Q2Q4P1P3

, (5.96)

where ∆ has to be evaluated on the horizon r = m. We have found that the near horizon

metric and the scalar fields are not invariant under the corresponding transformations

11As in (5.48), (5.49), the parameters ~P , ~Q are related to the charges ~p, ~q by some overall normalization
factors. These factors do not affect the transformation laws of the charges given in (5.93), (5.95).
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(5.78) and (5.82) generated by the matrices (5.92) and (5.94) respectively, essentially due

to the fact that ∆ is not invariant under these transformations. This shows that in this

case for a fixed set of charges the entropy function has a family of extrema.

5.2.3 The ergo-free branch

The extremal limit in the ergo-free branch is obtained by taking one or three of the δi’s

negative, and then taking the limit |δi| → ∞, m → 0, l → 0 in a way that keeps the Qi,

Pi and J finite. It is easy to see that in this limit the first term in the expression (5.90)

for the entropy vanishes and the second term gives12

SBH = 2π
√
−J2 −Q2Q4P1P3 . (5.97)

Again we see that SBH is invariant under the transformations (5.93), (5.95).

On the ergo-free branch the horizon is at r = 0. The near horizon background can be

computed easily from (5.87) following the approach described in section 5.1.3 and has the

following form after appropriate rescaling of the time coordinate:

ds2 =
1

8π

√
−Q2Q4P1P3 − J2 cos2 θ

(
−r2dt2 +

dr2

r2
+ dθ2

)

+
1

8π

−Q2Q4P1P3 − J2

√
−Q2Q4P1P3 − J2 cos2 θ

sin2 θ (dφ− αrdt)2 , (5.98)

ImS =

√√√√−Q2Q4

P1P3

− J2 cos2 θ

(P1P3)2
, (5.99)

G11 =

∣∣∣∣
P3

P1

∣∣∣∣ , G12 = −J cos θ

P1Q2

∣∣∣∣∣
Q2

Q4

∣∣∣∣∣ , G22 =

∣∣∣∣∣
Q2

Q4

∣∣∣∣∣ , B12 =
J cos θ

P1Q4
, (5.100)

where

α = −J/
√
−Q2Q4P1P3 − J2 . (5.101)

It is easy to see that the background is invariant under (5.78) and (5.82) for transformation

matrices of the form described in (5.92) and (5.94).

12Note that the product Q2Q4P1P3 is negative due to the fact that an odd number of δi’s are negative.
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5.2.4 Duality invariant form of the entropy

In the theory described here a combination of the charges that is invariant under both

transformations (5.79) and (5.83) is

D ≡ (Q1Q3 +Q2Q4)(P1P3 + P2P4) −
1

4
(Q1P1 +Q2P2 +Q3P3 +Q4P4)

2 . (5.102)

Thus we expect the entropy to depend on the charges through this combination. Now for

the charge vectors given in (5.84) we have

D = Q2Q4P1P3 . (5.103)

Using this result we can express the entropy formula (5.91) in the ergo-branch in the

duality invariant form[51]:

SBH = 2π
√
J2 +D . (5.104)

On the other hand the formula (5.97) on the ergo-free branch may be expressed as

SBH = 2π
√
−J2 −D . (5.105)

We now note that the Kaluza-Klein black hole described in section (5.1) also falls into

the general class of black holes discussed in this section with charges:

Q =
√

2




Q
0
0
0


 , P =

√
2




P
0
0
0


 . (5.106)

Thus in this case

D = −P 2Q2 . (5.107)

We can now recognize the entropy formulæ (5.45) and (5.72) as special cases of (5.105)

and (5.104) respectively.

Finally we can try to write down the near horizon metric on the ergo-free branch in

a form that holds for the black hole solutions analyzed in this as well as in the previous

subsection and which makes manifest the invariance of the background under arbitrary

transformations of the form described in (5.78), (5.82). This is of the form:

ds2 =
1

8π

√
−D − J2 cos2 θ

(
−r2dt2 +

dr2

r2
+ dθ2

)

+
1

8π

−D − J2

√
−D − J2 cos2 θ

sin2 θ (dφ− αrdt)2 , (5.108)
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where

α = − J√
−D − J2

. (5.109)

(5.38) and (5.98) are special cases of this equation.
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