
ar
X

iv
:h

ep
-t

h/
07

03
15

7v
1 

 1
7 

M
ar

 2
00

7

hep-th/0703157

Geometric Tachyon to Universal Open String Tachyon

Ashoke Sen

Harish-Chandra Research Institute
Chhatnag Road, Jhusi, Allahabad 211019, INDIA

and

Department of Physics, California Institute of Technology
Pasadena, CA91125, USA

E-mail: sen@mri.ernet.in, ashokesen1999@gmail.com

Abstract

A system of k Neveu-Schwarz (NS) 5-branes of type II string theory with one transverse direction
compactified on a circle admits various unstable D-brane systems, – some with geometric instability
arising out of being placed at a point of unstable equilibrium in space and some with the usual open
string tachyonic instability but no geometric instability. We discuss the effect of NS 5-branes on the
descent relations among these branes and their physical interpretation in the T-dual ALF spaces.
We argue that if the tachyon potential controlling these descent relations obeys certain conditions,
then in certain region in the parameter space labelling the background the two types of unstable
branes become identical via a second order phase transition, with the geometric tachyon in one
system getting mapped to the usual open string tachyon of the other system. This would provide a
geometric description of the tachyonic instability of the usual non-BPS Dp-brane in ten dimensional
flat space-time.
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1 Introduction and Summary

Type IIA and IIB string theories are known to admit unstable non-BPS D-branes. These D-branes

have tachyonic modes obtained by quantizing open strings living on these branes. The physics of the

tachyonic mode is by now well understood [1–3]. However there is no clear geometric interpretation

of these modes.

Some time ago Kutasov identified a D-brane system with a different kind of instability [4,5]. This

involves k Neveu-Schwarz (NS) 5-branes with a transverse circle, and BPS Dp-branes with world-

volume parallel to the NS 5-branes, placed as a point on the transverse circle diametrically opposite

to the NS 5-branes.1 At this point the potential energy density of the D-brane has a saddle point.

As a result this is a point of unstable equilibrium and the Dp-brane has a tachyonic mode associated

with the displacement of the brane along the circle. Although this is a geometric mode, it was found

in the analysis of [4, 5] that the behaviour of this geometric tachyon is in many ways very similar

to the behaviour of the open string tachyon on a conventional non-BPS D-brane in flat space-time

background. Various other aspects of the dynamics of this system have been investigated in [6–11].

In this paper we shall introduce several other unstable D-brane systems in the same background

geometry and study and compare their properties. These additional D-branes are non-BPS D(p+1)-

1Even though it is a non-supersymmetric configuration, we shall continue to refer to this D-brane as BPS D-brane in
order to distinguish it from the usual non-BPS D-branes carrying open string tachyonic modes even in flat space-time.
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branes extending along the transverse circle – either wrapping the circle or ending on the NS 5-

branes – and other world-volume directions parallel to those of the Dp-brane described in the last

paragraph.2 These D-branes are unstable due to the usual open string tachyon living on their world-

volume; however they do not have any additional geometrical instability.

A T-duality transformation on the transverse circle takes the original closed string field configura-

tion to type IIB/IIA string theory on ALF spaces [12,13]. When the k NS 5-branes are all coincident

in the original description, the T-dual geometry involves ALF spaces with Ak−1 singularities but

when the NS 5-branes are separated the singularity in the T-dual geometry is resolved by blowing up

the collapsed 2-cycles. The duality map relates the geometrically unstable Dp-branes in the original

background to BPS D(p+1)-branes wrapped on the equators of these blown up 2-cycles, and the

non-BPS D(p+1)-branes of the original background to non-BPS Dp-branes and non-BPS D(p+2)-

branes wrapped on these 2-cycles. By following the duality map we can derive various properties of

these branes. For example, one such property is that the tension of a BPS D(p+1)-brane wrapped

on the equator of a 2-cycle remains finite even when the 2-cycle collapses to zero size if the D-brane

carries a non-zero Wilson line along the collapsed cycle.

It was already noted in [4, 5] that the geometric tachyons have many properties in common

with conventional open string tachyons. Since we now have both types of D-branes in the same

background geometry, we can try to compare their properties in detail and explore if this analogy

can be made into an equivalence. Indeed one finds that the two types of D-branes exihibit very

similar behaviour. For example in the NS 5-brane background the condensation of the geometric

tachyon on the geometrcally unstable BPS Dp-brane and the condensation of the open string tachyon

on the non-BPS D(p+1)-brane, – either into the vacuum or into a kink solution that depends on

any of the p coordinates common to both D-branes – produces identical configurations. Furthermore

in the absence of the NS 5-branes the non-BPS D(p+1)-branes and the BPS Dp-branes are related

via usual open string tachyon condensation [14]. This continues to hold even in the presence of NS

5-branes, although we find that the precise form of these relations are modified. Thus these two

types of D-branes may be considered as two different classical solutions in the same theory, – the

world-volume theory of the non-BPS D(p+1)-brane. This leads to the following question: Can these

two solutions merge as we vary the external parameters e.g. the radius of the circle or the number

of NS 5-branes? If so, then at that point the two systems will become identical, with the geometric

tachyon on one getting identified with the open string tachyon on the other. Such merger of solutions

2This system is different from the one analyzed in [6] where non-BPS Dp-branes with world-volume transverse to
the circle S1 was considered.
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has indeed been observed in a closely related system earlier [15].

This analysis however is plagued by the difficulty that the various properties of the systems with

geometric tachyons like the tension or the tachyon mass2 were calculated using the Dirac-Born-Infeld

(DBI) action and can in principle be affected by α′ corrections.3 When the number of NS 5-branes

is large, the α′ corrections remain under control even up to the zero radius limit. In this case we

find that the two solutions do not merge. The BPS Bp-brane in unstable equilibrium remains lighter

than the non-BPS D(p+1)-brane wrapped on the circle all the way from infinite radius to zero

radius, and a tachyonic kink configuration on the latter takes us to the former configuration. A naive

comparison without taking into account α′-corrections shows that in the particular case involving

two coincident NS 5-branes and zero radius of the circle transverse to the NS 5-brane, the D-brane

with geometric instability and the usual non-BPS D-brane have identical tension and tachyon mass2,

– a coincidence already noted in [5]. In the absence of a non-renormalization theorem we cannot

reach a definite conclusion.4 However if it turns out that there is an underlying non-renormalization

theorem protecting the tension and tachyon mass2 of the system with geometric tachyon, then it

would be a strong indication that the solutions describing the two types of D-branes merge at this

point, with the geometric tachyon of one system getting mapped to the usual open string tachyon of

the other system.

In the T-dual geometry the non-BPS D-brane under consideration is a non-BPS Dp-brane placed

at a point in the ALE space with A1 singularity. This might lead one to conclude that this correspon-

dence, even if true, is not so exciting. However we should recall that the interesting part of the usual

open string tachyon dynamics is universal and does not depend on the geometry of the transverse

space in which the D-brane is placed. In this particular example, the tachyon vacuum solution, the

kink solutions along any of the p directions tangential to the brane, or the rolling tachyon solution

on this Dp-brane are identical to those on a Dp-brane in flat space-time. Thus this correspondence,

if true, would provide us with a geometric understanding of the tachyon dynamics on a non-BPS

Dp-brane in flat space-time as well.

An interesting case is that of a single NS 5-brane background with a transverse circle of radius

R. Its T-dual geometry is Taub-NUT space of size R̃ = 1/R, which reduces to flat space-time in the

infinite R̃ limit. In the original NS 5-brane background we can construct a geometrically unstable

D-brane configuration by placing a BPS Dp-brane at a point on the transverse circle diametrically

opposite to the NS 5-brane. This configuration should exist for large radius of the transverse circle,

3We show that the non-BPS D(p+1)-branes extending along the transverse circle do not suffer from this problem.
4In a closely related situation where the NS 5-brane has non-compact transverse directions, it is known that the

DBI action produces certain results exactly [16].
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and the interesting question is: what happens to this brane in the small radius limit when the dual

geometry is flat space-time? For multiple NS 5-branes the dual geometry has (collapsed) 2-cycles

and the D-brane described above has a natural description as BPS D(p+1)-branes wrapped on the

equator of such a 2-cycle. However the geometry dual to a single NS 5-brane does not possess a

2-cycle, and hence there is no analogous interpretation for this D-brane. One can consider several

possibilities: 1) it could describe a new unstable Dp-brane, 2) it could disappear from the spectrum

by having either zero or infinite tension, 3) instead of remaining localized, it could blow up and fill

the whole space in this limit or 4) it could describe the usual unstable Dp-brane. Of these the fourth

possibility is most exciting, since it will provide us with a direct geometric interpretation of the usual

open string tachyon on an unstable Dp-brane in flat space-time as a geometric instability in the dual

description.

The issue involved is of course the same issue raised earlier in the more general context of multiple

NS 5-brane background, but it will be useful to describe it again in this special context. The system of

one NS 5-brane with a transverse circle contains a non-BPS D(p+1)-brane wrapped on the transverse

circle. Its dual description is the usual non-BPS Dp-brane sitting at the center of the Taub-NUT

space, – precisely the configuration with which we would like to identify the system described in

the last paragraph. Furthermore for large radius of the circle transverse to the five brane, a kink

solution of the open string tachyon on this non-BPS D(p+1)-brane can produce a BPS Dp-brane

sitting diametrically across the NS 5-brane, – the earlier system. Thus two systems can be viewed as

different classical solutions in the same theory, and we would like to ask if the two solutions can merge

at some critical radius as we reduce the radius of the transverse circle. If they do then it would mean

that below that critical radius the two solutions become identical. In the dual description it would

imply that the ‘new’ non-BPS Dp-brane constructed via the procedure described in the previous

paragraph and the usual non-BPS Dp-brane, sitting at the center of Taub-NUT, will be identical

when the size of the Taub-NUT space exceeds a critical value.

We can reformulate this problem in terms of an effective potential for the tachyonic mode whose

condensation takes us from the non-BPS D(p+1)-brane to the geometrically unstable BPS Dp-brane.5

In this description the non-BPS D(p+1)-brane and the BPS Dp-brane represent two different extrema

of the tachyon potential. We show that the quadratic term in the effective potential changes sign at

some critical radius Rc of the circle transverse to the NS 5-brane. If the coefficient of the quartic

term is positive at this critical radius then the two extrema merge at this critical radius and remain

5This tachyonic mode should be distinguished from the tachyon zero mode whose condensation takes us to the
tachyon vacuum.
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identical below this radius. This represents a second order phase transition for the BPS Dp-brane at

which the spontaneously broken (−1)FL symmetry is restored. On the other hand if the coefficient

of the quartic term in the potential is negative at the critical radius, then the two extrema do not

merge and the D-branes do not become identical. With our present level of knowledge we cannot

determine what really happens; however we show that the first possibility is more economical since

it does not require the existence of any other extrema of the potential. In contrast if the sign of the

quartic term is negative at the critical radius then new extrema of the potential appear below the

critical radius, signalling new D-brane configurations. If these extrema survive down to zero radius

then we have the problem of explaining what they are in the dual flat space-time geometry.

This effective potential approach can also be applied for other values of k, but the potential will

have different features for different k. If it turns out that there is a non-renormalization theorem for

the tension and the tachyon mass2 of the geometrically unstable D-branes for k ≥ 2, then the picture

is somewhat trivial for k ≥ 2 coincident NS 5-branes. For k = 2 the critical radius where the two

types of D-branes become identical is at R = 0, whereas for k ≥ 3 the two types of D-branes remain

distinct all the way down to R = 0. However the picture becomes much richer once we consider a

more general configuration where the NS 5-branes are separated from each other. After all, if we

consider the configuration of k NS 5-branes equally spaced on a circle of radius R, then it is a k-fold

cover of the configuration describing a single NS 5-brane with a transverse circle of radius R/k. Thus

the merger of the two D-brane configurations for R ≤ Rc in the k = 1 case will imply that for k

equally spaced NS 5-branes, a BPS Dp-brane sitting midway between two neighbouring NS 5-branes

and a non-BPS D(p+1)-brane stretched between the two neighbouring NS 5-branes must become

identical below the critical value kRc of R. In the full moduli space spanned by R and the separation

between the NS 5-branes we would expect a codimension one critical surface that separates the region

in which the two types of D-branes are distinct from the region in which they are identical. In the

special case of k = 2 if we denote by 2c the angular separation between the two NS 5-branes on the

circle then the critical curve in the (R, c) plane should pass through the points (0, 0) and (2Rc, π/2).

If the non-renormalization theorems do not hold then the detailed picture described above will

not be correct, e.g. for k = 2 the critical curve will not pass through the (0, 0) point. However the

general picture, ı.e. the existence of a critical surface that separates a region where the two D-branes

are identical from the region where they are not identical, is based on the sign of certain coefficient

in the tachyon potential, and will still hold if this coefficient has the correct sign.

Finally we should remark that even though we have dealt with unstable systems with tachyons,

these may also be useful in getting stable non-supersymmetric configurations after certain orbifolding
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that projects out the tachyon mode.

The rest of the paper is organized as follows. In §2 we describe various unstable D-brane systems

in a background of multiple NS 5-branes with a transverse circle and discuss descent relation between

these different D-branes for large radius of the transverse circle. In §3 we discuss the description of

these unstable D-branes in the dual ALF geometry. In §4 we describe the zero radius limit of the

original configuration that converts the dual ALF geometry to ALE geometry and study the fate of

the descent relations in this limit. §5 describes comparison between different D-brane systems and

possible identification of a BPS D-brane with geometric tachyon with a non-BPS D-brane with the

usual open string tachyon. In §6 we discuss the case of a single NS 5-brane with a transverse circle,

and determine under what condition a geometrically unstable D-brane in this background in the

zero radius limit would describe the usual unstable D-brane in a dual flat space-time geometry. We

conclude in §7 with some comments.

2 Unstable D-brane Configurations and Their Descent Re-

lations in NS 5-brane Background

We begin by considering a system of k NS 5-branes in type IIA/IIB string theory stretched along the

(x0, . . . x5) plane and placed at (x6, . . . x9) = (0, . . . 0). Let x6 be a compact coordinate with period

2πR. The string metric, the dilaton Φ, and the NS sector 3-form field strength H produced by this

background are given by [17, 18]6

ds2 = ηµν dx
µdxν +H(~r, y)(dy2 + d~r2) ,

e2Φ = g2H(~r, y) ,

Hmnp = −ǫmnpq∂
qΦ , (2.1)

where µ, ν run from 0 to 5, m,n, p, q run from 6 to 9,

~r ≡ (x7, x8, x9), y ≡ x6 , (2.2)

and

H(~r, y) = 1 +
k

2Rr

sinh(r/R)

cosh(r/R) − cos(y/R)
, r ≡ |~r| . (2.3)

This background is invariant under the transformation

σ : y → −y, ~r → −~r . (2.4)

6We shall use α′ = 1 convention throughout this paper.
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This symmetry will play an important role in our analysis.

If the k 5-branes are not coincident but are placed at different points (~ri, yi) (1 ≤ i ≤ k) then the

solution is still described by (2.1), but with H given by

H(~r, y) = 1 +

k∑

i=1

1

2R|~r − ~ri|
sinh(|~r − ~ri|/R)

cosh(|~r − ~ri|/R) − cos ((y − yi)/R)
. (2.5)

We shall consider various types of non-supersymmetric D-brane configurations in the background

geometry described in eqs.(2.1)-(2.3). The first type of such configurations, which we shall call G-

type D-branes because they will turn out to have geometric instability, is obtained by placing a BPS

Dp-brane (p ≤ 5) along (x0, . . . xp) at ~r = ~0, y = πR and arbitrary values of xp+1, . . . x5 [5]. We shall

summarize the main results of [5]. The DBI action on the Dp-brane in this background will be given

by

− g−1 Tp

∫
dp+1ξ

(
H(~Z, Y )

)−1/2 √
− detG (2.6)

where {ξα} (0 ≤ α ≤ p) are the Dp-brane world-volume coordinates – taken to coincide with

(x0, . . . xp), ~Z and Y denote respectively the ~r and y coordinates of the D-brane world-volume,

g−1 Tp denotes the tension of a BPS Dp-brane at ∞, and

Gαβ = ηαβ +H(~Z, Y )(∂α
~Z · ∂β

~Z + ∂αY ∂βY ) , 0 ≤ α, β ≤ p , (2.7)

is the induced metric on the Dp-brane world-volume. Note that we have ignored the motion of the

brane along the plane of the 5-brane as well as the dynamics of gauge fields on the brane; these will

not play any role in our analysis.

The overall multiplicative factor of (H(~Z, Y ))−1/2 provides a potential for the motion of the brane.

For H given in (2.3) this potential has an absolute minimum at Y = 0, ~Z = 0 where it vanishes, and

a saddle point at Y = πR, ~Z = 0 where it has a minimum as a function of ~Z but a maximum as a

function of Y . Thus it represents a point of unstable equilibrium [5] and Y becomes a tachyonic field

on the Dp-brane world-volume. One can easily calculate the tension τp of the Dp-brane situated at

(~Z = ~0, Y = πR) and the mass squared m2
T of the tachyon on this D-brane coming from the unstable

geometric mode. The answers are

τp = g−1TpH(~0, πR)−1/2 = g−1 Tp

(
1 +

k

4R2

)−1/2

,

m2

T =

[
H−1/2∂

2H−1/2

∂y2

]

~r=0,y=πR

= − k

(k + 4R2)2
. (2.8)
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We should keep in mind however that the DBI action (2.6) receives higher derivative corrections.

Thus the results (2.8) can also receive higher derivative corrections. In particular for low values of

k and R ∼ 1, the spatial curvature as well as the derivatives of the dilaton are of order one near

(~r = 0, y = πR) and hence the corrections can be of order unity. We shall return to a discussion

about these corrections later.

It was noted in [5] that the tachyonic mode described by Y has many properties in common

with the usual open string tachyon on an unstable D-brane. Clearly the minimum of the tachyon

potential is at Y = 0 where the tension of the Dp-brane, being proportional to H(~0, 0)−1/2 = 0,

vanishes. Furthermore one can consider tachyonic kink configurations in this theory located at

xp = 0, described by the solution Y = 0 for xp < 0 and Y = 2πR for xp > 0. This describes a BPS

Dp-brane located at xp = 0 and stretched along x0, . . . xp−1, y [5]. Neither of these general properties

is expected to be modified by α′ corrections.

For future reference it will be useful to consider the situation where the k NS 5-branes are displaced

away from the (~r, y) = (~0, 0) point symmetrically to {(~ri, yi), 1 ≤ i ≤ k} so that (~r, y) = (~0, πR) is

still a point of unstable equilibrium for the Dp-brane. In this case (2.5) shows that the tension of

the Dp-brane situated at (~0, πR) is given by

τp = g−1 Tp H(~0, πR)−1/2 = g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|
sinh(|~ri|/R)

cosh(|~ri|/R) + cos (yi/R)

)−1/2

. (2.9)

A second type of non-supersymmetric D-brane configuration in the same background is obtained

by placing a non-BPS D(p+1) brane [1–3,19] spanning the coordinates x0, . . . xp and y. We shall call

these U-type D-branes to indicate that they carry the usual open string tachyon. The world-volume

action describing the dynamics of the massless modes on this brane is given by

− 1√
2π

g−1 Tp

∫
dp+1ξ dy H(~Z, y)−1/2

√
− detG , (2.10)

where ({ξα}, y) denote the world-volume coordinates and

Gαβ = ηαβ +H(~Z, y)∂α
~Z · ∂β

~Z, Gyy = H(~Z, y)
(
1 + ∂y

~Z · ∂y
~Z
)
, Gαy = Gyα = H(~Z, y)∂α

~Z · ∂y
~Z .

(2.11)

As before we have ignored the dynamics of the gauge fields on the brane and the motion of the brane

along the NS 5-brane world-volume. Another field that has not been included in the action (2.10)

but will play an important role in our analysis is the open string tachyon field.

This theory has a classical solution corresponding to

~Z = ~c , (2.12)
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for any constant vector ~c, describing the non-BPS D(p+1)-brane situated as ~r = ~c and spanning

the x0, . . . xp, y directions. From the point of view of an asymptotic observer this looks like a p-

brane since one of its world-volume directions is compact. The tension, defined as the mass per unit

p-volume, and the mass2 of the open string tachyon living on this D-brane is given by

τ ′p =
1√
2π

g−1 Tp

∫
dyH(~Z, y)−1/2

√
− detG

∣∣∣
~Z=~c

=
√

2Rg−1 Tp m′2
T = −1

2
. (2.13)

This D-brane can decay into the closed string vacuum of zero energy density via tachyon condensation

[20–23]. Furthermore an xp dependent tachyonic kink solution on this D-brane localized along the

xp = 0 surface produces a BPS Dp-brane stretched along the x0, . . . xp−1, y direction [14]. Due to the

universality of the open string tachyon dynamics [24, 25] neither of these properties is modified by

α′ corrections. Thus the condensation of the open string tachyon living on this D-brane, either into

a kink or into its vacuum, produces identical results as the condensation of the geometric tachyon

living on the BPS Dp-brane placed at y = πR. This provides us with the first hint that there may

be some deeper relation between these branes.

We shall now argue that unlike the formulæ (2.8), eqs.(2.13) are not modified by α′ correction.

We begin with the tension. For this let us switch theories and consider type IIB/IIA theory with the

same NS5 background and a BPS D(p+1) brane along x0, . . . xp, y. This is a supersymmetric system

with no force between the D-brane and the NS 5-brane and hence the tension of the D(p+1)-brane

(defined as the mass per unit p-volume after integration over the y coordinate) is given by the BPS

formula which is independent of ~c and is not modified by α′ corrections. The same argument holds for

a BPS D̄(p+1)-brane in the same position. From this we can conclude that at string tree level when

the interaction between different D-branes can be ignored, the tension of a coincident D(p+1)-brane-

D̄(p+1)-brane at an arbitrary position ~c will be equal to twice that of a single D(p+1)-brane. We

can now take an orbifold of this system by (−1)FL to construct a non-BPS D(p+1)-brane of IIA/IIB

placed at ~c [14], with its tension given by
√

2 times that of the BPS D(p+1)-brane in IIB/IIA theory.

This is precisely the tension given in (2.13). Thus we conclude that there is no α′ correction to the

expression of the tension given in (2.13) for any ~c.

The argument regarding tachyon mass2 is even simpler. Since the tachyon vertex operator on the

non-BPS D-brane is proportional to the identity operator in the matter sector, and since the identity

operator has dimension zero in all conformal field theories, the mass2 of the tachyon on the non-BPS

D(p+1)-brane must be given by (2.13).

A major part of our analysis will focus on studying the relationship between the two types of

D-branes introduced above. We shall begin by comparing the action of the transformation σ given in
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(2.4) on the tachyon on both types of branes. Since σ changes y → −y, the geometric tachyon Y on

the G-type D-brane, being the y coordinate of the D-brane world-volume, clearly changes sign under

σ. On the other hand it is known from the analysis of [14] that the open string tachyon field T on

the unstable D(p+1) brane wrapped along y also changes sign under σ. Thus if we restrict ourselves

to σ invariant field configurations, we project out the geometric tachyon on the G-type D-brane as

well as the zero mode of the open string tachyon on the U-type D-brane. However, for sufficiently

large radius of the transverse circle the lowest lying σ invariant mode of the open string tachyon on

the U-type D-brane, satisfying T (y) = −T (−y), is also tachyonic, and its condensation produces a

Dp-brane at y = πR and a D̄p-brane at y = 0 [14]. Since the D̄p-brane at y = 0, being on top of

the NS 5-branes, has no tension and charge, it is indistinguishible from the tachyon vacuum. Thus

the resulting configuration is just a Dp-brane at y = πR, ı.e. the G-type Dp-brane. This shows that

both G and U-type D-branes can be regarded as different classical solutions in a single theory – the

world-volume theory of the U-type brane. If we reduce the radius, then in the absence of 5-branes the

situation is reversed at a critical radius, and the U-type D-brane is obtained as a result of winding

tachyon condensation on the G-type brane [14]. We shall see in §4-§6 that the situation changes

when NS 5-branes are present.

There is a third type of non-supersymmetric brane configurations with properties very similar

to those of the U-type branes described above. Here we consider again a non-BPS D(p+1) brane

spanning the coordinates x0, . . . xp and y, but this time instead of wrapping the y circle it begins at

one of the k NS5-branes, goes around the circle, and ends on another NS5-brane. We shall call these

S-type D-branes to indicate that they are non-BPS D-branes stretched between the NS 5-branes.

When all the 5-branes are coincident this configuration has the same tension and the tachyon mass2

as the original configuration; however this is no longer the case if we separate the five-branes. For

example if we take a pair of 5-branes at y = y1 and y = 2πR − y2 respectively, then a non-BPS

D(p+1)-brane stretching between these five branes will have tension and tachyon mass2 given by

τ ′′p =
1√
2π

g−1 Tp (2πR− y1 − y2), m′′2
T = −1

2
. (2.14)

The tension coincides with τ ′p given in (2.13) for y1 = y2 = 0 but not otherwise. In particular if we

take y1 = y2 = πR then the D-brane will have vanishing tension. Another difference between this D-

brane and the U-type D-brane considered earlier is that the latter can be moved away from ~r = 0 at

no cost in energy, but that is not the case for the new system since the 5-branes are located at ~r = 0.

An argument similar to that for the U-type D-branes shows us that the tension and the tachyon mass

formulæ for the S-type D-brane also do not receive any α′ corrections. An xp-dependent tachyonic
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kink on this D-brane localized at xp = 0 will produce a BPS Dp-brane along x0, . . . xp−1, y, ending

on the two NS 5-branes at the two ends. On the other hand a y-dependent tachyonic kink localized

at y = πR will produce a BPS Dp-brane at y = πR lying along x0, . . . xp, ı.e. a G-type unstable

Dp-brane configuration.

3 Dual Description in ALF Spaces

We now consider a different description of the system related to the one given above by a T-duality

transformation along the circle along y. This maps the closed string backgound involving the NS

5-branes to a configuration in type IIB/IIA theory of k coincident Kaluza-Klein monopoles, or

equivalently ALF space [26] with Ak−1 singularity at the origin [12, 13]. The dilaton and the metric

associated with this background is given by

ds2 =

(
1 +

kR̃

2r

)
(
dr2 + r2(dθ2 + sin2 θdφ2)

)
+ R̃2

(
1 +

kR̃

2r

)−1(
dψ +

k

2
cos θdφ

)2

e2Φ = g̃2 , (3.1)

with the identifications:

(θ, φ, ψ) ≡ (2π− θ, φ+π, ψ+
kπ

2
) ≡ (θ+2π, φ+2π, ψ) ≡ (θ, φ+2π, ψ+kπ) ≡ (θ, φ, ψ+2π) . (3.2)

Here

R̃ = 1/R, g̃2 = g2/R2 . (3.3)

From the point of view of an asymptotic observer (r, θ, φ) are the polar coordinates with origin at

the location of the monopoles and ψ is the coordinate along the compact direction. For k = 1 the

geometry is smooth but for k > 1 there is an Ak−1 singularity at the origin r = 0. This is best seen

by introducing the cartesian coordinate system for the metric near the origin:

w1 = 2
√
r cos

θ

2
cos

(
ψ

k
+
φ

2

)
, w2 = 2

√
r cos

θ

2
sin

(
ψ

k
+
φ

2

)
,

w3 = 2
√
r sin

θ

2
cos

(
ψ

k
− φ

2

)
, w4 = 2

√
r sin

θ

2
sin

(
ψ

k
− φ

2

)
. (3.4)

For k = 1 the coordinates {wa} are invariant under the identification (3.2), but for k > 1 there is an

identification under a ZZk rotation in the w1-w2 and w3-w4 plane.

It will be useful to examine the action of the transformation (2.4) on the dual geometry. This

can be figured out by examining its action at large |~r| where the (~r, y) space looks like RR3 × S1.
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Under a T-duality that takes the circle labelled by y to its dual circle labelled by ψ, the image of

(2.4) is known to be given by (−1)FL accompanied by ~r → −~r, ψ → −ψ transformation. In terms of

(r, θ, φ) coordinates this translates to

(−1)FL × {(r, θ, φ, ψ) → (r, π − θ, φ+ π,−ψ)} . (3.5)

The solution described in (3.1) is actually a special limit of a general class of non-singular solutions

given by

ds2 = U(~r)
(
dr2 + r2(dθ2 + sin2 θdφ2)

)
+ R̃2U(~r)−1

(
dψ +

1

R̃
~ω.d~r

)2

e2Φ = g̃2 , (3.6)

where

U(~r) = 1 +
R̃

2

k∑

i=1

1

|~r − ~ri|
, ~∇× ~ω = ~∇U . (3.7)

This space is completely non-singular; the apparent singulaities at ~r = ~ri being coordinate singu-

larities. There are various non-contractible two cycles described by taking the direct product of the

circle labelled by ψ and the straight line in ~r space joining ~ri and ~rj. Away from ~ri and ~rj the

resulting two dimensional surface looks like a cylinder but the circle labelled by ψ collapses at the

end-points ~ri and ~rj giving this surface the topology of a sphere. In the limit ~ri → ~rj the 2-cycle

passing through ~ri and ~rj collapses and the space becomes singular. Explicit discussion on D-branes

wrapped on various 2-cycles of this geometry can be found in [27].

This geometry described in (3.6) is dual to the configuration of NS5-branes described in eq.(2.5)

with all the yi’s set to zero. Non-vanishing yi’s correspond to switching on flux of NS sector 2-form

field B through various 2-cycles of this geometry [12, 13].

We shall now describe the various unstable D-brane configurations introduced in the previous

section in this T-dual background. We begin with the G-type unstable D-branes obtained in the

original description by placing a BPS Dp-brane along x0, . . . xp at (~r = 0, y = 0) or (~r = 0, y =

πR). Since T-duality acting on a D-brane localized at a point on a circle maps it to a D-brane

wrapped along the dual circle, we expect that the T-dual description of the G-type brane is a BPS

D(p+1) brane along x0, . . . xp and ψ, placed at ~r = 0.7 The coordinate y of the original Dp-brane

7We must caution the reader that this heuristic picture should be used with caution; α′ corrections necessarily
spread out the D-brane wave-function and hence the D-brane boundary states are not strictly localized either in the
original description or in the new description. However when all the |~ri|’s are large and hence space-time near ~r = 0
is nearly flat, this picture becomes accurate.
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corresponds to the Wilson line along ψ on the dual D(p+1)-brane. In order to test this we begin

with a configuration where in the original description we move the NS 5-branes far away from the

origin in a symmetric fashion so that (~0, 0) and (~0, πR) remain extrema of the potential. In this case

from (2.9) we see that the tension of the Dp-brane is given by

g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|

)−1/2

+ O
(
e−|~ri|/R

)
. (3.8)

On the other hand in the dual description, the mass per unit p-volume of a D(p+1)-brane wrapped

along the ψ circle at ~r = 0 is obtained by integrating the tension of the D(p+1)-brane along the ψ

circle:

g̃−1 Tp

2π

∫
dψ R̃ U(~r)−1/2 = g−1 Tp

(
1 +

k∑

i=1

1

2R|~ri|

)−1/2

. (3.9)

This agrees with (3.8) up to exponentially suppressed terms. At the level of the supergravity ap-

proximation we do not see a potential for the Wilson line or the exponentially suppressed terms in

(3.8); however these are expected to be induced by the world-sheet instanton corrections [28–30].

Physically the ψ-circle at ~r = ~0 represents the equator of a blown up 2-cycle. Thus we see that the

T-dual description of the G-type Dp-brane is a BPS D(p+1)-brane wrapped along the equator of a

2-cycle.

Once we have made the identification for large |~ri| we can now take the ~ri → 0 limit on both

sides. Let us focus on the y = πR case. In the original description this gives a BPS Dp-brane of

IIA/IIB placed diametrically opposite to a set of k coincident NS 5-branes on a transverse circle.

In the T-dual description the circle at ~r = 0 labelled by ψ collapses to a point in this limit and we

get a BPS D(p+1)-brane of IIB/IIA wrapped along this collapsed circle, but carrying half a unit of

Wilson line along this circle. According to (3.9) the tension of this brane vanishes in this limit. This

result however is likely to be α′ corrected for all R since the curvature at ~r = 0 is strong. For small R̃

or equivalently large R we can trust the computation of the brane tension in the original geometry,

and by exploiting the duality invariance we come to the conclusion that the tension of this brane

remains finite and is given by (2.8) in this limit if we switch on half a unit of Wilson line on the brane

along the ψ direction. On the other hand if the Wilson line is zero then it corresponds to placing the

Dp-brane at (~r, y) = (~0, 0), ı.e. at the location of the NS 5-branes, in the original description. Thus

the tension of the brane vanishes in this case.

The k = 1 case deserves special attention. In this case there is a single NS 5-brane in the original

description, and we cannot move the NS brane away from (~0, 0) keeping (~0, πR) a point of unstable
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equilibrium. Nevertheless by using the symmetry of the problem we could interpret the dual of the

BPS Dp-brane placed at (~r, y) = (~0, πR) as a BPS D(p+1)-brane wrapped along the ψ circle at ~r = 0

with Wilson line along the ψ direction. Again for sufficiently small R̃, ı.e. large R, this D-brane has

finite tension given by (2.8) with k = 1. This is somewhat surprising considering that the ψ circle

collapses at ~r = 0 and Taub-NUT space has no singularity at ~r = 0. We shall return to this case in

§6.

The non-BPS D(p+1)-brane of the original theory along x0, . . . xp, y placed at ~r are easy to

describe in the dual theory. This goes over to a non-BPS Dp-brane along x0, . . . xp in the dual

system placed at fixed values of ~r and ψ in the ALF space, with the location along ψ determined

by the Wilson line along y of the original system. In particular the original D(p+1) brane placed at

~r = 0 corresponds to a non-BPS Dp-brane placed at ~r = 0 in the dual system.

Finally we turn to the S-type D-brane, extending from the ith to the jth NS 5-brane in the

original description. Again the simplest way to find their dual description is to first move the NS

5-branes away from (~r, y) = (~0, 0) to positions (~ri, 0). In this process the non-BPS D(p+1)-brane

extending from the ith to the jth NS 5-brane gets stretched between the points (~ri, 0) and (~rj, 2πR).

Had the y coordinate been zero at both the end points the D(p+1)-brane would have been fully

localized in the y-direction and a T-duality transformation would have delocalized it along the dual

ψ direction, producing a non-BPS D(p+2)-brane wrapped around the 2-cycle passing through ~ri and

~rj. By following the standard rules of T-duality transformation one can show that the effect of one

unit of winding of the original D(p+1)-brane along the y direction is to produce one unit of gauge

field strength flux on the dual D(p+2)-brane through this 2-cycle. Thus the S-type brane corresponds

in this dual description to non-BPS D(p+2)-brane wrapped on the two cycle passing through ~ri and

~rj, with one unit of gauge field strength flux turned on through this 2-cycle. When the 5-branes in

the original description are coincident, the 2-cycle collapses to zero size with vanishing flux of the B

field through them. In this case the D(p+2)-brane would have vanishing tension if it did not have

a gauge field flux turned on. The gauge field flux however makes this into a non-BPS Dp-brane.

Separating the NS 5-branes in the original description along the y direction corresponds to switching

on B-flux through appropriate 2-cycles in the dual description. If we consider the special situation

where the ith and the jth NS 5-branes are brought at y = πR, it corresponds in the dual description

to one unit of B-flux through the corresponding 2-cycle. In this bulk this is equivalent to having no

flux, and hence vanishing cycles, but its effect on the D(p+2)-brane is to switch off the flux of the

gauge field strength. As a result the D-brane would now really have vanishing tension, in agreement

with what happens in the original description in terms of NS 5-branes.
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4 Small Radius Limit and the Fate of the Descent Relations

Let us now take the limit [5]

R → 0, g → 0, g̃ ≡ g

R
fixed , (4.1)

and define new coordinate

ỹ =
y

R
, ~̃r =

~r

R
, (4.2)

in the original theory. In this limit eqs.(2.1), (2.3) take the form

ds2 = ηµν dx
µdxν + h(~̃r, ỹ)(dỹ2 + d~̃r

2

) , e2Φ = g̃2 h(~̃r, ỹ) , (4.3)

h(~̃r, ỹ) =
k

2r̃

sinh r̃

cosh r̃ − cos ỹ
, r̃ ≡ |~̃r| . (4.4)

In this coordinate system the BPS Dp-brane in unstable equilibrium is situated at ~̃r = 0, ỹ = π. The

formulæ (2.8) for the tension and the tachyon mass2 of this G-type brane take the form [5]:

τp =
2√
k
g̃−1 Tp , m2

T = −1

k
. (4.5)

On the other hand in this limit eq.(2.13), describing the tension and tachyon mass2 of the U-type

brane, – a D(p+1)-brane wrapped along ỹ, – reduces to

τ ′p =
√

2 g̃−1 Tp , m′2
T = −1

2
. (4.6)

Finally the dual ALF space itself reduces to CC2/ ZZk in this limit since the size R̃ = 1/R of the

space goes to ∞. The string coupling in this dual theory is given by g/R = g̃.

Again (4.5) can receive α′ corrections. For finite k these corrections can be of order unity. However

for large k eq.(4.5) still remains a valid approximation. To see this let us define new coordinates

ŷ =
√
k ỹ, ~̂r =

√
k~̃r , (4.7)

and express (4.3), (4.4) as

ds2 = ηµν dx
µdxν + ĥ(~̂r, ŷ)(dŷ2 + d~̂r

2

) , e2Φ = g̃2 k ĥ(~̂r, ŷ) , (4.8)

ĥ(~̂r, ŷ) ≡
√
k

2 r̂

sinh(r̂/
√
k)

cosh(r̂/
√
k) − cos(ŷ/

√
k)
, r̂ ≡ |~̂r| . (4.9)
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From this we see that for large k the function ĥ is a slowly varying function of ~̂r and ŷ near r̂ = 0,

ŷ = π
√
k. Hence we expect the higher derivative corrections to the solution to be small in this region

and the results given in (4.5) should be reliable.

Given that eq.(4.5) can be trusted for large k, we can now compare it with (4.6). We see that the

tension of the G-type brane is less than that of the U-type brane, and hence (σ invariant) tachyon

condensation on the G-type brane cannot take us to the U-type brane. This is qualitatively different

from what happens in the absence of NS 5-branes; in that case below a critical radius the G-type

brane becomes heavier than the U-type brane, and winding tachyon condensation on the former takes

it to the U-type brane. In fact in this case we expect the reverse to be true, namely the large radius

result that σ invariant tachyon condensation on the y wrapped non-BPS D(p+1)-brane takes us to

a BPS Dp-brane placed at y = πR (plus an anti Dp-brane with vanishing tension at y = 0) should

continue to hold all the way to the small R region. For this we require a σ invariant tachyonic mode

on the y-wrapped D(p+1)-brane. This will happen if the total length of the y-circle, measured in

the string metric, is large compared to the string length so that the usual tachyonic kink solution

satisfying T (y) = −T (−y) still exists on this circle. We see from the metric (4.3) or (4.8) that this

is the case for large k.8

One can give a physical picture of this situation as follows. For small R and large |~r| where the

effect of the NS 5-branes is small, a Dp-brane D̄p-brane pair placed at y = πR and y = 0 respectively

has higher tension than a D(p+1)-brane wrapped along y, and the former can decay into the latter

via tachyon condensation. This is the usual situation in the absence of NS 5-branes. As we approach

the NS 5-branes by reducing |~r|,, the tension of the latter remains constant, while the total tension

of the former configuration decreases due to the decrease in the value of eΦ. At a certain critical

distance away from the NS 5-branes the former configuration will have less tension than the latter

configuration, and the D(p+1)-brane wrapped along y becomes unstable against possible decay into

a Dp-brane D̄p-brane pair placed at y = πR and y = 0.

An interesting question is: what happens for low values of k? We shall explore this in §5 and §6.

5 Comparison of Different D-branes for Low k

So far we have introduced different types of unstable Dp-brane system in the background of k NS 5-

branes of type IIA/IIB string theory with a transverse circle, or equivalently in the dual type IIB/IIA

8Naively for any k the length is infinite due to the infinitely long throat near y = 0. However we cannot trust the
calculation for finite k due to large α′ corrections.
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string theory on ALF spaces, and explored how in certain cases tachyon condensation on one type

of brane can take us to another type of brane. We now look for possible relationship between these

unstable D-branes that does not involve tachyon condensation. Of these the relationship between

the U and S type D-branes is easy to comprehend. If we begin with a configuration where the NS

5-branes are separated along the y direction, then the boundary state of the U-type D-brane at

~r = 0, describing a non-BPS D(p+1)-brane wrapping the y circle, should coincide with the sum of

the boundary states of k different S-type branes, each connecting a given NS 5-brane to its immediate

neighbour. When the NS 5-branes coincide, (k−1) of the S-type D-branes collapse to zero size in the

y direction whereas the remaining D-brane describes a S-type brane stretching all the way around the

y circle. The collapsed D-branes correspond to tensionless non-BPS Dp-branes carrying no charge or

tension, and up to these tensionless branes, the U and S type branes can be identified in this case.

In the dual ALF geometry this would mean that the boundary state of a non-BPS D(p+2)-brane

wrapped on a vanishing cycle carrying one unit of gauge field strength flux through the cycle should

coincide with that of a non-BPS Dp-brane upto addition of boundary states describing non-BPS

tensionless branes.9

Unfortunately, comparison between these and the G-type unstable Dp-brane is plagued by the

lack of understanding of α′ corrections to (2.8), (4.5). First of all the formulæ (2.8) are most likely

going to be modified by α′ corrections; there does not seem to be any symmetry at finite R that

protects these results from α′ corrections. This still leaves open the possibility that the zero radius

formulæ (4.5), which can be argued to be valid for large k, may be exact. In fact this also cannot

be strictly true for all k; for k = 1 the eq.(4.5) gives a tachyon mass2 less than −1/2, requiring a

negative dimension matter sector operator for the construction of the corresponding vertex operator.

Since this is not possible in a unitary theory, we expect (4.5) to be modified for k = 1. In §6 we shall

use the description in terms of tachyon effective potential to suggest a mechanism that could modify

the result for k = 1 without modifying the results for k ≥ 2. This will essentially involve the G-type

D-brane for k = 1 undergoing a second order phase transition at a finite radius, below which it gets

identified with the U-type D-brane.

If we do assume that eqs.(4.5) do not get modified under α′ corrections we find that for k = 2 the

tachyon mass2 given in (4.5) and (4.6) are identical [5] and furthermore the tensions given in (4.5)

and (4.6) also agree. This is an unexpected result since both in the original geometry and in the dual

9Since a CFT whose target space has Ak−1 singularity is singular one may worry about the meaning of boundary
state in this context. We can however make sense of these statements by beginning at the orbifold point where half
unit of B-flux is switched on through the various cycles [31, 32] and then considering the limit where these fluxes are
turned down to zero.
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geometry these D-branes are represented by different kinds of objects. In the original geometry one

is a BPS Dp-brane placed at a given point on the circle while the other is a non-BPS D(p+1)-brane

spread over the circle. In the dual geometry one is a BPS D(p+1) brane wrapped on the equator

of a vanishing 2-cycle, whereas the other can be represented either as a non-BPS Dp-brane or as

a non-BPS D(p+2)-brane wrapped on the vanishing 2-cycle with magnetic flux. However since the

string world-sheet theory is strongly coupled in this case, neither of these geometric intuitions can be

trusted, and if it turns out that there is an underlying non-renormalization theorem for eq(4.5), then

it would be a strong indication that the G- and the U- type branes are identical in this case, with

the geometric tachyon on one playing the role of the usual open string tachyon on the other. Since

for large radius R of the transverse circle the G-type D-brane can be considered as the tachyon kink

solution on the U-type brane, the above result can be interpreted as the merger of the tachyon kink

solution and the trivial solution describing the original unstable D(p+1)-brane into a single solution

at R = 0. In §6 we shall discuss what this means for the tachyon effective potential that governs the

formation of y-dependent tachyon kink on the U-type brane.

The above result, if correct, would identify the usual non-BPS Dp-brane placed in an A1 singular

geometry to a BPS Dp-brane placed diametrically across 2 NS 5-branes on a transverse circle in the

dual geometry. This may not sound very exciting since we may not care about non-BPS Dp-branes

in singular spaces; however recall that the interesting part of dynamics of the open string tachyon

describing the tachyon vacuum, the rolling tachyon, or the formation of the tachyon kink along any

of the p spatial directions tangential to the Dp-brane is universal and independent of the background

geometry of the transverse space in which the Dp-brane is placed [24, 25, 33, 34]. Thus identifying

the open string tachyon with the geometric tachyon in this system will give a geometric description

of most of the interesting phenomena involving tachyon condensation on a non-BPS Dp-brane in flat

space-time background.

Note that even when the tensions associated with two configurations become identical, they could

be related by marginal deformation instead of being identical. This is what happens for D-brane

systems in the absence of NS 5-branes [2,14]. However since marginal deformation typically changes

the spectrum of open strings on the brane, it would not explain why the tachyon mass2 on the

two types of branes agree. In any case existence of a marginal deformation connecting the two

configurations is a highly non-generic situation since it requires the tachyon potential to develop a

flat direction. It is much more likely for two solutions to merge at a given point in the space of

external parameters, as was demonstrated in a closely related example in [15].

It is also instructive to compare the properties of different types of branes when the NS 5-branes
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are separated from each other. For simplicity we shall consider the case of k = 2, with one NS 5-brane

at (~̃r = ~0, ỹ = c) and the other NS 5-brane at (~̃r = ~0, ỹ = 2π− c). Since the U-type branes wrap the

whole ỹ-circle, their properties are not affected by this move and their tensions and tachyon mass2

continue to be given by (4.6). For the S-type brane, ı.e. non-BPS D(p+1)-brane stretched between

the two five branes, we get from (2.14):

τ ′′p =
√

2 g̃−1 Tp

(
1 − c

π

)
, m′′2

T = −1

2
. (5.1)

On the other hand we can calculate the tension and the tachyon mass2 on a BPS Dp-brane at ỹ = π

with the help of eqs.(2.5)-(2.7), and get, in the scaling limit (4.1):

τp =
√

2 g̃−1 Tp cos
c

2
, m2

T = −1

2
(2 − cos c) . (5.2)

We see from (5.2) that for c 6= 0 we have m2
T < −1

2
. Since such a tachyon will require a negative

dimension matter sector vertex operator this formula certainly needs to be modified. In §6 we shall

suggest a mechanism for this modification that is similar to the one that modifies the result for the

k = 1 case.

One might have hoped that study of D-brane boundary states in a closely related background

describing the throat geometry of coincident 5-branes [35, 36] could shed some light on the possible

relationship between the G and U/S type branes described here. However as can be seen from (4.3),

(4.4), the background describing this system for any given k (say k = 2) has no free parameters

except the string coupling constant g̃ on which the world-sheet conformal field theory has trivial

dependence. Thus we cannot try to analyze this problem with the help of any ‘nearby’ conformal

field theory; we really need to solve the problem exactly in the conformal field theory of interest.

6 A Second Order Phase Transition for k = 1?

For k = 1 we have a single NS 5-brane and there is no distinction between the U and S type branes.

Both of them correspond to an unstable Dp-brane sitting at the center of Taub-NUT in the dual

description. The G-type branes are however quite mysterious since unlike in the case of multiple

NS 5-branes, in this case the dual geometry does not have a 2-cycle and hence we cannot wrap a

BPS D(p+1)-brane on the equator of the 2-cycle. Thus these must be some new kind of non-BPS

Dp-brane configuration sitting at the center of the Taub-NUT space. A natural question is: what

happens to this Dp-brane in the flat space limit?

Since this is an important issue it will be useful to review the steps leading to this question:
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1. We consider a single NS 5-brane of type IIA/IIB with a transverse circle, and place a BPS Dp-

brane, with its world-volume parallel to that of the NS 5-branes, at a diametrically opposite

point on this transverse circle. All other transverse coordinates of the brane are taken to

coincide with that of the 5-brane. For large radius of the transverse circle we expect this state

to exist since α′ corrections are small. Hence it must also have an appropriate description

in the T-dual Kaluza-Klein monopole background in type IIB/IIA theory even though this

background is highly curved in this regime.

2. We now tune the string coupling and the radius of the circle transverse to the 5-brane to

zero keeping their ratio fixed. In the dual description this corresponds to taking the size of the

Kaluza-Klein monopole to infinity, keeping the string coupling constant fixed. This gives rise to

flat space-time. The BPS Dp-brane parallel to the NS 5-brane in the original description should

get mapped to some Dp-brane in type IIB/IIA in flat space-time in the second description. This

is the D-brane we want to study.

We can think of several possible scenarios:

1. It describes a genuinely new unstable Dp-brane in flat space-time with finite tension and tachyon

mass2.

2. α′ correction to (2.8) drives the tension to zero or infinity. In this case the ‘new’ Dp-brane does

not really exist as an independent object in the spectrum.

3. In the flat space limit the brane spreads out over the whole space and does not correspond to

a localized Dp-brane with finite tension.

4. The new non-BPS Dp-brane is in fact identical to the usual non-BPS Dp-brane, and the formulæ

given in (4.5) are modified for k = 1 to those given in (4.6). This amounts to saying that the

G and the U-type branes become identical in the R → 0 limit.

It is tempting to speculate that the fourth possibility holds. In that case we shall have a direct

geometric interpretation of the open string tachyon on a non-BPS D-brane in flat space-time in

terms of the geometric tachyon on a BPS D-brane situated at a point of unstable equilibrium in a

dual geometry. We shall now present some observations which indicate that this is a likely possibility.

• Let us express the formulæ for the tension and the tachyon mass2 on this brane given in (2.8)

in terms of the variables natural to the dual geometry, ı.e. g̃ and R̃ given in (3.3). This gives:

τp = 2 g̃−1 Tp (4R̃−2 + 1)−1/2, m2

T = − 1

(4R̃−2 + 1)2
. (6.1)
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Thus at small R̃ where the formula can be trusted, τp and |m2
T | start at small values but begin

increasing as we increase R̃. Thus it is not inconceivable that as we increase R̃ to ∞, the values

of τp and m2
T approach the tension

√
2 g̃−1 Tp and tachyon mass2 −1/2 of a usual non-BPS

Dp-brane in flat space-time.

• Since the geometric tachyon on the G-type brane changes sign under the transformation σ given

in (2.4), the corresponding tachyon in the T-dual description must also change sign under the

image of σ given in (3.5). The tachyon on the usual non-BPS Dp-brane in Taub-NUT space is

also also odd under this transformation. This can be seen either by working in the NS 5-brane

background as discussed in §2, or directly in the Taub-NUT geometry due to the presence of

the (−1)FL factor in (3.5). Furthermore, we have also seen that for large R, ı.e. small R̃, the

G-type brane can be regarded as a σ invariant tachyon field configuration on the U-type brane.

Thus it is natural to expect that by following this field configuration from small R̃ to large R̃

the two types of branes can be related by a σ invariant field configuration even for large R̃.

Now if we take the usual non-BPS Dp-brane, ı.e. the U-type brane in the R̃ → ∞ limit,

then the requirement of σ invariance removes the tachyonic mode. Thus all σ invariant field

configurations on this brane will have higher tension than the tension of the original brane.

This would imply that the ‘new’ Dp-brane must be represented by a classical field configuration

on the usual Dp-brane of positive energy density. Furthermore this solution must be invariant

under the p + 1 dimensional Poincare group acting on the Dp-brane world-volume since the

‘new’ Dp-brane is manifestly invariant under these symmetries. Such a field configuration

would essentially require a configuration of constant scalar fields. While we cannot rule out

the existence of such solutions, it will certainly be more natural if the ‘new’ Dp-brane turned

out to be the usual non-BPS Dp-brane. Note that this argument is special to the k = 1 case;

for k ≥ 2 the usual non-BPS Dp-brane is placed in a singular geometry, and there may be

additional σ invariant tachyonic mode on this brane which could condense and take us to a

lower energy density configuration. Indeed we have argued in §4 by working in the NS 5-brane

description that at least for large k such σ invariant tachyonic modes are present on this brane.

We shall now present a concrete analysis using the language of tachyon effective potential to

determine under what condition we can identify the ‘new’ and the ‘usual’ non-BPS Dp-branes. Let

us begin with a single NS 5-brane with a transverse circle of radius R. At large R, the G-type

D-brane – a Dp-brane placed at y = πR – is definitely lighter than the U-type D-brane – a non-BPS

D(p+1) brane wrapped along the y direction, and we know that there is a σ invariant tachyonic

22



mode on the latter configuration whose condensation produces the former configuration. In fact

since the circle size is large we expect many σ-invariant tachyonic modes. We shall assume that

the spectrum is discrete. This may sound unreasonable from the point of view of the NS 5-brane

description since the D(p+1)-brane has an infinite length along the y-direction due to the infinite

throat near the NS 5-brane. However from the point of view of the dual Taub-NUT geometry we have

a Dp-brane sitting at the centre of a non-singular geometry, and there is no reason why we should

have a continuous spectrum.10 As we reduce the value of R, the modes of the tachyon begin acquiring

positive contribution to their mass2, and eventually all σ-invariant tachyonic modes become massive

in the R → 0 limit since in the dual description we have a non-BPS Dp-brane sitting at the origin

in flat space time with no σ-invariant tachyonic mode. We shall begin our analysis in a range of

values of R where all but one σ-invariant tachyonic mode have become massive, and furthermore the

magnitude of the mass2 of this remaining tachyon is small compared to the string scale. In this region

it should be possible to integrate out all other modes of the tachyon and define a tachyon effective

potential V (φ) for this single mode φ. The U-type brane will correspond to the local maximum of

the potential at φ = 0. On the other hand the G-type D-brane (D̄-brane) should be described by

some other local extrema at ±φ0 of V (φ) unless they have already merged with the U-type brane by

this time. If we reduce the value of R further, then below some critical radius Rc the mode φ also

becomes massive. Our goal will be to explore the fate of the G-type brane during this transition.

φ, being a mode of the open string tachyon on a non-BPS D-brane, is odd under (−1)FL. Thus

the effective potential V (φ) must have φ→ −φ symmetry. First let us examine what would happen

if V (φ) were a quartic potential of the form

V (φ) =
1

2
a(R)φ2 +

1

4
b(R)φ4 , b(R) > 0 . (6.2)

Now we know that for R > Rc, a(R) must be negative because the field φ is tachyonic. Hence besides

the maximum at φ = 0, (6.2) admits two minimia at ±φ0 with

φ0 =
√
−a(R)/b(R) (6.3)

which we can identify as a BPS Dp-brane or D̄p-brane placed as y = πR. As we reduce R, a(R)

vanishes at the critical radius Rc. At this radius φ0 vanishes and the G and U type branes become

identical.11 As we decrease R further a(R) becomes positive and the two solutions continue to be

10Nevertheless we must admit that many aspects of this conformal field theory are not understood and there may
be subtle effects which invalidate our analysis.

11In the absence of NS 5-branes the point where a(R) vanishes the whole potential vanishes and the two types
of branes, instead of being identical, are related by a marginal deformation. However this is a highly non-generic
situation and we are implicitly assuming that the presence of NS 5-branes turns this into a generic situation [15].
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identical. Thus below this critical value of R there is no distinction between the G and U type branes.

Let us now consider the case of a general potential. We shall continue to denote by a(R) and b(R)

the coefficients of the quadratic and quartic terms in the potential. Thus again we have a(R) < 0

for R > Rc and a(R) > 0 for R < Rc. It is easy to see that a general potential will produce the same

results if the following conditions are satisfied:

1. For R > Rc the Dp-brane / D̄p-brane must correspond to the minima of the potential closest

to the origin and this feature should continue all the way to the critical radius where a(R)

vanishes. In other words the potential should not have any additional extrema corresponding

to new (unstable) D-brane configurations.

2. At the critical radius where a(R) vanishes, b(R) must be positive. For negative b(R), instead

of the minima at ±φ0 merging with the maxima at 0, there will be new maxima developing

around φ = 0 as R goes below the critical radius.

We see that if either of the above conditions is violated then there will be new unstable D-branes in

the spectrum of the theory. Thus the most economical solution is to have the minima at ±φ0 merge

with the maximum at φ = 0 at the critical point.

If the picture described above is correct then it would seem that certain discrete symmetry

associated with φ → −φ transformation, which was broken at the vacua φ = ±φ0, is being restored

below the critical value of R. Can we identify this symmetry? In fact this is just the (−1)FL

symmetry. Above the critical value of R the non-BPS D(p+1)-brane wrapped along y, represented

by the solution φ = 0, is (−1)FL invariant, but neither a BPS Dp nor a BPS D̄p-brane situated

at the point y = πR, represented by the solutions φ = ±φ0, is invariant under (−1)FL. If the

picture described above is correct, then it would imply that below the critical value of R a BPS

Dp and a BPS D̄p-brane situated at the point y = πR describe identical configurations and become

(−1)FL invariant. This in particular will imply that the Ramond-Ramond part of the boundary state

describing the G-type branes should vanish below the critical value of R.

Note that this analysis also applies to other values of k except that the potential will have different

behaviour in those cases.12 For large k the analysis of §4 shows that a(R) remains negative as R → 0

and hence the solutions describing the two types of Dp-branes remain distinct. If we believe that

eqs.(4.5) are not renormalized then this should continue to hold till k = 3, so that the G-type brane

12Since for two or more coincident NS 5-branes the dual geometry is singular, we cannot apply the previous argument
for the existence of an effective potential. However one can carry out the analysis by first separating the NS 5-branes
in a σ-symmetric fashion and at the end of the analysis take the coincident limit.
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always remains lighter than the U-type brane. On the other hand for k = 2, a(R) should vanish

precisely at R = 0 so that the two types of branes become identical at that point.

This analysis also suggests a mechanism that would modify the results (4.5) for k = 1 without

modifying them for k ≥ 2. This happens essentially because for k = 1 the G-type D-brane undergoes

a second order phase transition at the critical radius Rc. For R < Rc these D-branes merge with

the U-type D-branes and hence the relevant formulæ to use are those in (4.6). A naive analytic

continuation of the results from the R > Rc region will give us the corresponding quantities for the

unphysical (complex) solutions. The same reasoning should apply for the unphysical answers gotten

in (5.2) for the G-type D-brane in the presence of a pair of separated NS 5-branes. Since at zero

separation c the branches describing the G and U/S type D-branes meet exactly at R = 0, it is quite

likely that for non-zero c the branches will meet at non-zero R and the G-type D-brane will encounter

a second order phase transition where it merges with the S-type D-brane. Below this critical radius

the relevant formulæ are those given in (5.1). Thus in the (R, c) plane there will be a line of second

order fixed points passing through the (R = 0, c = 0) point. In fact this phase transition is not

disconnected from the one we encountered in the k = 1 case. For c = π/2 the configuration of

the pair of NS 5-branes is just the double cover of the k = 1 configuration, and the G and S type

D-branes sees background identical to the G and U/S type D-branes in the k = 1 case. Thus at

c = π/2 the line of critical point in the (R, c) plane should reach the k = 1 critical point R = 2Rc,

the factor of 2 accounting for the fact that the configuration for k = 2 is the double cover of the

configuration for k = 1. The same reasoning can also be applied to the case of k NS 5-branes. In

this case we should have a codimension one critical surface in the full moduli space labelled by the

radius R and the possible separation of the NS 5-branes maintaining the σ symmetry. This critical

curve does not pass through any physical value of R when all the branes are coincident, but passes

through the point R = kRc when the k NS 5-branes are situated as equal intervals 2πR/k along the

transverse circle.

If the non-renormalization theorems are violated, then the precise details of the critical surface

will be different from the one given above. However we would expect the general features to remain,

assuming that the quartic term in the tachyon effective potential for k = 1 has the correct sign.

In this case we can start at the critical point corresponding to R = kRc and equally separated NS

5-branes, and follow its fate in the moduli space of NS 5-brane configurations.

If it turns out that the non-renormalization theorems do hold, and the identification of the

non-BPS Dp-branes with geometrically unstable Dp-branes in the T-dual theory hold both for two

coincident NS 5-branes as well as a single NS 5-brane at R = 0, then we have two possible description
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of the open string tachyon on a non-BPS D-brane as a geometric tachyon. Which one is more useful?

Our first thought may be that the k = 1 case is more useful because it lands us directly on non-BPS

Dp-branes in flat space-time. The reverse however is true. For the k = 1 case we have seen that

even if our picture of branch merger holds, there is a switch of branch for the geometrically unstable

D-branes at the critical radius. In particular if we had made a naive analytic continuation of various

physical quantities of this system to values of R below the critical value, we would get the wrong

answer because it will land us into the wrong branch of (possibly complex) solutions which do not

correspond to any physical D-brane. On the other hand if for k = 2 the two branches precisely meet

at R = 0, then all the universal properties of the tachyon on the non-BPS Dp-brane can be derived

by analytic continuation of the results for the geometrically unstable Dp-brane to R = 0.

One aspect of this correspondence may seem puzzling. One might wonder how the boundary state

of a Dp-brane that is localized at y = πR could coincide with that of a D(p+1)-brane that spreads

out along the y circle. This however is not a serious problem since the tidal forces on the Dp-brane

due to the y dependent dilaton will tend to spread out the boundary state away from y = 0. Indeed

this has been observed even in simpler cases of hairpin brane boundary state [37, 38] where we have

a linear dilaton background.

7 Discussion

In this paper we have argued that under certain conditions a BPS D-brane with geometric instability

due to being placed at a saddle point of the potential may be identified with a non-BPS D-brane with

the usual tachyonic instability. This would give a geometric interpretation of the usual open string

tachyons. It will be interesting to see if this geometric picture can provide some insight into the

analytic solutions of string field equations describing the tachyon vacuum and various solitons, – a

problem whose bosonic counterpart has only been solved recently [39–47]. Another aspect of tachyon

condensation where the present analysis may throw some light is vacuum string field theory [48], –

string field theory around the tachyon vacuum. For a geometrically unstable D-brane the tachyon

vacuum represents a D-brane sitting at the core of an NS 5-brane. This may provide some insight

into the nature of the open string tachyon vacuum.
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