
ar
X

iv
:0

80
1.

01
49

v1
  [

he
p-

th
] 

 3
0 

D
ec

 2
00

7

S-duality Action on Discrete T-duality Invariants

Shamik Banerjee and Ashoke Sen

Harish-Chandra Research Institute
Chhatnag Road, Jhusi, Allahabad 211019, INDIA

E-mail: bshamik, sen@mri.ernet.in

Abstract

In heterotic string theory compactified on T 6, the T-duality orbits of dyons of charge (Q, P )
are characterized by O(6, 22; RR) invariants Q2, P 2 and Q · P together with a set of invariants
of the discrete T-duality group O(6, 22; ZZ). We study the action of S-duality group on the
discrete T-duality invariants and study its consequence for the dyon degeneracy formula. In
particular we find that for dyons with torsion r, the degeneracy formula, expressed as a function
of Q2, P 2 and Q · P , is required to be manifestly invariant under only a subgroup of the S-
duality group. This subgroup is isomorphic to Γ0(r). Our analysis also shows that for a given
torsion r, all other discrete T-duality invariants are characterized by the elements of the coset
SL(2, ZZ)/Γ0(r).
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Dyons in heterotic string theory on T 6 are characterized by a pair of charge vectors (Q, P )

each taking value on the Narain lattice Λ [1,2]. Given two pairs of charge vectors, an interesting

question is: under what condition can they be related via a T-duality transformation? This

question was answered in [3] where a complete set of T-duality invariants classifying a pair

of charge vectors (Q, P ) were constructed. These include the invariants of the continuous

T-duality group O(6, 22; RR)

Q2, P 2, Q · P , (1)

together with a set of invariants of the discrete T-duality group O(6, 22; ZZ). These are defined

as follows. We shall assume that the dyon is primitive so that (Q, P ) cannot be written as an

integer multiple of (Q0, P0) with Q0, P0 ∈ Λ, but we shall not assume that Q and P themselves

are primitive. Now consider the intersection of the two dimensional vector space spanned by

(Q, P ) with the Narain lattice Λ. The result is a two dimensional lattice Λ0. Let (e1, e2) be a

pair of basis elements whose integer linear combinations generate this lattice. We can always

choose (e1, e2) such that in this basis

Q = r1e1, P = r2(u1e1 + r3e2), r1, r2, r3, u1 ∈ ZZ+,

gcd(r1, r2) = 1, gcd(u1, r3) = 1, 1 ≤ u1 ≤ r3 . (2)

It was found in [3] that besides Q2, P 2 and Q · P , the integers r1, r2, r3 and u1 are T-duality

invariants. Furthermore it was found that this is the complete set of T-duality invariants. Thus

a pair of charge vectors (Q, P ) can be transformed into another pair (Q′, P ′) via a T-duality

transformation if and only if all the invariants agree for these two pairs.

Our first goal is to study some aspects of the action of the S-duality transformation

Q → Q′ = aQ + bP, P → P ′ = cQ + dP, a, b, c, d ∈ ZZ, ad − bc = 1 , (3)

on the invariants r1, r2, r3 and u1. Substituting (2) into (3), and expressing the resulting

(Q′, P ′) as (r′1e
′

1, r
′

2(u
′

1e
′

1 + r′3e
′

2)) for some primitive basis (e′1, e
′

2) of Λ0 we can determine

(r′1, r
′

2, r
′

3, u
′

1). Since the resuting expressions are somewhat complicated and not very illumi-

nating we shall not describe them here. Instead we shall focus on some salient features of the

transformation laws of (r1, r2, r3, u1). We first note that the torsion r(Q, P ) associated with a

pair of charges (Q, P ), defined as [4, 5]

r(Q, P ) = Q1P2 − Q2P1 , (4)
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with Qi, Pi being the components of Q and P along ei, is invariant under the S-duality trans-

formation (3). Furthermore, for the charge vectors (Q, P ) given in (2) we have

r(Q, P ) = r1r2r3 . (5)

We shall now show that one can always find an S-duality transformation that brings the T-

duality invariants (r1, r2, r3, u1) to (r1r2r3, 1, 1, 1) together with an appropriate transformation

on Q2, P 2 and Q ·P induced by (3). For this we note that under the S-duality transformation

(3), (Q, P ) given in (2) transforms to

Q′ = {ar1 +br2(u1 +kr3)}e1 +br2r3(e2−ke1), P ′ = {cr1 +dr2(u1 +kr3)}e1 +dr2r3(e2−ke1) ,

(6)

where k is an arbitrary integer. We shall choose

k =
∏

i

pi , (7)

where {pi} represent the collection of primes which are factors of r1 but not of u1. Now we

know from (2) that gcd(r1, r2) = 1. On the other hand it follows from a result derived in

appendix E of [6] that for the choice of k given in (7) we have gcd(r1, u1 + kr3) = 1. Thus if

we choose

b = r1, a = −r2(u1 + kr3) , (8)

we have gcd(a, b) = 1 and hence we can always find c, d satisfying ad − bc = 1. For this

particular choice of SL(2, ZZ) transformation we have

Q′ = r1r2r3(e2 − ke1), P ′ = −e1 + dr2r3(e2 − ke1) . (9)

We now define

e′1 = (e2 − ke1), e′2 = −e1 + (dr2r3 − 1)(e2 − ke1) . (10)

Since the matrix relating (e′1, e
′

2) to (e1, e2) has unit determinant, (e′1, e
′

2) is a primitive basis

of the lattice Λ0. In this basis (Q′, P ′) can be expressed as

Q′ = r1r2r3e
′

1, P ′ = e′1 + e′2 . (11)

Comparing this with (2) we see that for the new charge vector (Q′, P ′) we have

r′1 = r1r2r3, r′2 = 1, r′3 = 1, u′

1 = 1 . (12)
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This proves the desired result.

Next we shall study the subgroup of S-duality transformations which takes a configuration

with (r1 = r, r2 = 1, r3 = 1, u1 = 1) to another configuration with (r1 = r, r2 = 1, r3 = 1, u1 =

1). The initial configuration has

Q = re1, P = e1 + e2 . (13)

An S-duality transformation (3) takes this to

Q′ = are1 + b(e1 + e2) , P ′ = cre1 + d(e1 + e2) . (14)

In order that Q′ is r times a primitive vector, we must demand

b = 0 mod r . (15)

Expressing b as b0r with b0 ∈ ZZ we get

Q′ = re′1, P ′ = e′1 + e′2 , (16)

where

e′1 = (a + b0)e1 + b0e2, e′2 = (cr + d − a − b0)e1 + (d − b0)e2 . (17)

Since the determinant of the matrix relating (e′1, e
′

2) to (e1, e2) is given by

(a + b0)(d − b0) − b0(cr + d − a − b0) = ad − bc = 1 , (18)

we conclude that (e′1, e
′

2) is a primitive basis of Λ0. Comparison with (2) now shows that

(Q′, P ′) has r′1 = r, r′2 = r′3 = u′

1 = 1 as required. Thus the only condition on the SL(2, ZZ)

matrix

(

a b
c d

)

for preserving the (r1 = r, r2 = 1, r3 = 1, u1 = 1) condition is that it must

have b = 0 mod r, ı.e. it must be an element of Γ0(r).

Using this we can now determine the subgroup of SL(2, ZZ) that takes a pair of charge

vectors (Q, P ) with invariants (r1, r2, r3, u1) to another pair of charge vectors with the same

invariants. For this we note that any SL(2, ZZ) transformation matrix g0 =

(

a b
c d

)

with

a, b given in (8) takes the set (r1, r2, r3, u1) to the set (r1r2r3, 1, 1, 1). Since the latter set

is preserved by the Γ0(r) subgroup of SL(2, ZZ), the original set must be preserved by the

subgroup g−1
0 Γ0(r)g0. This is isomorphic to the group Γ0(r).
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To see an example of this consider the case

r1 = r2 = 1, r3 = 2, u1 = 1 . (19)

In this case the SL(2, ZZ) transformation g0 =

(

1 1
0 1

)

takes a configuration given in (19) to

a configuration with r1 = 2, r2 = r3 = u1 = 1. Thus the SL(2, ZZ) transformations which take

a configuration with (r1 = 1, r2 = 1, r3 = 2, u1 = 1) to a configuration with the same discrete

invariants will be of the form:
(

a′ b′

c′ d′

)

=

(

1 −1
0 1

) (

a 2b0

c d

) (

1 1
0 1

)

=

(

a − c a − c − d + 2b0

c c + d

)

. (20)

Since the condition ad − 2b0c = 1 requires a and d to be odd, we have

a′ + b′ ∈ 2 ZZ + 1, c′ + d′ ∈ 2 ZZ + 1 . (21)

Conversely given any SL(2, ZZ) matrix

(

a′ b′

c′ d′

)

satisfying (21), it can be written as g0 conju-

gate of the Γ0(2) matrix

(

a′ + c′ −a′ − c′ + b′ + d′

c′ −c′ + d′

)

. Thus (21) characterizes the subgroup

of S-duality group which preserves the condition (19).

The results derived so far make it clear that for a given torsion r the discrete T-duality in-

variants are in one to one correspondence with the elements of the coset SL(2, ZZ)/Γ0(r). The

representative element for a given set of invariants (r1, r2, r3, u1) is the element g−1
0 ∈ SL(2, ZZ)

that takes a configuration with (r1r2r3, 1, 1, 1) to a configuration with discrete invariants

(r1, r2, r3, u1). Multiplying g−1
0 by a Γ0(r) element from the right does not change the fi-

nal values (r1, r2, r3, u1) of the discrete invariants since a Γ0(r) transformation does not change

the discrete T-duality invariants of the initial configuration.

We shall now examine the consequences of these results for the formula expressing the

degeneracy d(Q, P ) – or more precisely an appropriate index measuring the number of bosonic

supermultiplets minus the number of fermionic supermultiplets for a given set of charges1 –

of quarter BPS dyons as a function of (Q, P ). We note first of all that besides depending

on (Q, P ), the degeneracy can also depend on the asymptotic values of the moduli fields,

collectively denoted as φ. We expect the dependence on φ to be mild, in the sense that

the degeneracy formula should be φ independent within a given domain bounded by walls of

1Up to a normalization this is equal to the helicity trace B6 = Tr(−1)2hh6 over all states carrying charge
quantum numbers (Q, P ). Here h denotes the helicity of the state.
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marginal stability. It follows from the analysis of [7, 8] that the decays relevant for the walls

of marginal stability are of the form

(Q, P ) → (αQ + βP, γQ + δP ) + ((1 − α)Q − βP,−γQ + (1 − δ)P ) , (22)

where α, β, γ, δ are not necessarily integers, but must be such that αQ + βP and γQ + δP

belong to the Narain lattice Λ. If we denote by m(Q, P ; φ) the BPS mass of a dyon of charge

(Q, P ) then the wall of marginal stability associated with the set (α, β, γ, δ) is given by the

solution to the equation

m(Q, P ; φ) = m(αQ + βP, γQ + δP ; φ) + m((1 − α)Q − βP,−γQ + (1 − δ)P ; φ) . (23)

For appropriate choice of (α, β, γ, δ) this describes a codimension one subspace of the moduli

space labelled by φ. Since the BPS mass formula is invariant under a T-duality transformation

Q → ΩQ, P → ΩP , φ → φΩ:

m(ΩQ, ΩP ; φΩ) = m(Q, P ; φ) Ω ∈ O(6, 22; ZZ) , (24)

eq.(23) may be written as

m(ΩQ, ΩP ; φΩ) = m(αΩQ+βΩP, γΩQ+δΩP ; φΩ)+m((1−α)ΩQ−βΩP,−γΩQ+(1−δ)ΩP ; φΩ) .

(25)

This is identical to eq.(23) with (Q, P, φ) replaced by (ΩQ, ΩP, φΩ). This shows that under

a T-duality transformation on charges and moduli, the wall of marginal stability associated

with the set (α, β, γ, δ) gets mapped to the wall of marginal stability associated with the same

(α, β, γ, δ). Thus if we consider a domain bounded by the walls of marginal stability associated

with the sets (αi, βi, γi, δi) for 1 ≤ i ≤ n – collectively denoted by a set of discrete variables

~c – then under a simultaneous T-duality transformation on the charges and the moduli this

domain gets mapped to a domain labelled by the same vector ~c. The precise shape of the

domain of course changes since the locations of the walls in the moduli space depends not only

on (αi, βi, γi, δi) for 1 ≤ i ≤ n but also on the charges (Q, P ) which transform to (ΩQ, ΩP ).

We now use the fact that the dyon degeneracy formula must be invariant under a simul-

taneous T-duality transformation on the charges and the moduli, and also the fact that the

dependence of d(Q, P ; φ) on the moduli φ comes only through the domain in which φ lies, ı.e.

the vector ~c. Since ~c remains unchanged under a T-duality transformation, we have

d(Q, P ;~c) = d(ΩQ, ΩP ;~c) , Ω ∈ O(6, 22; ZZ) . (26)
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This shows that d(Q, P ;~c) must depend only on (Q, P ) via the T-duality invariants:

d(Q, P ;~c) = f(Q2, P 2, Q · P, r1, r2, r3, u1;~c) , (27)

for some function f .

Let us now study the effect of S-duality transformation on this formula. Typically an S-

duality transformation will act on the charges and hence on all the T-duality invariants and

also on the vector ~c labelling the domain bounded by the walls of marginal stability [5, 9, 10].

Indeed, as is clear from the condition (23), under an S-duality transformation of the form (3),

the wall associated with the parameters

(

α β
γ δ

)

gets mapped to the wall associated with

(

α′ β ′

γ′ δ′

)

=

(

a b
c d

) (

α β
γ δ

) (

a b
c d

)

−1

. (28)

Thus S-duality invariance of the degeneracy formula now gives

f(Q2, P 2, Q · P, r1, r2, r3, u1;~c) = f(Q′2, P ′2, Q′ · P ′, r′1, r
′

2, r
′

3, u
′

1;~c
′) , (29)

where ~c ′ stands for the collection of the sets {α′

i
, β ′

i
, γ′

i
, δ′

i
} computed according to (28). We

now use the result that there exists a special class of S-duality transformations under which

(r′1, r
′

2, r
′

3, u
′

1) = (r1r2r3, 1, 1, 1) . (30)

Using this S-duality transformation we get

f(Q2, P 2, Q · P, r1, r2, r3, u1;~c) = f(Q′2, P ′2, Q′ · P ′, r1r2r3, 1, 1, 1;~c ′) . (31)

Thus the complete information about the spectrum of quarter BPS dyons is contained in the

set of functions

g(Q2, P 2, Q · P, r;~c) ≡ f(Q2, P 2, Q · P, r, 1, 1, 1;~c) . (32)

We shall focus our attention on this function during the rest of our analysis. Using the fact

that Γ0(r) transformations leave the set (r1 = r, r2 = 1, r3 = 1, u1 = 1) fixed, we see that

g(Q2, P 2, Q·P, r;~c) = g(Q′2, P ′2, Q′·P ′, r;~c ′) for

(

Q′

P ′

)

=

(

a b
c d

) (

Q
P

)

,

(

a b
c d

)

∈ Γ0(r) .

(33)

In other words, the function g(Q2, P 2, Q ·P, r;~c) is expected to have manifest invariance under

the Γ0(r) subgroup of S-duality transformations.
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So far our discussion has been independent of any specific formula for the function g(Q2, P 2, Q·

P, r;~c). For r = 1 dyons an explicit formula for the function g has been found in a wide class of

N = 4 supersymmetric theories [5,9–25]. In all the known examples the function g is obtained

as a contour integral of the inverse of an appropriate modular form of a subgroup of Sp(2, ZZ).

In particular for heterotic string theory on T 6 the modular form is the well known Igusa cusp

form of weight 10 of the full Sp(2, ZZ) group, with the S-duality group SL(2, ZZ) embedded

in Sp(2, ZZ) in a specific manner. Furthermore the dependence on the domain labelled by ~c

is encoded fully in the choice of the integration contour and not in the integrand. If a similar

formula exists for g(Q2, P 2, Q · P, r;~c) for r > 1, then our analysis would suggest that the

integrand should involve a modular form of a subgroup of Sp(2, ZZ) that contains Γ0(r) in the

same way that the full Sp(2, ZZ) contains SL(2, ZZ). It remains to be seen if this constraint

together with other physical constraints reviewed in [25] can fix the form of the integrand.

Acknowledgement: We wish to thank Sandip Trivedi for useful discussions.
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