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Abstract

We study the effect of tachyon condensation on a brane antibrane pair in superstring theory
separated in the transverse direction. The static properties of the tachyon potential analyzed
using level truncated string field theory reproduces the desired property that the dependence
of the minimum value of the potential on the initial distance of separation between the branes
decreases as we include higher level terms. The rolling tachyon solution constructed using the
conformal field theory methods shows that if the initial separation between the branes is less
than a critical distance then the solution is described by an exactly marginal deformation of
the original conformal field theory where the correlation functions of the deformed theory are
determined completely in terms of the correlation functions of the undeformed theory without
any need to regularize the theory. Using this we give an expression for the pressure on the
brane-antibrane system as a power series expansion in exp(Cx0) for an appropriate constant
C.

1

http://arXiv.org/abs/0801.3498v1


Contents

1 Introduction 2

2 Superstring field theory on brane-antibrane system 4

2.1 SSFT on a BPS D-brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 SSFT on a non-BPS D-brane . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 SSFT on a D-brane-D̄-brane pair . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Separated D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Tachyon vacuum 10

3.1 Level d2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Including the shift field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Rolling non-universal tachyon 14

5 Time dependence of pressure on a separated brane-antibrane system with a

rolling tachyon 18

6 Numerical results 21

7 Discussion 23

1 Introduction

The spectrum of the bosonic open string theory living on a D-brane is known to have a tachyonic

mode. We now have a good understanding of the physics around the minimum of the tachyon

potential, both via conformal field theory (CFT) methods [1], and numerical and analytical

methods in string field theory [2–17]. In particular it is known that the tachyon potential

has a non-trivial minimum where the energy density from the potential exactly equals the

negative of the D-brane tension and as a result the sum vanishes. The minimum represents

a vacuum without any D-branes. Using conformal field theory methods one can also study

time dependent solutions in string theory describing the rolling of the tachyon towards the

vacuum [18].

Similar conjectures hold in the case of the superstrings where tachyonic modes appear in

unstable systems like non-BPS D-branes or brane-antibrane pairs [19]. Level truncation gives
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numerical evidence for these conjectures in Berkovits superstring field theory [20–23], but as

of now we do not have an analytic solution for the vacuum.1 As in the case of bosonic string

theory, one can also construct a conformal field theory describing the rolling of the tachyon

towards the vacuum [25].

Most of the work on tachyon condensation in superstring field theory has been carried out on

an unstable D-brane system, or a closely related system containing a coincident brane-antibrane

pair. In this paper, we look at a system of brane-antibrane pair separated by a distance d. This

is the configuration we expect to get in any realistic situation involving tachyon condensation

on a brane-antibrane system, e.g. in cosmology, where the brane-antibrane pair would start

out separated from each other and gradually come together by gravitational attraction [26]. As

they come closer than the critical distance the lowest lying mode of the open string stretched

between the brane and the antibrane will become tachyonic and the condensation process

would start. Thus if we want to study the end point of tachyon condensation for such a system

we need to study tachyon condensation on a separated brane-antibrane pair.

Our analysis will be divided into two parts. We first look at the static configuration of a

separated brane-antibrane pair, and carry out a level truncation analysis of the tachyon vacuum

using Berkovits’ superstring field theory [27, 28]. In this case we do not expect any surprise;

rather we expect that at the bottom of the potential the total energy density should continue

to vanish irrespective of the initial distance between the brane-antibrane pair. This result is

bourn out by our analysis. In particular we find that while at the lowest level the value of the

potential at the minimum depends on the initial separation between the brane-antibrane pair,

this dependence reduces after inclusion of higher level terms in the action.

The second part of the analysis involves study of the rolling tachyon solution using con-

formal field theory method. Unlike in the case of rolling tachyon on a non-BPS D-brane or a

coincident brane-antibrane pair, in this case we cannot construct an exact boundary state cor-

responding to the time dependent configuration. Nevertheless using a perturbative approach

one can write down an expression for the pressure as a series expansion in powers of exp(Cx0)

for an appropriate constant C depending on the initial separation of the brane-antibrane sys-

tem. We find that if the initial separation between the brane-antibrane pair is less than a

critical distance then the coefficients of the various terms of the expansion can be expressed in

terms of non-singular integrals. We analyze the behaviour of this series by computing the first

1An analytic solution has recently been constructed in the superstring field theory based on the cubic
action [24].
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few terms in the expansion numerically.

For rolling tachyon solution on a coincident brane-antibrane pair the final state was found

to have vanishing pressure but non-zero energy density [25]. This reflects that the final state

is made of non-relativistic heavy closed string states [29, 30]. If instead of starting with a

coincident brane-antibrane pair we begin with a separated brane-antibrane pair then the final

state in principle could be different, (say) consisting of a mixture of non-relativistic heavy closed

string states and radiation containing relativistic light closed string states. Thus computation

of the final state pressure is an important problem since this could tell us indirectly about the

composition of the final state. Unfortunately since we only have a power series expansion for

the pressure, we cannot reach a definite conclusion about the final state pressure. However we

use the Pade approximant method to represent the known results on the power series expansion

as a ratio of polynomial functions, and extrapolate the result based on the first few coefficients

to study the behaviour of the pressure at large time. This naive extrapolation gives results

consistent with vanishing pressure at late time.

During our analysis we also develop a general procedure for studying rolling tachyon solution

in situations where the tachyon vertex operator is a non-trivial matter primary operator. We

find that as long as the tachyon is sufficiently tachyonic, ı.e. the tachyon mass2 is below a

critical value, the system admits an exactly marginal deformation describing the rolling of the

tachyon away from the maximum. The essential point is that the integrated vertex operator

describing a rolling tachyon deformation, obtained by multiplying the zero momentum tachyon

vertex operator by eCX
0

for an appropriate constant C, has non-singular operator product with

itself for sufficiently large C. As a result deformation by this operator describes an exactly

marginal deformation of the conformal field theory.

2 Superstring field theory on brane-antibrane system

In this section we give a quick review of the construction of the superstring field theory (SSFT)

on a brane antibrane pair. We then identify the specific components of the string field which

we shall use for the study of tachyon condensation on a separated brane-antibrane pair.

2.1 SSFT on a BPS D-brane

We begin by looking at the GSO(+) sector of the superstring field theory which describes the

dynamics of the NS sector of open strings living on a single BPS D-brane. The CFT describing
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the first quantized open string theory is a direct product of superconformal matter with c = 15

containing the fields Xµ, ψµ for 0 ≤ µ ≤ 9, and b, c, β, γ ghost CFT with c = −15. The β, γ

system can be reexpressed in terms of the bosonised ghosts ξ, η and φ with [31]

β = ∂ξe−φ, γ = ηeφ . (2.1)

We shall be working in the large Hilbert space which includes the zero mode of the field ξ and

use the convention set in [21]. We normalize the various fields so that the leading singularities

in the various operator product expansions have the following form

∂Xµ(z)∂Xν(w) ≃ −1
2
ηµν(z − w)−2

∂φ(z)∂φ(w) ≃ −(z − w)−2

ψµ(z)ψν(w) ≃ ηµν (z − w)−1

ξ(z)η(w) ≃ (z − w)−1

b(z)c(w) ≃ (z − w)−1

eαφ(z)eβφ(w) ≃ (z − w)−αβe(α+β)w, z, w ∈ CC

eik1·X(s)eik2·X(s′) ≃ |s− s′|−2k1·k2ei(k1+k2)·X(s′), s, s′ ∈ RR . (2.2)

We shall denote by 〈
∏

iAi〉 the correlation functions in the combined matter-ghost bound-

ary CFT (BCFT) on the unit disk with vertex operators Ai inserted on the boundary. The

correlation functions are normalized as

< ξ(z)c∂c∂2c(w)e−2φ(y) >= 2 . (2.3)

The BRST operator is given by:

QB =

∮
dzjB(z) =

∮
dz{c(Tm + Tξη + Tφ) + c∂cb+ ηeφGm − η∂ηe2φb} (2.4)

where the T ’s denote the energy momentum tensors for the various fields and Gm is the matter

superconformal generator:

Tm = −(∂Xµ∂Xµ +
1

2
ψµ∂ψµ)

Gm = −i
√

2ψµ∂X
µ

Tξη = ∂ξη

Tφ = −1

2
∂φ∂φ − ∂2φ . (2.5)
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The Berkovits’ superstring field theory action is given by

S =
1

2g2

〈〈
(e−ΦQBe

Φ)
(
e−Φη0e

Φ
)
−
∫ 1

0

dte−tΦ∂te
tΦ
{
e−tΦQBe

tΦ, e−tΦη0e
tΦ
}〉〉

(2.6)

where the string field Φ is a ghost number zero and picture number 0 state of the CFT in the

large Hilbert space and the action needs to be defined by expanding (2.6) in a power series in

Φ and carefully preserving the order of the operators. The notation 〈〈 〉〉 means

〈〈A1A2...An〉〉 = 〈f (n)
1 ◦ A1(0)f

(n)
2 ◦ A2(0)...f (n)

n ◦ An(0)〉 (2.7)

with f
(n)
l ◦ Al implying the conformal transformation of the operator Al under the map f

(n)
l .

The maps f
(n)
l are given by

f
(n)
l (z) = e(2πi(l−1))/n

(
1 + iz

1 − iz

)2/n

(2.8)

2.2 SSFT on a non-BPS D-brane

In order to extend this formalism to non-BPS D-branes one needs to take into account the

GSO(−) sector that now comes into the picture. In order to keep the basic algebraic framework

unchanged, one introduces internal Chan-Paton (CP) factors and performs a trace over them.

The GSO(+) sector states carry CP factor proportional to the 2× 2 identity matrix I whereas

the GSO(−) sector states carry CP factor proportional to the Pauli matrix σ1. Consequently,

the complete string field Φ̂ is now represented by

Φ̂ = Φ+ ⊗ I + Φ− ⊗ σ1 . (2.9)

We also need to modify the QB and η0 operators by tensoring them with CP factor σ3

Q̂B = QB ⊗ σ3, η̂0 = η0 ⊗ σ3 . (2.10)

In computing the double bracket 〈〈 〉〉 of hatted operators we need to take the trace over the

internal CP factors:

〈〈Â1Â2...Ân〉〉 = Tr〈f (n)
1 ◦ Â1(0)f

(n)
2 ◦ Â2(0)...f (n)

n ◦ Ân(0)〉 . (2.11)

The Berkovits’ action looks almost the same, with all the fields and operators replaced by

hatted fields and operators respectively. We also divide the action by an extra factor of 2 in

order to compensate for the factor of 2 coming from the trace over the internal CP factors:

S =
1

4g2

〈〈(
(e−

bΦQBe
bΦ)(e−

bΦη0e
bΦ) −

∫ 1

0

dte−t
bΦ∂te

tbΦ{e−tbΦQBe
tbΦ, e−t

bΦη0e
tbΦ}
)〉〉

(2.12)
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2.3 SSFT on a D-brane-D̄-brane pair

The formalism needs to be further modified in order to extend it to the brane-antibrane system.

Here besides the internal CP factors like the ones used for the non-BPS branes one also needs

to use external CP factors. There are four kinds of strings represented by the external CP

matrices:

A :

(
1 0
0 0

)
, B :

(
0 0
0 1

)
, C :

(
0 1
0 0

)
, D :

(
0 0
1 0

)
.

The strings on the individual branes are represented by the CP factors A, B or equivalently

by I and σ3. These are in the GSO(+) sector. The GSO(−) states are the ones which live on

the strings stretched between the brane and the antibrane, – they are represented by the CP

factors C, D or equivalently by σ1, σ2. The complete string field Φ̂ now reads

Φ̂ =
(
Φ

(1)
+ ⊗ I + Φ

(2)
+ ⊗ σ3

)
⊗ I +

(
Φ

(3)
− ⊗ σ1 + Φ

(4)
− ⊗ σ2

)
⊗ σ1 . (2.13)

We follow the convention that the external CP factor will be written first followed by the

internal CP factor.

The Q̂B and η̂0 operators are now given by

Q̂B = QB ⊗ I ⊗ σ3, η̂0 = η0 ⊗ I ⊗ σ3 . (2.14)

The double brackets 〈〈 〉〉 are now defined with a double trace, over both internal and external

CP factors:

〈〈Â1Â2 . . . Ân〉〉 = Trext ⊗ Trint〈f (n)
1 ◦ Â1(0)f

(n)
2 ◦ Â2(0)...f (n)

n ◦ Ân(0)〉 . (2.15)

The action looks very much the same as for the non-BPS D-brane except that we divide by a

further factor of 2 to compensate for the trace over the external Chan-Paton factors:

S =
1

8g2

〈〈(
(e−

bΦQBe
bΦ)(e−

bΦη0e
bΦ) −

∫ 1

0

dte−t
bΦ∂te

tbΦ{e−tbΦQBe
tbΦ, e−t

bΦη0e
tbΦ}
)〉〉

. (2.16)

We shall find it convenient to consider the time direction as a circle with unit period. The

tachyon potential would then just be the negative of the action for static configurations. With

this normalization the total tension of the brane-antibrane pair is given by

T =
1

2π2g2
. (2.17)
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For explicit calculations, it is useful to expand the action in a formal power series in Φ̂. It can

be arranged in the form [21]

S =
1

4g2

∞∑

M,N=0

(−1)N

(M +N + 2)!

(
M +N

N

)〈〈(
Q̂BΦ̂

)
Φ̂M

(
η̂0Φ̂

)
Φ̂N
〉〉

. (2.18)

2.4 Separated D-branes

Our interest is in a configuration where the brane and the antibrane are separated from each

other. In this case the mass of any state of the string stretched between the brane and the

antibrane gets an additional contribution from the tension of the string compared to the string

whose both ends are on the same brane. If we denote by d′ the separation between the brane

and the antibrane then in the α′ = 1 unit this additional contribution, affecting the formula

for the mass2 in sectors C and D, is given by d′2/4π2. Consequently the vertex operators in

the GSO(−) sector, which represent the states of string stretching between the brane and the

anti-brane, gets an additional piece that reflects the effect of the winding charge that the string

carries due to the stretching between the branes. If we denote by Y the world-sheet scalar

along the direction of separation and if Ỹ denotes the field dual to Y then the additional piece

in the vertex operator is given by2

∆ = e±id
′ eY /2π = e±id

eY (2.19)

where d = d′/2π and the + and − signs refer to sectors C and D respectively.

We shall now describe the off-shell vertex operators associated with the string field compo-

nents we use in the level truncation analysis. First of all we have the tachyon vertex operator.

For the non-BPS D-brane, the zero momentum tachyon vertex operator is given by

V̂T = ξce−φ ⊗ σ1 . (2.20)

On a separated brane-antibrane pair the tachyon vertex operator must carry the factors given

in (2.19). Since we require that the tachyon that condenses is real, the vertex operator must

2One way to understand eq.(2.19) is to compactify the direction y transverse to the brane on a circle of large

radius. Under T-duality this gets mapped to a dual circle S̃1 of small radius, and the original Dp-D̄p system
gets mapped to a D(p+ 1)-D̄(p+ 1) brane configuration wrapped on the circle, with one of the branes carrying

a Wilson line proportional to d′ along S̃1. Thus an open string stretched between the brane and the anti-brane
will carry momentum proportional to d′ along S̃1. With the normalization convention we have chosen this

momentum is equal to ±d′/2π. Thus the vertex operator representing these states will carry e±id′ eY factors.
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be hermitian. This gives

V̂T = ξce−φeid
eY ⊗

(
0 1
0 0

)
⊗ σ1 + ξce−φe−id

eY ⊗
(

0 0
1 0

)
⊗ σ1

=

(
0 ξce−φeid

eY

ξce−φe−id
eY 0

)
⊗ σ1 . (2.21)

V̂T has total conformal weight d2 − 1
2
. Furthermore we have

Q̂BV̂T =

((
d2 − 1

2

)
ξc∂ce−φeid

eY − d√
2
ψyce

ideY − ηeφeid
eY
)
⊗
(

0 1
0 0

)
⊗ iσ2

+

((
d2 − 1

2

)
ξc∂ce−φe−id

eY +
d√
2
ψyce

−ideY − ηeφe−id
eY
)
⊗
(

0 0
1 0

)
⊗ iσ2 ,

(2.22)

η̂0V̂T =

(
0 ce−φeid

eY

ce−φe−id
eY 0

)
⊗ iσ2 , (2.23)

where ψy is the world-sheet superpartner of Ỹ on the boundary.

The string field theory action has two ZZ2 symmetries under which the tachyon vertex op-

erator V̂T is even. The first one corresponds to Y → −Y , ψy → −ψy together with conjugation

by the CP factor σ1 × I. We shall denote the generator of this symmetry by σ. The second

one is the so called ‘twist symmetry’ under which a vertex operator with a conformal weight h

from the oscillators (not counting the contribution from the e±id
eY factors) picks up a phase of

(−1)h+1 for integer h and (−1)h+ 1

2 for half integer h, and the Chan-Paton factor associated with

this vertex operator gets transposed. We shall accompany this by the Y → −Y , ψy → −ψy
transformation so that the tachyon vertex operator V̂T is even under this transformation. We

shall denote the generator of this symmetry by τ . We shall restrict to string field configurations

which are even under the σ and τ transformations.

At the next level we have four more string fields associated with the vertex operators

V̂
(1)
K = ξce−φψy ⊗

(
1 0
0 −1

)
⊗ I

V̂
(2)
K = ξce−φψy ⊗

(
1 0
0 1

)
⊗ I

V̂
(1)
M = c∂cξ∂ξe−2φ ⊗

(
1 0
0 −1

)
⊗ I

V̂
(2)
M = c∂cξ∂ξe−2φ ⊗

(
1 0
0 1

)
⊗ I , (2.24)
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each of conformal weight 0. Of these the vertex operators V̂
(2)
K and V̂

(1)
M are odd under σ. Thus

we can set the components of the string field along this direction to zero. The vertex operator

V̂
(2)
M on the other hand is odd under τ . Thus we can set the coefficient of this operator also

to zero. As a result we are left with only the vertex operator V̂
(1)
K which is even under both σ

and τ . The field associated with this vertex operator has the interpretation of being the mode

that shifts the branes in the opposite direction by a distance proportional to its expectation

value.

From eq.(2.24) we get

Q̂BV̂
(1)
K =

(
i
√

2 c∂Y + ηψye
φ
)
⊗
(

1 0
0 −1

)
⊗ σ3 , (2.25)

η̂0V̂
(1)
K = ce−φψy ⊗

(
1 0
0 −1

)
⊗ σ3 . (2.26)

3 Tachyon vacuum

Now, with the ingredients prepared, we can apply the method of level truncation to study

tachyon condensation on separated branes. We shall use the expanded form (2.18) of the

Berkovits’ action to evaluate the relevant terms at various levels. We define the level of a

string field component multiplying a vertex operator of conformal weight h to be h + 1
2

so

that the zero momentum tachyon at zero separation between the brane and the antibrane has

weight zero.

3.1 Level d2 Computation

The only field we need to keep in the analysis at the lowest level (d2) is the tachyon field:

Φ̂ = tV̂T ≡ T̂ . (3.1)

In order to get a non-vanishing correlation function the total φ charge must add up to −2.

This restricts the form of the pure tachyon potential to the form at2+bt4, since terms involving

more than four powers of T̂ (ı.e. M +N > 2 terms in (2.18)) vanish by φ charge conservation.

From the expanded form (2.18), the quadratic term in the action reads

S2 =
1

8g2
〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 (3.2)

10



We use (2.22) and (2.23) to write down the form of the two-point function and then compute

it using the standard correlation functions on the unit disk:3

〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 = 2

(
d2 − 1

2

){
〈〈(ξc∂ce−φeideY )(ce−φe−id

eY )〉〉

+〈〈(ξc∂ce−φe−ideY )(ce−φeid
eY )〉〉

}
t2 . (3.3)

Using

〈〈(ξc∂ce−φe±ideY )(ce−φe∓id
eY )〉〉 = (f

(2)′
1 (0)f

(2)′
2 (0))d

2− 1

2 〈ξc∂ce−φe±idX(1)ce−φe∓idX(−1)〉disk

= −1 (3.4)

we get

〈〈(Q̂BT̂ )(η̂0T̂ )〉〉 = −2(2d2 − 1)t2 . (3.5)

This gives

S2 = − 1

2g2

(
d2 − 1

2

)
t2 . (3.6)

The quartic term in the action is

S4 = − 1

48g2

(〈〈
(Q̂BT̂ )T̂ (η̂0T̂ )T̂

〉〉
−
〈〈

(Q̂BT̂ )T̂ T̂ (η̂0T̂ )
〉〉)

. (3.7)

Here we implicitly used the ”twist symmetry” to simplify the expression. We compute the

correlation functions in the same way as above. For example we have

〈〈(Q̂BT̂ )T̂ (η̂0T̂ )T̂ 〉〉 = 2
〈〈

(ηeφeid
eY )(ξce−φe−id

eY )(ce−φeid
eY )(ξce−φe−id

eY )
〉〉

+2
〈〈

(ηeφe−id
eY )(ξce−φeid

eY )(ce−φe−id
eY )(ξce−φeid

eY )
〉〉

(3.8)

and a similar expression for 〈〈(Q̂BT̂ )T̂ T̂ (η̂0T̂ )〉〉. The calculation yields

g2S4 = − t4

12
(4 + 2) (3.9)

The tachyon potential V (t, d) is just the negative of the action as we have chosen the time

coordinate to be periodic with a period 1. This gives

V (t, d) = −(S2 + S4) =
1

2g2

[(
d2 − 1

2

)
t2 + t4

]
(3.10)

3The magnitude of the correlation function is easiest to compute on the disk; however to determine the sign

we map the disk to the upper half plane so that f
(n)
i (0) < f

(n)
j (0) for i < j, and use the rules given in (2.2).
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We now minimize the potential with respect to t. This gives

[
(1 − 2d2) − 4t2

]
t = 0 (3.11)

The solution t∗ to this equation corresponding to the minimum of V (t, d) is

t2∗ =
1

4
(1 − 2d2) for d2 < 1/2 (3.12)

t∗ = 0 for d2 ≥ 1/2. (3.13)

For d2 < 1/2, the value of the potential at the minimum is given by:

Vmin = − 1

32g2
(1 − 2d2)2 . (3.14)

For d = 0 eq.(3.10)-(3.14) reduce to

V (t, d = 0) =
1

g2

(
−1

4
t2 +

1

2
t4
)

t2∗ = 1/4 ⇒ t∗ = ±1/2

Vmin = − 1

32g2

These are in perfect agreement with the level zero calculations in [20, 21].

3.2 Including the shift field

Next we wish to compute the tachyon potential to the next non-trivial order. At this level we

need to include the level 1
2

shift field associated with the vertex operator V̂
(1)
K . Thus the string

field has the expansion

Φ̂ = tV̂T + χV̂
(1)
K ≡ T̂ + K̂ . (3.15)

We shall collect terms in the potential up to level (1 + 2d2). Again all terms with higher than

four powers of the string field vanish by φ charge conservation. Thus we need to examine the

terms of order χ2, t2χ and t2χ2. Explicit computation to this order shows that the coefficient

of the χ2 term vanishes and the cubic and quartic terms are given by

S ′
3 = − 1√

2 g2
d

(
16

27

)d2− 1

2

t2χ , (3.16)

S ′
4 = − 1

g2

(
2

1

2
−d2 + 2−1−2d2

)
t2χ2 . (3.17)

12
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Figure 1: Plot of the minimum of tachyon potential versus distance. We have plotted f(x)=
level d2, g(x)= level 1/2 and h(x)= expected exact answer. We have used the unit g2 = 1/32.

Adding −S ′
3 − S ′

4 to the previous form of the tachyon potential we get

V (t, χ, d) =
1

2g2

[
−
(

1

2
− d2

)
t2 + t4 +

√
2d

(
16

27

)d2− 1

2

t2χ+
(
2

3

2
−d2 + 2−2d2

)
t2χ2

]
(3.18)

Eliminating χ using its equation of motion gives an effective tachyon potential of the form:

Veff (t) =
1

2g2

[
−
(

1

2
− d2 +

1

2
d2

(
16

27

)2d2−1 (
2

3

2
−d2 + 2−2d2

)−1
)
t2 + t4

]
. (3.19)

From this we see that the effect of the field χ is to make the tachyon more tachyonic. This is

not surprising since we expect that once a tachyon vacuum expectation value is switched on,

the field χ will develop a potential that tries to pull the brane and the antibrane towards each

other. This is turn will reduce the tachyon mass2. Minimizing the effective potential (3.19)

with respect to t now gives

Vmin = − 1

32g2

[
1 − 2d2 + d2

(
16

27

)2d2−1 (
2

3

2
−d2 + 2−2d2

)−1
]2

. (3.20)

On plotting the minimum of the potential as a function of d (see Fig. 1) we see that

the dependence on the distance d is less pronounced after inclusion of the level 1/2 field as

13



compared to the case of the pure tachyon potential. We also see that the critical value dc of d

up to which the tachyon potential has a minimum is now given by the solution to the equation

1 − 2d2
c + d2

c

(
16

27

)2d2c−1 (
2

3

2
−d2c + 2−2d2c

)−1

= 0 . (3.21)

This is larger than the original value 1/
√

2 indicating that the after taking into account cor-

rections due to higher level fields the minimum of the potential remains below zero for a larger

range of d.4 We expect the dependence on d to reduce as we include more and more fields into

the analysis. The true minimum of the tachyon potential should not depend on what distance

we separate out the branes initially. This has been shown schematically in Fig. 1 .

4 Rolling non-universal tachyon

In this section we shall set up the formalism for describing the rolling tachyon solution on

a separated brane-antibrane pair. We begin by considering an unstable D-brane system in

bosonic string theory, containing a primary boundary operator V of dimension h < 1. This

would correspond to a tachyon of mass2 = (h − 1) in the spectrum. Our goal will be to

construct a time dependent solution in the theory that describes the rolling of this tachyon

away from the maximum of its potential.

Let X = −iX0 denote the world-sheet scalar associated with the Wick rotated time coor-

dinate. Then the operator

Ṽ = V ei
√

1−hX , (4.1)

is an operator of dimension 1. This will be an exactly marginal operator if a product of

arbitrary number of these operators does not contain an operator of dimension 1. Since a

product of n of these operators contains a factor of ein
√

1−hX of dimension n2(1 − h), we see

that the condition for exact marginality is easily achieved if n2(1 − h) > 1 for n ≥ 2, ı.e. if

h <
3

4
. (4.2)

Since

Ṽ (u)Ṽ (u′) = K(u− u′)2−4he2i
√

1−hX(u′) + · · · (4.3)

4We should note however that for d2 ≥ 1/2 the level (1 + 2d2) terms in the potential are of higher level
than the level 2 terms arising from the χ4 terms. Thus for a consistent approximation we must also include
the quartic coupling of the shift field.

14



with K denoting a constant and · · · denoting less singular terms, we see that for h satisfying

(4.2) the power of (u− u′) in V (u)V (u′) is larger then −1.

Consider now deforming the theory by adding to the action the term

λ

∫
du Ṽ (u) . (4.4)

Then the correlation functions in the deformed theory are computed by inserting into the

correlation function of the undeformed theory the operator

exp

[
−λ

∫
du Ṽ (u)

]
. (4.5)

After expanding the exponential factor we encounter multiple integrals of the form
∫
du1

∫
du2 · · ·

∫
dun Ṽ (u1) · · · Ṽ (un) . (4.6)

Since the operator product Ṽ (ui)Ṽ (uj) is less singular than (ui − uj)
−1, the above integral,

inserted into a correlation function of the undeformed theory, gives completely regular inte-

grals.5 Thus the correlation functions of the deformed theory are determined in terms of the

correlation functions of the undeformed theory without any need to regularize the theory.

The operator Ṽ defined in (4.1) is of course not hermitian and hence the deformation (4.5)

does not produce a physical background of the open string theory. This problem disappears af-

ter inverse Wick rotation X → −iX0. In this case the operator Ṽ (u) becomes V (u) eX
0(u)

√
1−h2

and the deformed theory describes a physical open string background. This in fact describes

the rolling of the tachyon associated with the operator V away from its maximum.

Generalization to the case of unstable D-branes in superstring theory is straightforward.

Suppose we have a vertex operator described by the superfield V−1 + θV0 with (V−1, V0) having

dimensions (h, h+ 1
2
) and θ denoting the fermionic world-sheet coordinate. If V−1 is a supercon-

formal primary then this describes a tachyon on the D-brane world-volume of mass2 = (h− 1
2
).

We now denote as before by X = −iX0 the world-sheet scalar associated with the Wick rotated

time coordinate, and by ψ = −iψ0 its fermionic superpartner. Then the vertex operator

Ṽ (θ) = ei (X+θψ)
√

1

2
−h (V−1 + θV0) ≡ (Ṽ−1 + θṼ0) (4.7)

5The exceptions are correlation functions of boundary operators whose product with Ṽ (u) have stronger
than (u − u′)−1 singularity. Such boundary operators must be renormalized in the deformed theory although
the deformed theory itself is finite. In our analysis we shall consider correlation functions of bulk operator(s)
in the deformed theory, inserted at point(s) away from the boundary. Hence we do not encounter the problem
mentioned above.
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describes a primary superfield whose lowest component has dimension 1/2. Here

Ṽ−1 = Ṽ (θ)|θ=0 = eiX
√

1

2
−h V−1, Ṽ0 =

∫
d θ Ṽ (θ) = eiX

√
1

2
−h

(
V0 + iψV−1

√
1

2
− h

)
,

(4.8)

Hence the highest component Ṽ0 of the superfield Ṽ (θ) is marginal. In order for it to be exactly

marginal we need its operator product with itself not to contain any other marginal deforma-

tion. Repeating the analysis for bosonic string theory we see that this can be guaranteed

if

h <
1

4
. (4.9)

Furthermore in this case the operator product of (4.8) with itself has a singularity that is

milder than (u− u′)−1. Thus the correlation functions in the theory deformed by the operator

λ

∫
du Ṽ0(u) , (4.10)

are unambiguously determined in terms of the correlation functions in the undeformed theory

without any need to regularize the theory.

As in the case of bosonic string theory, the operator Ṽ0 defined in (4.8) is not hermitian

and hence deformation (4.10) does not represent a physical open string background. However

by the inverse Wick rotation iX → X0, iψ → ψ0 we get a hermitian vertex operator

Ṽ0 = eX
0
√

1

2
−h

(
V0 + ψ0V−1

√
1

2
− h

)
. (4.11)

Thus the deformation of the original theory by this operator produces a physical open string

background.

We conclude this section with two examples. The first example is a Dp-D̄p brane wrapped

on a circle of radius R. Let y denote the coordinate along the compact circle and Y and ψy

be the associated world-sheet scalar and fermion fields respectively. For R >
√

2 there is a

tachyon of mass2 = 1
R2 − 1

2
described by the vertex operator:

V−1 + θV0 = σ1 cos

(
Y + θψy

R

)
= σ1

(
cos

Y

R
− 1

R
θ ψy sin

Y

R

)
, (4.12)

where the Pauli matrix σ1 represents the external Chan-Paton factor.6 V−1 has dimension

6Note that we have dropped the ‘hat’ and the internal CP factor from the vertex operator. It plays no role
in our analysis since we always have even number of GSO(−) operators in a correlator and hence the trace
over the product of internal CP factors will always give an overall factor of 2. This can be absorbed into the
normalization of the disk partition function.
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h = R−2. Thus (4.8), (4.9) shows that for

R > 2 (4.13)

we can construct an exactly marginal deformation generated by the operator7

Ṽ0 = σ1 e
iX

q
1

2
− 1

R2

(
−ψy

1

R
sin

Y

R
+ iψ

√
1

2
− 1

R2
cos

Y

R

)
. (4.14)

The operator product Ṽ (u)Ṽ (u′) is less singular than (u − u′)−1 and hence the correlation

functions of the deformed theory are free from any singularity.

The second example, which we shall analyze in detail in later sections, is a Dp-D̄p brane pair

separated by a distance 2πd in the transverse direction. Let y denote the transverse coordinate

along the direction of separation of the branes, Ỹ denote the world-sheet scalar dual to the

scalar field Y associated with the coordinate y, and ψ̃y denote the fermionic superpartner of

Ỹ . In this case for d < 1√
2

there is a tachyonic mode on this system, represented by the vertex

operator

V−1+θV0 = σ+ ei(
eY+θ eψy) d+σ− e−i(

eY+θ eψy) d = σ+ (1+iθψ̃y d) e
ieY d+σ− (1−iθψ̃y d) e−ieY d , (4.15)

where σ± are the external Chan-Paton factors

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (4.16)

Since V−1 has dimension h = d2 we see from (4.8), (4.9) that for

d <
1

2
(4.17)

we can construct an exactly marginal deformation generated by the operator

Ṽ0 = i σ+ eiX
√

1

2
−d2 ei

eY d ψ+ + i σ− eiX
√

1

2
−d2 e−i

eY d ψ− (4.18)

where

ψ+ =

(
ψ̃y d+ ψ

√
1

2
− d2

)
, ψ− =

(
−ψ̃y d+ ψ

√
1

2
− d2

)
. (4.19)

Again the operator product Ṽ (u)Ṽ (u′) is less singular than (u−u′)−1 and hence the correlation

functions of the deformed theory are free from any singularity.

7For R =
√

2 the effect of switching on this operator was analyzed in [32, 33]. Although it appears to be
the sum of two different exactly marginal operators each of which gives a solvable deformation, these operators
anticommute and hence the resulting theory does not appear to be solvable via known methods.
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5 Time dependence of pressure on a separated brane-

antibrane system with a rolling tachyon

We consider a brane-antibrane system separated by a distance 2πd with d < 1
2

in the presence

of a rolling tachyon background generated by the deformation

λ

∫
du Ṽ0(u) , (5.1)

with Ṽ0 given in (4.18). Let p(x) denotes the x-dependent tangential pressure of the brane

generated by this deformation and p0 be the pressure in the absence of this deformation.

p(x)/p0 has a Fourier expansion of the form

p(x)/p0 =
∑

n≥0

ane
inx

√
1

2
−d2 , (5.2)

for constants an. The coefficients an can be found by examining the boundary state of the

deformed brane if it is known, or equivalently from the disk one point function of the matter

vertex operator e−inX
√

1

2
−d2 inserted at the center of the unit disk in the deformed theory:8

an = 〈e−inX(0)
√

1

2
−d2〉deformed , (5.3)

where 〈 〉deformed denotes the correlation function in the deformed theory, normalized such that

in the undeformed theory the disk partition function is 1. Representing the deformation of the

Euclidean world-sheet action as

λ

∫
duṼ0(u) , (5.4)

with u labeling the coordinates on the boundary of the disk, we can reexpress an as [33]

an =
1

2

∞∑

r=0

λ2r

(2r)!

∫
du1 · · · du2r

〈
e−inX(0)

√
1

2
−d2Tr

(
Ṽ0(u1) · · · Ṽ0(u2r)

)〉

0
, (5.5)

where 〈 〉0 denotes the correlation function in the undeformed theory on the unit disk and

Tr denotes trace over the Chan-Paton factors. In (5.5) we have used the fact that the trace

over the Chan-Paton factor vanishes if we have odd number of Ṽ0 insertions on the boundary.

8The full boundary state contains matter and ghost parts, but the ghost part of the correlation function as
well as the matter part involving fields other than X , Ỹ and their fermionic partners cancel between p(x) and

p0, leaving behind only the part involving X , Ỹ and their fermionic partners.
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The overall factor of 1/2 is a reflection of the factor of 2 appearing in the expression for the

unperturbed pressure p0 from the trace over the Chan-Paton factors. Using the results

(
σ+
)2

=
(
σ−)2 = 0 , (5.6)

we see that only two strings of Chan-Paton factors contribute to the correlation function –

Tr(σ+σ−σ+σ− · · ·) and Tr(σ−σ+σ−σ+ · · ·). The associated vertex operators must be cyclically

ordered on the boundary of the unit disk. Both strings give the same contribution. Finally

X-momentum conservation, together with the fact that each of the Ṽ0 carries X-momentum√
1
2
− d2, shows that the correlator (5.5) is non-vanishing only when n = 2r. Using this we

can express (5.5) as

a2r+1 = 0 for r ∈ ZZ

a2r = λ2r

∫ 2π

0

dt1

∫ t1

0

dt2 · · ·
∫ t2r−1

0

dt2r
〈
e−2irX(0)

√
1

2
−d2 eiX(u1)

√
1

2
−d2 · · · eiX(u2r)

√
1

2
−d2

× ei
eY (u1) d e−i

eY (u2) d · · · eieY (u2r−1) de−i
eY (u2r) d

× (i)2r ψ+(u1)ψ
−(u2)ψ

+(u3)ψ
−(u4) · · ·ψ+(u2r−1)ψ

−(u2r)

〉
, ui ≡ eiti ,

for r ∈ ZZ, r ≥ 0 . (5.7)

Note that we have replaced
∫ ∏

dui by
∫ ∏

i dti, – this requires that in computing the correla-

tors on the right hand side of (5.7) all the fields need to be defined in the t-coordinate system.

The part of the correlator involving the scalar fields X and Ỹ gives

∏

i<j

|ui − uj|1−2d2+2(−1)i+jd2 =
∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

. (5.8)

On the other hand the fermionic correlators can be calculated with the help of Wick’s theorem

using the two point functions9

〈ψ+(u1)ψ
+(u2)〉 = 〈ψ−(u1)ψ

−(u2)〉 =
i

2

ei(ti+tj)/2

u1 − u2
=

1

2

1

2 sin
ti−tj

2

,

〈ψ+(u1)ψ
−(u2)〉 = i

(
1

2
− 2 d2

)
ei(ti+tj)/2

u1 − u2
=

(
1

2
− 2 d2

)
1

2 sin
ti−tj

2

. (5.9)

9The extra factor of iei(ti+tj)/2 comes from the conformal transformation of ψ± from the u to t coordinate.
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Although the fermionic correlator in eq.(5.7) contains many terms we can organize them in

a compact form by collecting all terms in which a certain number (say s) of ψ+ pairs have

been contracted with each other, an equal number of ψ− pairs have been contracted with each

other, and the (r − 2s) left-over ψ+’s have been contracted with (r− 2s) left-over ψ−’s. After

taking into account the combinatoric factors we can express (5.7) as

a2r = (−1)r λ2r

∫ 2π

0

dt1

∫ t1

0

dt2 · · ·
∫ t2r−1

0

dt2r
∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

[r/2]∑

s=0

(1 − 4d2)r−2s(−1)s

(r − 2s)!(s!)222s2r

[ r−1∏

l=2s

(
2 sin

t2l+1 − t2l+2

2

)−1

s−1∏

k=0

{(
2 sin

t4k+1 − t4k+3

2

)−1(
2 sin

t4k+2 − t4k+4

2

)−1
}

+(−1)P+P ′ × permutations P of t1, t3, · · · t2r−1 × permutations P ′ of t2, t4, · · · t2r
]
,

(5.10)

where [r/2] denotes the integral part of r/2.

Another compact representation of the correlators is provided by the superfield represen-

tation [33]. If we denote by Ṽ±(u, θ) the superfields

V±(u, θ) = ei(X+θψ)
√

1

2
−d2 e±i(

eY+θ eψy) d , (5.11)

then the expression for a2r given in (5.7) can be written as

a2r = λ2r

∫ 2π

0

dt1

∫ t1

0

dt2 · · ·
∫ t2r−1

0

dt2r

∫
dθ1 · · ·

∫
dθ2r

〈
e−2irX(0) Ṽ +(u1, θ1)Ṽ

−(u2, θ2)Ṽ
+(u3, θ3)Ṽ

−(u4, θ4) · · · Ṽ +(u2r−1, θ2r−1)Ṽ
−(u2r, θ2r)

〉

= λ2r

∫ 2π

0

dt1

∫ t1

0

dt2 · · ·
∫ t2r−1

0

dt2r

∫
dθ1 · · ·

∫
dθ2r

∏

i<j

[
2 sin

ti − tj
2

+ θiθj

]1−2d2+2(−1)i+jd2

. (5.12)

After integration over θi eq.(5.12) reduces to (5.10).

Once the coefficients an have been calculated, we can use (5.2) to calculate p(x). In fact

after the inverse Wick rotation ix → x0 we get

p(x)/p0 =
∑

r≥0

a2re
2rx0

√
1

2
−d2 . (5.13)
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Figure 2: Plot of the pressure as a function of v = e2
√

1

2
−d2x0

for various values of d.

Since a2r ∝ λ2r, we can absorb λ into an additive constant in x0. Thus by suitable choice of

the origin of the x0 coordinate we can set λ = (
√

2π)−1. In this case (5.10) reduces to

a2r = (−1)r
∫ 2π

0

dt1
2π

∫ t1

0

dt2
2π

· · ·
∫ t2r−1

0

dt2r
2π

∏

i<j

∣∣∣∣2 sin
ti − tj

2

∣∣∣∣
1−2d2+2(−1)i+jd2

[r/2]∑

s=0

(1 − 4d2)r−2s (−1)s

(r − 2s)!(s!)222s

[ r−1∏

l=2s

(
2 sin

t2l+1 − t2l+2

2

)−1

s−1∏

k=0

{(
2 sin

t4k+1 − t4k+3

2

)−1(
2 sin

t4k+2 − t4k+4

2

)−1
}

+(−1)P+P ′ × permutations P of t1, t3, · · · t2r−1 × permutations P ′ of t2, t4, · · · t2r
]
.

(5.14)

6 Numerical results

We have evaluated the first few coefficients given in (5.14) using Monte Carlo integration

techniques. The results are given in table 1. The integrand is generated using a code in

Mathematica and then we use VEGAS [34] to do the multidimensional integrals. Since these

give the first few terms in the expansion of p(x0)/p0 in a power series in v ≡ e2x
0
√

1

2
−d2 , we
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r=0 r=1 r=2 r=3 r=4

d=0 1 0.4999999 (1.5E-07) 0.2500775 (3.5E-05) 0.1249626 (2.3E-05) 0.06246 (1.0E-04)

d=0.1 1 0.4803255 (1.6E-07) 0.2284956 (3.2E-05) 0.1079812 (2.0E-05) 0.05088 (1.8E-05)

d=0.2 1 0.4250437 (1.8E-07) 0.1719809 (2.4E-05) 0.0671200 (1.4E-05) 0.02550 (1.3E-05)

d=0.3 1 0.3442298 (3.5E-07) 0.1003526 (1.8E-05) 0.0243640 (9.6E-05) 0.00413 (2.2E-05)

d=0.4 1 0.2512369 (1.0E-05) 0.0338092 (5.0E-05) -0.0039147 (2.9E-05) -0.00429 (2.8E-05)

d=0.5 1 0 -0.0416668 (1.5E-07) 0 0.001729 (1.2 E-05)

Table 1: The table containing the coefficients (−1)ra2r calculated from (5.14). The numbers
in the parenthesis are the estimated errors of the numerical calculations.

Separation (2,2) Pade Approximation Late Time Pressure

d=0 {1 + 2kv}/{1 + (1/2 + 2k)v + kv2} 0

d=0.1 {1 + (0.20032)v + (0.00052)v2}/{1 + (0.68065)v + (0.09895)v2} 0.00526

d=0.2 {1 + (0.23555)v + (0.00067)v2}/{1 + (0.6606)v + (0.10945)v2} 0.00612

d=0.3 {1 + (0.27651)v − (0.00325)v2}/{1 + (0.6207)v + (0.11007)v2} -0.02936

d=0.4 {1 + (0.19569)v − (0.00283)v2}/{1 + (0.4469)v + (0.07565)v2} -0.03741

d=0.5 {1 − (0.000177)v2}/{1 + (0.04149)v2} -0.00427

Table 2: The table containing the Pade approximant results for the function representing

p(x0)/p0. Here v ≡ e2x
0
√

1

2
−d2 . The last column gives the late time behaviour of the pressure

if we take these expressions seriously. In the first row k is an arbitrary constant.

cannot reliably estimate the late time behaviour of p(x0) using these results. A plot of pressure

as a function of v ≡ e2x
0
√

1

2
−d2 is shown in Fig. 2. From this it seems that the function does

not display the wild oscillation of the kind seen in the tachyon profile computation associated

with the rolling tachyon solution in string field theory; instead it may have a finite radius of

convergence, and may admit an analytic continuation to infinite time as in the case of the

behaviour of the pressure in the d = 0 case. With our present data it is not possible to make

any reliable estimate of the asymptotic value of the pressure. Nevertheless we give in table 2

the results of fitting a ratio of quadratic functions of v to the series expansion. For the d = 0

case the exact answer is known and it agrees with the result given in the table. If we take these

results seriously then within numerical errors these results are consistent with the hypothesis

that at late time the pressure vanishes.
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7 Discussion

We have seen in §5 that given a tachyon with mass2 less than a certain critical value we

can generate a deformation of the original CFT by an exactly marginal operator describing

a rolling tachyon solution. Furthermore the deformed theory does not require any additional

renormalization beyond those required to renormalize the original CFT.

It turns out that precisely for these ranges of tachyon mass2 we can generate a rolling

tachyon solution of open string field theory following the method of [35–43, 46].10 Let us first

consider the case of open bosonic string theory. In this case if we have a matter sector vertex

operator Ṽ of dimension 1, then we can generate a non-singular solution of open bosonic

string field theory provided integrals of the form
∫
du′Ṽ (u)Ṽ (u′) do not diverge in the region

u′ ≃ u [35,36]. But this is precisely the condition that Ṽ (u)Ṽ (u′) will have a singularity softer

than (u− u′)−1. Similarly the condition under which one can generate a non-singular solution

in open superstring field theory corresponding to a dimension half matter vertex operator Ṽ−1

and its dimension 1 superpartner Ṽ0 is that
∫
du′Ṽ−1(u)Ṽ0(u

′) and
∫
du′Ṽ0(u)Ṽ0(u

′) do not

diverge from u′ ≃ u region [37, 38, 40]. For Ṽ−1 and Ṽ0 given in eq.(4.8) this happens precisely

for h < 1
4
, ı.e. when (4.9) is satisfied. Thus both for bosonic and superstring field theory

we can construct a non-singular solution describing a rolling non-universal tachyon when the

boundary CFT associated with the solution can be defined without any need to regularize and

renormalize the theory. It may be of interest to study these solutions numerically.
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