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Abstract

For a general three dimensional theory of (super-)grawtypted to arbitrary matter fields
with arbitrary set of higher derivative terms in th#eetive action, we give an algorithm for
consistently truncating the theory to a theory of pure (s)geavity with the gravitational sec-
tor containing only Einstein-Hilbert, cosmological camst and Chern-Simons terms. We also
outline the procedure for finding the parameters of the @itedt theory. As an example we
consider dimensional reduction &% of the 5-dimensional minimal supergravity with curva-
ture squared terms and obtain the truncated theory withgutarvature squared terms. This
truncated theory reproduces correctly the exact centeabehof the boundary CFT.
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1 Introduction

Three dimensional (super-)gravity with negative cosmmiaigconstant has played an important
role in the study of black holes in string theory [1-3]. Thedhies relevant for string theory
however are not theories of pure (super-)gravity but (sdgevity coupled to other matter
fields containing higher derivative terms. In the absenagloér matter fields the higher deriva-
tive terms in the action can be removed by field redefinitioth #a@ action may be reduced to
the standard (super-)gravity action whose gravitatiomat pontains a sum of three terms, —
the Einstein-Hilbert term, a cosmological constant term e Chern-Simons term [4,5]. An
argument based on A@SFT correspondence suggests that even when matter fielgsement
one can carry out a consistent truncation of the theory wbehg (super-)gravity is present,
and action is again that of standard (super-)gravity whoaeitgtional sector is given by the
sum of three terms [6]. The main ingredient of this argumead tiat in the dual two dimen-
sional (super-)conformal field theory living at the boundaf AdS; any correlation function
with one matter field and arbitrary number of (super-)sttessor vanishes, and furthermore
the correlation functions of the (super-)stress tensodatermined completely in terms of the
central charge and are independent of the matter contemieatheory. One of the goals of
the present paper is to describe the consistent truncatemegure directly in the bulk theory
without any reference to AJSFT correspondence. A general analysis of consistentatior
to supergravity theory in general dimensions can be fouid+].

Although our analysis is classical, it can in principle belaa to the full quantumfgective
actionH However in our analysis we shall have to assume that thaligittion is local, 1.e is

LIf the theory admits aldS; solution we can define the quantufffieetive action to be the one whose classical
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given by an integral of a local Lagrangian density that admitlerivative expansion. Since in
general the full quantumfiective action can contain non-local terms, our analysisveit be
directly applicable on these terms. In contrast the arguin@sed on AAEFT correspondence
works for the full quantum correctedfective action.

After consistent truncation and field redefinition that gerhe action to the standard form,
the parameters labelling the action are the cosmologicastent and the cdicient of the
Chern-Simons term. Of them the Chern-Simons term does rawtgehunder the field redefini-
tion required to bring the action to the standard form butthe@mological constant term is mod-
ified. In theories with extended supersymmetry the cosmcébdgonstant can be determined
from the codicient of a gauge Chern-Simons terms [10] which also doesetaegormalized
under the field redefinition; however in general we need terdghe the cosmological constant
explicitly. We describe a simple algebraic procedure faeduaining the cosmological constant
of the final theory in terms of the parameters of the origimioa.

Finally we apply our method to the analysis of the three disimmal gravity that arises from
the dimensional reduction @&r of five dimensional supergravity with curvature squaredeor
tions [11] and calculate the cosmological constant of tha fimeory after the field redefinition
that brings the action to the standard form. In this casehltbery has a (0,4) supersymmetry
and the expected value of the cosmological constant carupel foy relating it to the cdaicient
of a gauge Chern-Simons term [10, 12]. One can also infeoiihfthe results for the black hole
entropy in these theories computed in [13—-15]. The resuhl@géxplicit calculation agrees with
these predictions.

2 Field Redefinition of the Bosonic Fields

In this section we shall describe how the bosonic part of adsdgravity action coupled to
matter fields and containing higher derivative terms canrbaght into the form of a standard
supergravity action via field redefinition and consisteahtation. We begin with a three di-
mensional general coordinate invariant theory of graviypied to an arbitrary set of matter
fields. We denote by,, the metric, byp the set of all the scalar fields, ythe set of all other
tensor fields, byR,, the Ricci tensor associated with the megjcand byRthe scalar curvature.
At the level of two derivative terms, the action takes therfor

S0 + Smatter ’ (2 . 1)

boundary S-matrix reproduces correctly the full boundam&rix of the quantum theory.
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where
So= f X V=G (R+ Ao(9)). (2.2)

and Spater denotes the kinetic term for the matter fieldsAg(¢) represents the scalar field
potential. We have already carried out an appropriate m@tleh of the metric to remove
a possiblep dependent function multiplyin® in the Einstein-Hilbert term. I#Ay(¢) has an
extremum at = ¢, then this theory has a solution whefes set equal t@y, all other tensor
fields are set to zero, and the metric is given by that ofd; space of sizéy = /2/Ao(¢o)
for Ao(¢o) > 0 and adS; space of sizéy = +/—2/Ao(do) for Ao(do) < O. In this caseo(so)
corresponds to theegativeof the cosmological constant.

We shall now consider thefect of adding higher derivative terms. For this we shall assu
that these terms are small compared to the leading termeisdhse that the length parameter
Is that controls these terms is small compared to the lengtle §caver which the leading
order solution varie@.We shall also assume that we can associate with each higheatde
term in the Lagrangian density an indexhat counts how many powers kefaccompanies this
term compared to the leading term. For example if the threeedsional theory is obtained
via a dimensional reduction of type IIB string theory K8 x S* x S2 x AdS; with K3 andS?
having size of the order of string scale a®tland AdS; having large size, thes' corrections
as well as corrections coming from integrating out the heawogles associated witk3 x S?
compactification will have inder > 0, whereas all the terms associated with compactification
of supergravity or52 x AdS; — including the ones involving massive Kaluza-Klein modes —
will have index 0. An éicient way to keep track of the derivative expansion is tooiitice a
derivative counting parametdrand accompany a term of indexboy a factor ofA". We shall
carry out our analysis in a power series expansiohaxen though at the end we shall get 1.

Since in three dimension the Riemann tenRgy,, can be expressed in terms of the Ricci
tensor, all the higher derivative terms can be expressesnmstof the Ricci tensor, its covariant
derivatives and covariant derivatives of the matter fielde. shall now reorganize these terms
as follows.We first note that undgf, — 9., + 69,,,

Sp— Sg— f d*xv/=g P*5g,, + O(6g?), (2.3)

20ften the three dimensional theory is obtained from dimamaireduction of a higher dimensional theory on a
compact space of size of ordgr In this case if we integrate out the Kaluza-Klein modes walgfenerate higher
derivative terms which are not suppressed by powels db avoid this situation we include all the Kaluza-Klein
modes in the seX without integrating them out.



where

1
P;zv = R;Av - E(R + A0(¢))guv . (24)
Defining
_ 13
P =P} =~5R-SAd0) (2.5)
(2.4) can be rewritten as
R#V = P,HV - (P + AO(¢))gyv . (26)

We now eliminate the variablés,,, R and their covariant derivatives in higher derivative terms
by P,,, P and their covariant derivatives.
In this convention the most general action takes the @)rm:

S = SO + /l SCS + gmatter + /ln Sn . (2.7)

Sp is given in [2.2).1 S¢s is the gravitational Chern-Simons term

Ses= K f dBxQ¥m),  Q¥I) = & %r;(,avr;; + %r;(,r;’,(r; , (2.8)
whereK is a constant and,, denotes the Chrisffel symbol. Note that we have included a
factor of 2 in Scs since in string theory the gravitational Chern-Simons teéypically arises
from o’ corrections. Spaer denotes the matter terms (including the standard kinetioge
which arequadratic and higher order iX, derivatives ok and derivatives op. A" S, denotes
all other terms, 1.e. manifestly general coordinate ir@rierms up to linear order i, 0,¢
and their derivatives, but not terms of the fofmF’x v—9 R f(¢) since they can be included in
So. Most general higher derivative terms in the action will éake form given in[(Z]7) with
n = 1 but for later use we have allowed for the fact that the highesivative terms which
cannot be included iy, Smatter OF ASes may actually begin their expansion at ordér It
is easy to see th&, must contain least one power Bf,, since theP,, independent terms
which do not involvez, d,¢ or their derivatives can be absorbed inig{¢) andP,, independent
terms which are linear i&x, d,¢ or their derivatives either vanish or become quadratiZ,in
d,¢ or their derivatives after integration by parts and hencg tmaincluded iNSiatter. AN
alert reader may worry about special cases where a symmaik tensoA,,, has a coupling

3During the process of replacirig,, by the right hand side of{2.6) we may generate some termsedfotim
fd3x V=0 f(¢). Since these cannot be absorbed BlQuer OF Sy, We need to absorb them into the scalar field
potentialAq(¢) appearing insid&,. ThusAg(¢) needs to be determined in a self-consistent manner. Toraey o
in power series expansion inthis can be done using an iterative procedure.
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proportional to /=g fi(¢) g’A,, or an antisymmetric rank three ten€0f,, has a coupling
proportional tof,(¢) ¢°°C,,,. We can however avoid these situations by expressingas
Ag, + A, with A = g”A,, /3, andA/, a traceless symmetric matrix, adt},, asC(v/=0)€.,
with C = (/=0)!e**C,,,,/6, and treatingh andC as scalar fields. In this case these terms can
be included in the scalar field potential(¢) appearing irSy. ThusS, has the form

S, = f XATG PK o (s Z, Vs Gors Prors A) 2.9)

whereK,, is some combination of matter fieldB,, and their covariant derivatives, and can
contain non-negative powers of
Now consider a redefinition of the metric of the form

O = O + 'Ky, (2.10)
Under this
So— Sp— A" f d*xy=g PK,, + O(1™) = S — 1"S,, + O(4™"), (2.11)
Scs = Ses+ O(/lml) , (2.12)
and
A"S, —» A"S, + 0(1%). (2.13)
Thus
So+ AScs+ A"Sy — Sg + A Ses + O(A™Y). (2.14)

Furthermorématter remains quadratic iB, d,¢ or their derivatives under this field redefinition.
The ordera™! term on the right hand side df(2]14) can now be regroupedartaym of the
form /=g f(¢) that can be absorbed into a redefinitionAef{¢), a term quadratic iX andd¢
that can be absorbed in@atter(qb) and a term containing at least one powePjp. Thus the

resulting action may be expressed as:
S =S} + AScs+ Slaer + A St (2.15)

matter

where

S = f PxVTG(R+ AY(@)). (2.16)

S/ . CONtains terms which are quadratic and higher ord&ramd derivatives of, £ and
Shi1 = f PxyV=gP"K/, (6, Z. V,, Goors Ppors A) (2.17)
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for someK/ . Thus the new action has the same form as our starting acttomweplaced by
n + 1. Repeating this process we can ensure that to any fixed oréer expansion inl, the
action can be brought to the form:

S= deX \/—_g(R + A(9)) + AScs + gmatter, (2.18)

for some choice ol\(¢) andSater.
Now supposeé\(¢) has an extremum &t = ¢,. Introducing new fieldg = ¢ — ¢, we may
express the action as

S= f d*XxV=g(R+ A(¢o)) + AScs+ - - - , (2.19)

where- - - contain terms which are at least quadrati&,&@ and their covariant derivatives. We
can now carry out a consistent truncation of the theory byngef = 0, X = 0. This leaves us
with a purely gravitational action with Einstein-Hilbedrtn, cosmological constant term and
Chern-Simons term.

If the theory contains a 2-form fielB with gauge invarianc® — B + dA then we can
consider a slightly more general truncation where instdagtiingB to zero we set it to have
a constant field strengt@ yv—ge,,,, for some constar. Let B denote the fluctuation around
this fixed background. Sindg+/—0e¢,,, is a general coordinate invariant tensor, and since the
Lagrangian density depends Bronly through the combinatio®),,, = C+/-g¢€,, + (dg)ﬂvp,
it depends ondﬁ)#vp in a manifestly general coordinate invariant fashion. Wetten proceed
with our analysis as before, includimjin the list of tensor fieldz.

If instead of considering a theory of gravity we considernéexied) supergravity theories,
then the theory contains additional fields. In particular aldditional bosonic fields in the the-
ory are gauge fields with Chern-Simons terms [16—20]. Thumder to show that a general
higher derivative supersymmetric theory admits a consistancation to a supergravity theory
we need to show that higher derivative terms involving high@vers of gauge fields can be
removed by field redefinition. This follows from the fact thaderA, — A, + 6A, the gauge
Chern-Simons term changes by a term proportionaltd r (FwdAp). Thus a term of the form
/l”f V-9 Tr(FWL/”) in the action may be removed (up to ordét terms) by a shift o\, pro-
portional toy/—ge,,,L"”. Following this procedure we can remove all terms invol\timggauge
fields other than the Chern-Simons term to any orde’anOnce this has been done, one can

4This assumes that all other terms in the action depend oratingedfield only througF,,, and not explicitlyA,,
I.e. there are no other charged fields on the theory. Thistia nestriction on the theory since these charged fields,



then carry out the field redefinition of the metric and the acéiklds as described earlier, and
obtain a consistent truncation to a theory of metric and gdigjds with gauge Chern-Simons
terms, Einstein-Hilbert term, cosmological constant tard gravitational Chern-Simons term.
Supersymmetry then relates the fiment of the gauge and gravitational Chern-Simons terms
to the cosmological constant term.

So far our analysis has been restricted to terms in the aictotving bosonic fields only. In
a supergravity theory we must also include the fermionicdéieind argue that higher derivative
terms involving the fermions may be removed by field redeaéinit We shall return to this
problem in§4.

3 Algorithm for Determining A(¢)

The analysis of the last section gives an algorithm for ¢agwut a field redefinition and con-
sistent truncation that gives a theory of pure (super-jgrasHowever for any given higher
derivative action this is a complicated procedure and onélahike to have a simpler algorithm
to determine the final truncated theory. Of the various patars labelling the final theory
the codficients of the Chern-Simons terms are easy to determine thiegedo not get renor-
malized from their initial values. On the other hand the comical constant term does get
renormalized during the field redefinition. In this sectioa shall outline a simple procedure
for finding the exaci\ (¢) appearing in(2.18) without having to carry out all the stdpscribed
in the last section. The cosmological constant of the finaddated theory can then be found by
determining the value ok(¢) at its extremum.

Suppose our initial action has the form

S:fd3x\/—_g$+/lscs. (3.1)

In anticipation of the fact that the final truncation invadv&etting the scalagsto constants and
other tensor fieldE to 0, let us consider a theory of pure gravity obtained byrsgi to 0 and
¢ to some constant values in (B.1). Thusan now be regarded as a set of external parameters

if present, can be set to zero in a consistent truncatiomselprovided the gauge symmetry is not spontaneously
broken. In the latter case the would be Goldstone boson iassdavith the symmetry breaking would mix with
the gauge field via a two point coupling and we cannot have aistamt truncation to pure supergravity.



labelling the action. We now consider a background

ds? = —12(1 + rA)dt? + 1(1 + r2)1dr? + 1%r2dy?,
¢ = constant =0, (3.2)

representing aAdS; space of sizé. If we define
F(,¢) = 2.2 (3.3)

evaluated in the background (B.2), then the metric satigfiexjuation of motion if is chosen
to be at the extremur,; of F. Furthermore F (lex, ¢) denotes the value of/—g £ evaluated
at the solution. Note that the term in the equations of matiotained from the variation of the
Chern-Simons term automatically vanishes for AtkS; metric (3.2) for any constart

Let us leave this result aside for a while and consider tha fairthe action obtained after a
field redefinition of the metric as described§B. After settingy to a constant and to 0, the
action [2.18) takes the form:

S= f d*xvV=g(R+ A(¢)) + AScs. (3.4)

If we evaluatey/—g (R + A(¢)) for the AdS; background[(3]2), we get a new functipHI (I, ¢)
with 5
H(l,¢) = I3 Tt A(¢)] : (3.5)

Now since we have carried out a field redefinition of the mditit not ofX or ¢, we expect
F(l, ¢) andH(l, ¢) to be related by a redefinition of the paraméttar any fixedqﬁH Hence the
values of these functions at the extremum must be the samee 8ie extremum dfl occurs

at,
- 2 ~ 32
lext = \/m, H(lex @) = —\/m, (3.6)

we get, by setting the right hand side bf (3.6 Rfey: ¢),

N (Iif ” (3.7)

SWe are implicitly using the result that during the processeafefinition of the metric the terms arising out
of the variation of the Chern-Simons term vanishes when tarimhas the form(3]12) and,¢ andX are set to
zero. This can be seen from the fact that in this case the ®eldfinition essentially rescales the metric. Since
I, remains unchanged under a rescaling of the metric and siedghern-Simons term is constructed entirely in
terms off,,, it does not change under such a field redefinition.
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providedF (lex, ¢) is negative. This determineég¢).

Eq.(3.7) might give the impression that this procedure géd@ads to a theory with positive
A, 1.e. with a negative cosmological constant. This is howeweartifact of the fact that we
have already assumed that the theory admité&@s; solution. It may so happen th&tl, ¢)
defined in[[3.B) has an extremum at an imaginary valuleaofd hencéd-(l, ¢) is imaginary at
the extremur@. This will give a negativeA(¢) and hence a positive cosmological constant. A
better way to analyze this case is to consider a de Sitteiawdtthe form

ds? = —12(1 - r?)d + 12(1 - r?) 1 dr? + IPr2 dy? (3.8)

instead of the anti-de Sitter metric given[n(3.2), and defin

(o) =12, (3.9)

evaluated in this background wighset to constants arkiset to zero. On the other hand (3.5)
is now replaced by

H(l,¢) = I°

l% + A(¢)] . (3.10)

and the value oIf-T(EqS) at the extremum with respectlt_ts given by y/—32/A(¢). Equating this
to the value of at its extremum we get:

32

Floe 7 (3.11)

Alg) = -
providedF (lex, ¢) is positive.
Finally we note that there is always a possibility that neitii(l, ¢) nor F_(Eqs) has an ex-
tremum for real values dfor I, or even if such extrema exist, the resulting functioi@@) does
not have an extremum as a functiongofin this case the theory under consideration does not
admit anAdS; or dS; solution and we cannot carry out the consistent truncattaviing the
procedure described above.

4 Higher Derivative Terms Involving the Gravitino

In the last two sections we have described how via a field neitiefa the bosonic part of the
supergravity action can be brought into the standard formceQhe bosonic part of the action

5Note that the metric and hengedepends only oif and hence is real even wheis imaginary.
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has been shown to coincide with that of the supergravitypoaadhe would expect that super-
symmetry will fix the fermionic part of the action uniquelyp(to a possible field redefinition
involving the fermions) to be that of the standard supeiiyaction. In this section we shall
briefly discuss how such a result might be proven.

We begin with an action where the purely bosonic part hasdyréoeen brought into the
standard form using the field redefinition describe§dh At the onset we shall assume that su-
persymmetry is unbroken at the extremggof A(¢); otherwise we expect the gravitino to mix
with the Goldstino and hence the matter and the gravity mpieltiwill no longer be decoupled.
This in turn requires\(¢o) to be positive since we do not have unbroken supersymmetig i
Sitter space. If the theory has altogetiéisupersymmetries then there ayegravitino fields
wL with 1 <i < N. In the supergravity action of [16—21] the gravitino acttaas the form:

SIE f d®x eyl D, (4.1)
where
. 1 . A . .
Dl = 00, + goanl W= [P eyyl + Tl (42)

w,ap being the spin connectior,, the vielbeins A the gauge fields an@® are the generators
of the representation of the gauge group in which the grasdtitransform. The (-) sign
correspond to the gravitinoes associated with left (rigl)ersymmetries. Under a general
variation of the gravitino fields

8SY = - f d*x e |6y, Doy, + hec.| (4.3)
leading to the gravitino equation of motion
D, - Dy, = 0. (4.4)
The supersymmetry transformation law of the gravitino Bdkikes the form
oy, = Dy €, (4.5)

wheree' are the supersymmetry transformation parameters.

We shall now examine the possibility of adding higher ddiweaterms in the action and
also possibly in the supersymmetry transformation lawd. usedenote by, the set of all the
bosonic and fermionic fields coming from the matter sectahwie scalars measured relative
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to ¢o (1.e. the sep contains the shifted fields introduced abové (2.19)). A higher derivative
term in the action which is quadratic or higher orderiis harmless since we can consistently
truncate the theory by setting= 0. Thus we need to worry about terms which are at most
linear inn or derivatives of;. We shall refer to these as the dangerous terms since, émtres
they will prevent us from consistently truncating the thetarthe one described by the standard
supergravity action. As i2 we shall organise these terms according to the power of the
derivative counting parametdrthat they carry. Let us suppose that the first dangerous highe
derivative terms in the Lagrangian density appear at otfledow any term that is proportional
to the equation of motion of the metric, the gauge fields orgtevitinos derived from the
leading supergravity action can be absorbed into a redefindf these fields at the cost of
generating higher order terms; thus we need to look for teviish do not vanish identically
when leading order supergravity equations of motion ansfgad. Using this we can remove
all the dangerous terms in the action which contain any pafeyauge field strength, the
combinatiorR,, + A(¢)g,,, and commutators of covariant derivatives. Thus the dangierms
may be expressed as general coordinate invariant and locahtz invariant combinations of
the gravitino fields, their symmetrized covariant deriwasiand the metric. We now consider all
the order?® dangerous terms and organise them by their rank, — definéx astal power of,,
and@ contained in that term. We begin with the terms of lowest ran&all it my. my cannot
vanish since we have already argued earlier that all theatang terms without the gravitino
field can be removed by field redefinition. (For this we neechtiuide in the sek of §2 all

the matter fermions as well.) For non-zerg the lowest order supersymmetry variation of the
gravitino described in_(415) has th&ect of producing a term of rankrg — 1), constructed
out of the gravitino fields, their symmetrized covariantigiives, the metric, and covariant
derivatives of the supersymmetry transformation paraméteorder for supersymmetry to be
preserved, such terms need to be cancelled by some othes. tdime terms arising from the
supersymmetry variation of the bosons in the original nagkerm are of rank- my and hence
cannot cancel the rankng— 1) term. Thus there are two possibilities: 1) the ramk-{ 1) terms
arising from the variation of the gravitino cancel amongniselves after we integrate by parts
and move all the derivatives from € to the fields, possibly after modifying the supersymmetry
transformation laws of the supergravity fields, and 2) wetcano cancel these terms against
terms coming from supersymmetry variation of the bosonsterra of rank (ny — 2). Of these
the first possibility would mean that the dangerous termsaagiant under the transformation
(4.8) of the gravitino alone up to terms which vanish by loi@gler supergravity equations
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of motionH To see if this is possible we first focus on the terms with maximmumber of
derivatives where all the covariant derivatives have bepfaced by ordinary derivatives in the
order A, rankmy term in the action. The net supersymmetry variation of thes@s under
the supersymmetry transformation ldw (4.5) must vanisér afsing the lowest order gravitino
equations of motior (414) wittD, replaced byj, in (4.5) and [(4.4), since this is the term in
0sS with maximum number of derivatives at this order. In thisecge gravitino satisfying its
lowest order equations of motion has the fagin= d,x', ¥, = 9,x' for somey', ¥'. Let us
evaluate the ordet, rankmy, term in the action in this background. By assumption theltésu
not identically zero, — otherwise we could have removedghesns from the action by a field
redefinition of the gravitino field. Now fog, = d,x', ¥/, = 9,x' the gauge transformation laws
of the gravitino field take the formp' — ' + €', x' — x' + €. Sincee' ande' can be taken to be
independent parameters we consider a situation where aglptthee' is not zero. Invariance
under supersymmetry transformation then tells us thateimne tinder consideration is invariant
undery' — x' + € for an arbitrary functiore'. In other words the term is independentyof
Repeating this argument we conclude that the term undeidemasion must be independent
of all y' andy™. Thus it must vanish since it vanishes when we set allythend y" to zero.
This contradicts our original assertion that the term dagvanish identically. This leads us to
the conclusion that the original ordef, rankm, term in the action, with covariant derivatives
replaced by ordinary derivatives, must have been such ftet suitable integration by parts
and commutation of the derivative operators it vanishesnwthe gravitino satisfies its lowest
order equation of motion.

How does the conclusion change when the ordinary derivatve replaced by covariant
derivatives? Since we know that the term can be manipulatddhown to vanish when co-
variant derivatives are replaced by ordinary derivatives,can carry out the same manipula-
tion. The only possible extra terms which could arise mugtrio@ortional to the commutators
[D,., D,] since the covariant derivatives can be manipulated in dneesmanner as the ordinary
derivatives except for their commutators. However thesematators can be reduced to terms
with lower number of derivatives using the lowest order msednd gauge field equations of
motion. We can now repeat our analysis on these left-ovardevith lower number of deriva-
tives and show that they must be further reducible to ternis leiver number of derivatives.

"The terms proportional to the lowest order equations of emotif the supergravity fields can be cancelled
by modifying the supersymmetry transformation laws of thpesgravity fields, since the additional variation
of the lowest order supergravity action under the modifigoessymmetry transformation laws will be a linear
combination of the lowest order equations of motion of tHexdds.
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Repeating this procedure we can show that a term that is@mtarnder the lowest order super-
symmetry transformation of the gravitino alone, must vlamis a consequence of lowest order
supergravity field equations, and hence can be removed blgadmefinition.

We now turn to the second possibility. This requires theoacto contain higher derivative
terms of orderi* and rank ny — 2). Since by assumption the action does not contain any
dangerous term of rankrg — 2) to order¥, the only possibility is to try to generate these
terms from the supersymmetry variation of a non-dangererns of rank (g — 2). In order
to rule out this possibility we need to make one assumptama consequence of unbroken
supersymmetry the matter sector fields transform to ternidhwdontain at least a single power
of the matter sector field.,e. we havégy ~ O(n)H In this case terms quadratic and higher order
in n transform to terms quadratic and higher orderiand cannot cancel terms which are at
most linear inp. This rules out the last possibility. Thus we see that it ispassible to add
higher derivative dangerous terms in the action in a manmesistent with supersymmetry.

5 Dimensional Reduction of Five Dimensional Supergravity

In this section we shall consider five dimensional supeityravith curvature squared term
coupled to a set of vector multiplets [11] and dimensionadigiuce this theory 082 in the
presence of background magnetic flux thro®jho get a three dimensional (0,4) supergravity
with curvature squared term, coupled to a set of matter fiaMsthen apply the procedure of
§2 and§3 to truncate this to a pure supergravity theory with graiiteal Chern-Simons term,
but no other higher derivative terms.

We shall concentrate our attention on the part of the actieolving the bosonic fields only.
In the three dimensional theory this involves the metric andSU(2) gauge field that arises
during the dimensional reduction of the five dimensionabtiieon S?>. As we have seen at
the end of§2, reducing the gauge field action to pure Chern-Simons tenmlatively simple;
hence we shall focus on the part of the action involving therime For this we can restrict
the fields to the SU(2) invariant sector from the beginninigc&the SU(2) R-symmetry of the
three dimensional supergravity can be identified with thatronal symmetry of the compact
S?, this allows us to carry out the dimensional reduction byrieting the field configurations
to rotationally invariant forr@.

8This is of course true at the lowest orderirbut we shall assume that this property continues to hold even
after including possible higher derivative correctiongite supersymmetry transformation laws.
%0ne might worry about the extra terms which may be generatddgithe redefinition of the gauge field that
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The five dimensionalV = 2 supergravity has a Weyl multiplet, a set of vector multipbnd
a compensator hypermultiplet. After gauge fixing to Poiecaupergravity, the bosonic fields
of the theory include the metrg,,, the two-form auxiliary fieldva,, a scalar auxiliary field,
a certain numbem(,) of one-form gauge field8), with 1 < I < ny, and an equal number of
scalarsM' [11]. Herea, b, .. are five dimensional coordinate labels and run from 0 to 4. We
shall denote byF' = dA the field strength associated with the gauge fi&dld The action for
bosonic fields including curvature squared terms can béenrés

S= % f d>xV-g®[% + 4] (5.1)

where % is the lagrangian at two derivative order a&g denotes the supersymmetric comple-
tion of the curvature squared terms. The explicit formgLghind £, are [11, 14]

1 1 1.1
Lo = —Z(ZD - gR— EVZ) +N (ED + 7R+ 3v2) + 2N VPRl
(5.2)
+ Nu(iFabFJab ;GaM aaMJ)+ 2—14e LClak ALF P e
1 1 1 1
) = ;24'1[ X 6e LeapoaATCICHE + M CPNC i+ T5M'D2 + ZF 0D

4
- §|v| ' CapedV V! — 2F""‘bcabcded + 3|\/| VAV Vavbe + ZM VAV,

8 2 1 2

+ gMI (VabeVCVac + :—)’VaCVCbRg + 1—2\/abVabR) - ge_ll\/lIEabcde\/abVCdVfVef (53)
2 4

+ ge_lFlabEadeé/CfoVde + e_lFIabEabcdé/(f:VdVef - §F|abVacVCdde

- %F'abvabvz + 4M|VabeCVCdVda - M! (VabVab)z]

wherec,;x andc, are parameters of the theogs= /g, and

1
N = 6c.JKM'l\/lJl\/lK (5.4)
1
N, = ECUK MIMK (55)
Niy = ciaM¥, (5.6)

brings the gauge field action into the standard form; howewercan easily argue that these terms canfietta
the final form of the action involving the metric since sedtall S U(2) non-invariant fields, including the gauge
fields, to zero provides a consistent truncation of the theor
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andCypeq is the Weyl tensor defined as

Coo = R+ —R5[a5b] - §5E§R§] (5.7)
The parameters, appear in the cdicients of the higher derivative terms; thus we can keep
track of the derivative expansion by simply counting the poof c; appearing in the various
terms.

We now carry out the dimensional reduction and focus on the sector invariant under
the SQ3) isometry group ofS2. This can be done using the following ansatz for the five
dimensional fields

ds’ = g@(x)dx'dx’ + x*()dQ?, O0<pv<?2

Vg = V(X) sind (5.8)
P

Fos = — sino, Fl, = 0.A, —d,A,,

with the mixed components df}, andv,, set to zero. Here¢ denote the three dimensional
coordinates. All the scalar fields can be arbitrary funciohx but are independent of the
coordinates{, ¢) of S2. For the metric given in(518) the non-vanishing componeaftthe
Riemann tensor are

Ruep = R,(fmp, Rupv =¥ 6 VuVx, Riju=x7 (gikgjl - gilgjk) (1 - 9(3)“V5;1X5v)() ,
O<u,v<2 I,j=6,¢. (5.9)

HereR®) . is the Riemann tensor ang, is the covariant derivative computed using the three
dimensional metrng(3) Using these relations we get the dimensionally reducedrati be

S=- C2 L2 P f d3xQ(3)(F)

‘M1 c-MV? c-pV
RE (3)( ve_ )R(s)
f XV=g¥ 4 4 288 272 28844
4 f d®x —g(3)X—U(X,M',V, p', D) (5.10)
. f B/ (3); 021 - (3Rf13y) REW _ gR(s)z :]3'6R(3)Vﬂvv R<3)V2 )

+ fdg’x@iﬂ(X Vo, M, F,, RD)
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where
3 1 1. V2 Y
M.V p.D) ==<(2 + 2N 2(—D——) N(—D —)
Ul D) (4 4) 2" AT P T A
2(N p)V+NIJpp+ M+02'MD2+Cz'pV_D
Iz 8¢ | 96, ' 288 144 A
5 VZ c-pV -pV: c-MV?
_ 2 M— — i Al il
B ME B T 6 °

(5.11)

and Z(x, V.., M', F.,, RY) denotes terms which are at least quadrati& i, v, V,M' and
. . . . . . - (3)
F,'w- In eq.[5.10) all covariant derivatives are computed utfiegthree dimensional metrg;‘w.
We first need to redefine our metric in such a manner that thcieat ofR® in the second

line of the action[(5.10) can be absorbed into the metric. @fnd

=y ?gY (5.12)
where 3 1 M 1 M V2 Vv
L M1 - __Cz'p_)
v (4 vt 288 Y72 4 288 ¢ (5.13)

After substituting[(5.12) into the action (5]10), we get
5=-22F f d*xQO(T)
+fd3x\/—_@{R+Z(X,M',V, p',D)]

fd?» \/_X @ ( R#— R"VV va+%RV2w——R2+—6R’”V Vox — %ﬁ'v‘%)

192

+ fd3X\/——Fg$,(X Vﬂv, M ) FLV’ Ryv)
(5.14)

where )
Z(x, MV, p', D) = y* XUy, M, V, p', D) (5.15)
T

and £’ denotes terms guadratic and higher order in the derivatssalar fields and other
tensor fields. For shorthand notation we denote all scaldsfley ¢ i.e.(y, M',V, p',D) = ¢
Following the general procedure given§# we now define

Pyv = Fﬁpv - %guv[§+ AO(¢)]

1~ 3
P= _ER_ §A0(¢)’

(5.16)
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whereAq(¢) is a function to be determined later, and rewrite the aci®n
C2 L2 P f PxQO(T) + f d3x\/_'[R+ Z(¢) f xR, K™
3 =X C2-
A7
+fde_¢ LN 517)

' f P FZ

where
2
X G- M [§ _ 2_ 2_ 16=
ny _wﬂ' 192 |3 nv 3g#VP+ 3guvA0(¢) wv Vvlvl’
(5.18)
+£g V21//+16VV 8§ V2
3'70 v )( vX — 3 v X\

and £ denotes terms guadratic and higher order in the derivatidse scalar fields and other
tensor fields. We now chooge)(¢) to be the solution to the equation

Aold) = 2(@) + 2 MA (12, (5.19)

yn 384

so that the actiori (5.17) may be expressed as
C2 C2 P f PxQO(T) + f d3x\/_'[R+ A0(¢) f Px TGP, K*”
+ f P*xyT.Z.

In this case, as we mentioned earlier, the required fieldfireden which will remove the four
derivative terms from the actioh (5J20) is

(5.20)

G = G + Ky - (5.21)

To this order the scalar field potential(¢) is given by

A(¢) = Ao(9) = Z(¢) + (5.22)

w 384

This process can now be repeated to remove the six and highieative terms from the
action, but we shall not go through the details of the analy§dur interest is in finding the
exact expression fak(¢) since this is what controls the final truncated action. Westsdready
described the algotithm for finding(¢) in §3. The first step is to computé(l, ¢) for the
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action [5.14) by evaluating the Lagrangian density (withitie Chern-Simons term) in the
AdS; background[(3)2) with constant scalar fields and vanishéngdr fields. We get

F(l,¢) = -6l + 3Z(¢) + 2a|—1 (5.23)
where ) M
_ X G-
a= n 192 (5.24)

The extremum of(l, ¢) with respect td occurs @

, 1 1

2a
lext = m + m 1+ ?Z((ﬁ) . (525)

HenceA(9) is given by

__ 32 _322()(, 2@ AN Y A
N = e ™ T (P WO W= 1 3

Before we proceed we note that to ordgrterms, 1.e. ordea term, eql(5.26) reduces to

A(@) = Z(o) + % aZ(p)* + 0@ . (5.27)

This agrees with the result (5]22) of the explicit calcuatio this order.
We now return to the full expression (5126) fafg). A(¢) has an extremum at the super-
symmetric attractor point [13, 14]

_ pb
X=75
P
pb
(5.28)
v _3pb
8
12
D = W
where 1
C .
p’ = gclJK p'p’p, b®=1+ 122pg (5.29)

OThere is, in principle, another extremumIaf, = (Z(¢))™* (1— N 2aZ(¢)/3). This could in principle
describe a de Sitter solution. However since for this sohytix{ ~ a, the radius is small and there is no systematic
derivative expansion.
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The value ofA(¢) at it's extremum is given by

(5.30)

3272 Cy- p12
A(¢0) = p6 [1 épgp]

Thus the final truncated theory, obtained by settnip its value at the extremum and other
matter fields to zero, is given by

S= f Px V=GR + A(do)) - % f PxQO(T). (5.31)

From this one can compute the central charges of the confdietththeory living on boundary
of AdS using standard formulee (seg.[6]). The result is

_ 2 G- p) a3, L
CL= 247r( Ao O =6p° + 202 p
(5.32)
_ 2 Ca- p) _ 603 _
Cr = 247r( A o) + 9 =6p°+C-p

These results agree with the predictions of [10, 12] fromrdguirement of (0,4) supersym-
metry, as well as the explicit calculations of [13—15] frone ttcomputation of the black hole
entropy.
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