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Abstract

In heterotic string theory compactified on T, the T-duality orbits of dyons of charge (Q, P)
are characterized by O(6,22; R) invariants Q*, P? and @ - P together with a set of invariants
of the discrete T-duality group O(6,22; Z). We study the action of S-duality group on the
discrete T-duality invariants and study its consequence for the dyon degeneracy formula. In
particular we find that for dyons with torsion r, the degeneracy formula, expressed as a function
of Q% P? and Q - P, is required to be manifestly invariant under only a subgroup of the S-
duality group. This subgroup is isomorphic to I'°(r). Our analysis also shows that for a given
torsion r, all other discrete T-duality invariants are characterized by the elements of the coset
SL(2, Z)/T°(r).
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Dyons in heterotic string theory on T are characterized by a pair of charge vectors (Q, P)
each taking value on the Narain lattice A [1,2]. Given two pairs of charge vectors, an interesting
question is: under what condition can they be related via a T-duality transformation? This
question was answered in [3] where a complete set of T-duality invariants classifying a pair
of charge vectors (@, P) were constructed. These include the invariants of the continuous
T-duality group O(6,22; R)

Q*, P%, Q-P, (1)

together with a set of invariants of the discrete T-duality group O(6,22; 7). These are defined
as follows. We shall assume that the dyon is primitive so that (@, P) cannot be written as an
integer multiple of (Qo, FPy) with Qq, Py € A, but we shall not assume that () and P themselves
are primitive. Now consider the intersection of the two dimensional vector space spanned by
(Q, P) with the Narain lattice A. The result is a two dimensional lattice Ay. Let (e1,e2) be a
pair of basis elements whose integer linear combinations generate this lattice. We can always

choose (e1, e2) such that in this basis

_ _ +
Q =ne, P =ry(ure; + r3eq), T1,T2,T3,U1 € A7,

ng(Tl,TQ) = 1, ng(ul,’f’g) = 1, 1< U < ry. (2)

It was found in [3] that besides @Q*, P? and Q - P, the integers 71, 79, r3 and u; are T-duality
invariants. Furthermore it was found that this is the complete set of T-duality invariants. Thus
a pair of charge vectors (@, P) can be transformed into another pair (Q’, P’) via a T-duality
transformation if and only if all the invariants agree for these two pairs.

Our first goal is to study some aspects of the action of the S-duality transformation
Q—Q =aQ+bP, P—P =cQ+dP, a,bc,dc Z, ad—bc=1, (3)

on the invariants ri, 79, r3 and w;. Substituting (2)) into (3)), and expressing the resulting
(Q',P') as (rie},rh(uie] + rieh)) for some primitive basis (e, e)) of Ay we can determine
(ry,rh, 5, u}). Since the resuting expressions are somewhat complicated and not very illumi-
nating we shall not describe them here. Instead we shall focus on some salient features of the
transformation laws of (ry, 79,73, u1). We first note that the torsion r(Q, P) associated with a
pair of charges (Q, P), defined as [4, 5]

7(Q, P) = Q1P — Q2 Py, (4)



with Q;, P; being the components of () and P along e;, is invariant under the S-duality trans-

formation (3)). Furthermore, for the charge vectors (@, P) given in (2]) we have

r(Q, P) = rirar; . (5)

We shall now show that one can always find an S-duality transformation that brings the T-
duality invariants (71,79, 73, u1) to (r172rs, 1,1, 1) together with an appropriate transformation
on Q% P? and Q- P induced by (3. For this we note that under the S-duality transformation
@), (@, P) given in (2) transforms to

Q/ = {GT1+bT2(U1+kT3)}€1+b7”27’3(€2—]€61), P/ = {C’f’l +dr2(u1+kr3)}61 —|—d7’27”3(€2 —]{361) s

(6)

where k is an arbitrary integer. We shall choose

where {p;} represent the collection of primes which are factors of r; but not of u;. Now we
know from (2) that ged(ry,r2) = 1. On the other hand it follows from a result derived in
appendix E of [6] that for the choice of k given in () we have ged(ry,uy + krg) = 1. Thus if
we choose

b=r1, a=—ro(us+krs), (8)

we have ged(a,b) = 1 and hence we can always find ¢, d satisfying ad — bc = 1. For this

particular choice of SL(2, Z) transformation we have
Q/ = 7’17’27”3(62 — ]{761), P/ = —€1 + dT2T3<62 — ]{761> . (9)

We now define
el = (ex — key), ey = —ey + (drars — 1)(ex — key) . (10)

Since the matrix relating (ef, €5) to (e1, e2) has unit determinant, (e, €}) is a primitive basis
of the lattice Ag. In this basis (@', P’) can be expressed as

Ql = 7’17”27”36,1, P, = 6/1 + 6/2 . (11)
Comparing this with (2)) we see that for the new charge vector (@), P’) we have

ri=rrars, ro=1, ry=1, uj=1. (12)



This proves the desired result.
Next we shall study the subgroup of S-duality transformations which takes a configuration
with (ry = 7,79 = 1,73 = 1,u; = 1) to another configuration with (r; =r,7o = 1,73 = 1,u; =

1). The initial configuration has
Q = rey, P=e +es. (13)
An S-duality transformation (3) takes this to
Q' = are; +be; + e2), P'=cre; +d(e; + e2). (14)
In order that @’ is r times a primitive vector, we must demand
b=0 mod r. (15)
Expressing b as bgr with by € Z we get
Q' =rel, P =é + ¢, (16)
where

el = (a+by)er + boea, ey = (cr+d—a—bo)er + (d —bo)es . (17)

Since the determinant of the matrix relating (e}, e5) to (e, e3) is given by
(a+bo)(d—by) —bo(cr +d—a —by) =ad —bc=1, (18)

we conclude that (), e}) is a primitive basis of Ag. Comparison with (2]) now shows that
(Q,P') has r} = r, ry = ri = u} = 1 as required. Thus the only condition on the SL(2, Z)

. b . o .
matrix CCL for preserving the (ry = r,ro = 1,73 = 1,u; = 1) condition is that it must

d

have b = 0 mod r, 1.e. it must be an element of T'°(r).
Using this we can now determine the subgroup of SL(2, Z) that takes a pair of charge

vectors (@, P) with invariants (rq, 79,73, u1) to another pair of charge vectors with the same

invariants. For this we note that any SL(2, Z) transformation matrix gy = (CCL b with

d

a, b given in (§)) takes the set (r1,79,73,u1) to the set (rirors, 1,1,1). Since the latter set
is preserved by the T'°(r) subgroup of SL(2, Z), the original set must be preserved by the
subgroup gy 'I'°(r)go. This is isomorphic to the group I'’(r).



To see an example of this consider the case

7’1:7’2:1, 7“3:2, ulzl. (19)

1
0 1
a configuration with r; = 2, ry = r3 = u; = 1. Thus the SL(2, Z) transformations which take

In this case the SL(2, Z) transformation gy = takes a configuration given in (I9) to

a configuration with (r; = 1,79 = 1,73 = 2,u; = 1) to a configuration with the same discrete

invariants will be of the form:

a v\ (1 -1 a 2bg 1 1\ (a—c a—c—d+2b (20)
d d) \0 1 )\c d 0 1) \ ¢ c+d ’

Since the condition ad — 2byc = 1 requires a and d to be odd, we have

d+be2+1, d+de2Z+1. (21)
a v
Conversely given any SL(2, 7Z) matrix (c’ JZ satisfying (2I]), it can be written as gy conju-
’ N / /
gate of the I'’(2) matrix “ jtc “ _g, iz, +d . Thus (21]) characterizes the subgroup

of S-duality group which preserves the condition (19).

The results derived so far make it clear that for a given torsion r the discrete T-duality in-
variants are in one to one correspondence with the elements of the coset SL(2, Z)/T°(r). The
representative element for a given set of invariants (71, 7, 73, ;) is the element g;* € SL(2, %)
that takes a configuration with (rirors, 1,1,1) to a configuration with discrete invariants
(r1,72,73,u1). Multiplying go' by a I'°(r) element from the right does not change the fi-
nal values (ry, 72, 73, u1) of the discrete invariants since a I'°(r) transformation does not change
the discrete T-duality invariants of the initial configuration.

We shall now examine the consequences of these results for the formula expressing the
degeneracy d(Q, P) — or more precisely an appropriate index measuring the number of bosonic
supermultiplets minus the number of fermionic supermultiplets for a given set of charge -
of quarter BPS dyons as a function of (@), P). We note first of all that besides depending
on (@, P), the degeneracy can also depend on the asymptotic values of the moduli fields,
collectively denoted as ¢. We expect the dependence on ¢ to be mild, in the sense that

the degeneracy formula should be ¢ independent within a given domain bounded by walls of

1Up to a normalization this is equal to the helicity trace Bg = Tr(—1)2"hS over all states carrying charge
quantum numbers (Q, P). Here h denotes the helicity of the state.



marginal stability. It follows from the analysis of [7,8] that the decays relevant for the walls

of marginal stability are of the form

(Q P) = (@Q+ SPAQ+6P) +((1 - )Q = P, —Q + (1 - 9)P), (22)

where «, (3, v, 6 are not necessarily integers, but must be such that a@Q) + P and vQ + 6 P
belong to the Narain lattice A. If we denote by m(Q), P; ¢) the BPS mass of a dyon of charge
(Q, P) then the wall of marginal stability associated with the set («, 3,7,0) is given by the

solution to the equation

m(Q, P; ¢) = m(aQ + BP,AQ +0P;¢) + m((1 — )@ — P, —Q + (1 = 0)P;9).  (23)

For appropriate choice of («, 3,7, d) this describes a codimension one subspace of the moduli

space labelled by ¢. Since the BPS mass formula is invariant under a T-duality transformation
QHQQ7PHQP7¢_>¢Q

m(QQ, QP ¢a) =m(Q, P;d) Qe 0(6,22; Z), (24)
eq.([23) may be written as

m(Q2Q, QP; ¢pq) = m(aQQ+LQAP, yQQ+INP; ¢o)+m((1—a)QQ—LBOP, —yQQ+(1—0)QP; ¢q) .
(25)
This is identical to eq.([23) with (@, P, ¢) replaced by (Q2Q, 2P, ¢q). This shows that under
a T-duality transformation on charges and moduli, the wall of marginal stability associated
with the set (o, 3,7, d) gets mapped to the wall of marginal stability associated with the same
(e, 3,7,9). Thus if we consider a domain bounded by the walls of marginal stability associated
with the sets (a4, 3;,7i, 0;) for 1 < i < n — collectively denoted by a set of discrete variables
¢ — then under a simultaneous T-duality transformation on the charges and the moduli this
domain gets mapped to a domain labelled by the same vector ¢. The precise shape of the
domain of course changes since the locations of the walls in the moduli space depends not only
on (o, Bi,7:,0;) for 1 <7 < n but also on the charges (@, P) which transform to (QQ, QP).
We now use the fact that the dyon degeneracy formula must be invariant under a simul-
taneous T-duality transformation on the charges and the moduli, and also the fact that the
dependence of d(Q, P; ¢) on the moduli ¢ comes only through the domain in which ¢ lies, 1.e.

the vector €. Since ¢ remains unchanged under a T-duality transformation, we have
d(Q, P;¢) = d(QQ,QP;0),  Qe0(6,22; Z). (26)
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This shows that d(Q, P; ¢) must depend only on (Q, P) via the T-duality invariants:

d(Q,P;E):f(Q27P27Q~P,T17T27T3,u1;5>, (27>

for some function f.

Let us now study the effect of S-duality transformation on this formula. Typically an S-
duality transformation will act on the charges and hence on all the T-duality invariants and
also on the vector ¢ labelling the domain bounded by the walls of marginal stability [5,9,10].

Indeed, as is clear from the condition (23)), under an S-duality transformation of the form (3J),

the wall associated with the parameters <: ? ) gets mapped to the wall associated with

o« B\ (a b\ [a B\ [a b\ (28)
~vo8 ) \e d vo0 c d '
Thus S-duality invariance of the degeneracy formula now gives
f(Q2> P2a Q : P> r1,T2,73,U1; 5) = f(QQa Pl2> Q, : P,> Tga ’l";, Téa ulla 5/) ’ (29)

where ¢’ stands for the collection of the sets {a}, 5],7;, 0/} computed according to (28). We

now use the result that there exists a special class of S-duality transformations under which
(ry, o, 5, uy) = (ryrers, 1,1,1) . (30)
Using this S-duality transformation we get
f(Q* P?.Q - Pyri,ry,r3,up;¢) = f(Q% P?Q - P ,riryrs, 1,1,1; ). (31)

Thus the complete information about the spectrum of quarter BPS dyons is contained in the

set of functions
g(Q27P27Q'P7T;E>Ef(Q27P27Q'P7T717171;5>' (32)

We shall focus our attention on this function during the rest of our analysis. Using the fact

that T'°(r) transformations leave the set (ry = r,ry = 1,73 = 1,u; = 1) fixed, we see that

g(Q* P*,Q-Pr;d) = g(Q? P? QP r;é") for (g:) = <a Z) <g) , (CCL Z) cTr).

C

In other words, the function g(Q?, P?, Q- P,r;¢) is expected to have manifest invariance under

the I'(r) subgroup of S-duality transformations.
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So far our discussion has been independent of any specific formula for the function g(Q?, P?, Q-
P,r;¢). For r = 1 dyons an explicit formula for the function g has been found in a wide class of
N = 4 supersymmetric theories [5,9-25]. In all the known examples the function g is obtained
as a contour integral of the inverse of an appropriate modular form of a subgroup of Sp(2, Z).
In particular for heterotic string theory on 7° the modular form is the well known Igusa cusp
form of weight 10 of the full Sp(2, Z) group, with the S-duality group SL(2, Z) embedded
in Sp(2, Z) in a specific manner. Furthermore the dependence on the domain labelled by &
is encoded fully in the choice of the integration contour and not in the integrand. If a similar
formula exists for g(Q? P2 Q - P,r;¢) for r > 1, then our analysis would suggest that the
integrand should involve a modular form of a subgroup of Sp(2, Z) that contains I'°(r) in the
same way that the full Sp(2, Z) contains SL(2, Z). It remains to be seen if this constraint

together with other physical constraints reviewed in [25] can fix the form of the integrand.

Acknowledgement: We wish to thank Sandip Trivedi for useful discussions.
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