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Abstract

We construct the partition function of 1/8 BPS dyons in type II string theory on T 6 from

counting of microstates of a D1-D5 system in Taub-NUT space. Our analysis extends the

earlier ones by Shih, Strominger and Yin and by Pioline by taking into account the walls of

marginal stability on which a 1/8 BPS dyon can decay into a pair of half-BPS dyons. Across

these walls the dyon spectrum changes discontinuously, and as a result the spectrum is not

manifestly invariant under S-duality transformation of the charges. However the partition

function is manifestly S-duality invariant and takes the same form in all domains of the moduli

space separated by walls of marginal stability, – the spectra in different domains being obtained

by choosing different integration contours along which we carry out the Fourier transform of

the partition function. The jump in the spectrum across a wall of marginal stability, calculated

from the behaviour of the partition function at an appropriate pole, reproduces the expected

wall crossing formula.
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1 Introduction, conventions and summary

Since the original proposal of Dijkgraaf, Verlinde and Verlinde [1] for quarter BPS dyon spec-

trum in heterotic string theory compactified on T 6, there has been extensive study of dyon

spectrum in a variety of N = 4 supersymmetric string theories [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20]. Typically in these theories the dyon spectrum jumps discontinuously

across walls of marginal stability in the moduli space on which a quarter BPS dyon can decay

into a pair of half-BPS dyons. One of the important results which has emerged out of the re-

cent studies is that the dyon partition function does not change across these walls of marginal

stability. Instead in order to extract the degeneracy – or more appropriately an index – in

different domains bounded by walls of marginal stability, the partition function needs to be

integrated along different contours. As a result the jump in the index across a wall of marginal

stability may be determined by evaluating the residue of the integrand at the pole that the

contour crosses as we deform it from its initial position to the final position [13,14,16,17,19,20].

Given this result in N = 4 supersymmetric string theories it is natural to explore if this

generalizes to other string theories with different amounts of supersymmetry. In this paper we

shall extend the analysis to the 1/8 BPS dyon partition function of N = 8 supersymmetric

string theory obtained by compactifying type IIB string theory on a six dimensional torus.

The dyon spectrum in this theory has been analyzed before in [21, 22, 5] using 4D-5D lift [23]

and earlier results of [24] for the partition function of D1-D5 system in type IIB string theory

compactified on T 5. In our analysis we include a larger set of dyons charges – including those

corresponding to configurations with no D1-branes – in the definition of the partition function.

This new partition function turns out to have properties similar to those of N = 4 super-

symmetric string theories, ı.e. the same partition function, integrated along different contours,

gives us the index of 1/8 BPS dyons in different domains in the moduli space separated by
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walls of marginal stability. Furthermore, the partition function has manifest S-duality invari-

ance. We also verify explicitly that the jump in the index across a wall of marginal stability,

computed from the behaviour of the partition function near an appropriate pole, reproduces

the expected wall crosing formula [25, 26, 27, 28, 29, 30, 31,32, 33].

We shall now give a brief summary of our analysis and the results. The analysis proceeds

exactly parallel to that for N = 4 supersymmetric string theories described in [9, 10, 11, 18].

We consider type IIB string theory compactified on a six dimensional torus denoted as T 4 ×

S1× S̃1 and consider in this theory a 1/8 BPS configuration consisting of a Kaluza-Klein (KK)

monopole – or equivalently a Taub-NUT space – associated with the S̃1 circle, a D5-brane

wrapped on T 4 × S1 and Q1 D1-branes wrapped along S1, carrying −n units of momentum

along S1 and J units of momentum along S̃1. We shall call this the first description. There is

a second description, obtained from the above configuration by applying an SL(2, ZZ) duality

of the ten dimensional type IIB string theory, followed by an R → 1/R duality on the circle

S̃1 that takes it to a dual circle Ŝ1 and finally making a six dimensional string-string duality

transformation that dualizes the NS-NS 2-form field. Using the sign conventions reviewed

in [18] we find that this maps the original configuration to a KK monopole associated with the

circle Ŝ1, −Q1 NS 5-branes wrapped on T 4 × S1, −J NS 5-branes wrapped on T 4 × Ŝ1 and a

fundamental type II string wrapped on S1, carrying −n units of momentum along S1. In the

second description, we denote by Q and P the 12 dimensional electric and magnetic charge

vectors in the convention where the elementary strings carry electric charges and the solitons

carry magnetic charges. We also denote by L the SO(6, 6) continuous T-duality invariant

metric of signature (6,6) and define

Q2 = QT LQ, P 2 = P TLP, Q · P = QT LP . (1.1)

Then for the configuration described above we have [18]

Q2 = 2n, P 2 = 2Q1, Q · P = J . (1.2)

In order to develop our analysis in close analogy to that in N = 4 supersymmetric string

theories we shall restrict our attention to charge vectors of the type described above, or those

which can be obtained from them by T-duality and electric-magnetic S-duality transformation

in the second description of the theory. This allows us to have charges associated with mo-

mentum and fundamental string winding numbers along the six circles, and also Kaluza-Klein

monopole and H-monopole charges associated with these circles, but does not allow us to have
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D-brane charges. We shall also restrict the moduli of the theory to lie in a subspace where

no RR sector fields in the second description are switched on. This corresponds to requiring

the states and the moduli to be invariant under (−1)FL (or (−1)FR), and is a consistent set of

restrictions. In this restricted subspace the duality group is a product of the discrete T-duality

group SO(6, 6; ZZ) and the discrete S-duality group SL(2, ZZ). Since we shall be computing

an index which does not change continuously under variation of the moduli, we expect our

results to be valid at least within an open neighbourhood of this restricted subspace in the full

moduli space.1

A 1/8 BPS state of the theory carrying the charges (Q, P ) given above breaks 28 of the

32 supersymmetry generators of the theory. As a result it is accompanied by 28 real fermion

zero modes and quantization of these fermion zero modes gives a 214-fold degenerate state. A

generic 1/8 BPS state is obtained by taking a tensor product of this basic supermultiplet with

a supersymmetry singlet state. We shall call such a state bosonic or fermionic depending on

whether this supersymmetry singlet state is bosonic or fermionic, and denote by d(Q, P ) the

number of bosonic supermultiplets minus the number of fermionic supermultiplets carrying

charges (Q, P ). This number can be calculated from the helicity supertrace [34, 35]

− B14 = −
1

14!
TrQ,P (−1)F (2h)14 , (1.3)

where h denotes the helicity of a state, F denotes the fermion number and TrQ,P denotes trace

over all states of charge (Q, P ). The need for the (2h)14 factor may be understood as follows.

For every pair of fermion zero modes we have a 2-fold degeneracy with the two states carrying

opposite fermion number and differing in helicity by 1/2. Thus Tr(−1)F vanishes for this pair

of states and we need to insert a factor of 2h into the trace to get a non-zero answer i. Since

there are altogether 28 fermion zero modes, we need to insert 14 factors of 2h to ‘soak up’

all the fermion zero modes and give a non-vanishing answer (i)14 = −1. This explains the

need for the (2h)14 factor. Since all the factors of 2h are soaked up by the fermion zero modes

associated with the broken supersymmetry generators, (1.3) effectively evaluates Tr(−1)F on

the supersymmetry singlet states with which we tensor the basic 1/8 BPS supermultiplet. The

1/14! factor accounts for the fact that the 14 factors of 2h may be distributed among the traces

over the 14 pairs of fermion zero modes in 14! different ways.

1Due to the restriction on the charges our formula for the index is not manifestly invariant under the U-
duality group E7(7)( ZZ). However we expect that it can be regarded as the special case of a more general
formula which is manifestly U-duality invariant. As we shall see later, for Q2P 2 − (Q · P )2 < 0 there is an
additional complication due to the existence of walls of marginal stability, – in this case the index not only
depends on the charges but also on the domain of the moduli space where we compute the index.
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For the dyon configurations described earlier, d(Q, P ) may be regarded as a function

f(n, Q1, J) of n = Q2/2, Q1 = P 2/2 and J = Q · P . It now follows from the analysis

of [36,37] that the index −B14 of any other 1/8 BPS dyon in the restricted subspace, carrying

charges (Q, P ), is given by f(Q2/2, P 2/2, Q · P ) as long as gcd(Q ∧ P ) = 1. We define the

partition function for these dyons to be

Ψ(ρ̌, σ̌, v̌) =
∑

n,Q1,J

(−1)J+1 f(n, Q1, J) e2πi(nσ̌+Q1ρ̌+Jv̌)

=
∑

Q2,P 2,Q·P

(−1)Q·P+1 f(Q2/2, P 2/2, Q · P ) eiπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) . (1.4)

Conversely, we may write

d(Q, P ) = (−1)Q·P+1

∫ iM1+1/2

iM1−1/2

dρ̌

∫ iM2+1/2

iM2−1/2

dσ̌

∫ iM3+1/2

iM3−1/2

dv̌ e−iπ(σ̌Q2+ρ̌P 2+2v̌Q·P ) Ψ(ρ̌, σ̌, v̌) ,

(1.5)

where M1, M2 and M3, describing the imaginary parts of ρ̌, σ̌ and v̌, need to be fixed to values

where the sum in (1.4) is convergent.

There is one subtle issue that needs to be mentioned here. The full N = 8 supersymmetry

transformations acting on the fields in the restricted subspace of the second description, where

we set the RR sector moduli and the D-brane charges to zero, will take us out of this subspace.

However there are two different N = 4 subalgebras which preserve this subspace, – one acting

on the right-moving world-sheet fields and the other acting on the left-moving world-sheet

fields. We shall call these right-handed and the left-handed supersymmetry algebras, – these

commute with (−1)FL and (−1)FR symmetries respectively. A 1/8 BPS state of the full theory

without any RR charge, having four unbroken supersymmetries, must correspond to a quarter

BPS state of one of these two N = 4 supersymmetry algebras. For definiteness we shall focus on

those states which preserve quarter of the supersymmetries of the right-handed supersymmetry

algebra. In particular in defining the partition function we shall sum over only states of

this type, and not the ones which preserve quarter of the supersymmetries of the left-handed

supersymmetry algebra. This corresponds to summing over states with Q1, n ≥ 0. We shall see

however that the same partition function, expanded in a different way, also captures information

about quarter BPS states of the left-handed supersymmetry algebra.

We compute the partition function Ψ by counting microstates carrying charge quantum

numbers (Q, P ) in the weakly coupled type II string theory in the first description. Our result
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for Ψ is

Ψ(ρ̌, σ̌, v̌) =
∑

k≥0

∑

l≥0

∑

j∈zz
j>0 for k=l=0

(
1 − e2πi(lσ̌+kρ̌+jv̌)

)−2
e2πi(lσ̌+kρ̌+jv̌) ĉ(4kl − j2) , (1.6)

where ĉ(u) is defined through the relations [24, 21]

− ϑ1(z|τ)2 η(τ)−6 ≡
∑

k,l

ĉ(4k − l2) e2πi(kτ+lz) . (1.7)

ϑ1(z|τ) and η(τ) are respectively the odd Jacobi theta function and the Dedekind eta function.

The k ≥ 1 terms in the sum in (1.6) are identical to the partition function of the D1-D5

system in type IIB string theory compactified on T 4 × S1 [24]. As we shall explain, the k = 0

term comes from the dynamics of a single D5-brane moving in the KK monopole background

and is essential for S-duality invariance of the partition function and consistency with the wall

crossing formula. In this context we also note that in the k = l = 0 term if we had put the

restriction j < 0 instead of j > 0 we would have gotten the same analytic function.

The partition function (1.6) itself does not give the index d(Q, P ) unambiguously; we must

specify the values of M1, M2 and M3 appearing in (1.5) or equivalently describe how we should

Fourier expand Ψ to extract the index. It turns out that in the weakly coupled type IIB string

theory in the first description where we have carried out the computation, we need to first

expand Ψ in powers of e2πiρ̌ and e2πiσ̌ and then expand the coefficient of each term in powers of

e2πiv̌ or e−2πiv̌. This unambiguously determines the contribution from the (k, l) 6= (0, 0) terms,

– for any given power of e2πiρ̌ and e2πiσ̌ the power of e2πiv̌ is bounded both from above and

below and the Fourier expansion in e2πiv̌ is unambiguous. However for the k = l = 0 term

the summand can be expanded either as a power series expansion in e2πiv̌ or as a power series

expansion in e−2πiv̌, with infinite number of terms in each case. The correct choice depends on

whether the angle θ between S1 and S̃1 is larger than 90◦ or less than 90◦. In other words, the

actual value of the index changes as we cross the θ = 90◦ line. This is entirely analogous to

the corresponding result found in [9] and reviewed in detail in [18] for N = 4 supersymmeric

string theories. Equivalently, while determining d(Q, P ) via eq.(1.5), the quantities M1, M2

and M3 which fix the integration contour need to be chosen in the range

M1, M2 >> |M3| >> 0 , (1.8)

with the sign of M3 determined by the angle between S1 and S̃1. If we try to deform the

contour for M3 > 0 to the one for M3 < 0 we pick up the residue at the pole of Ψ(ρ̌, σ̌, v̌) at
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v̌ = 0, and as a result the index changes by an amount determined from the residue at the

pole. This correctly accounts for the change in the index across the θ = 90◦ line.

Our analysis determines the form of the partition function in a specific domain – more

precisely two domains separated by the θ = 90◦ line – of the moduli space corresponding to

weak string coupling in the first description of the theory. A priori the index d(Q, P ) and

the partition function Ψ could have different forms in other domains in the moduli space

separated by walls of marginal stability. However as in the case of all known examples in

N = 4 supersymmetric string theories, we find that the partition function of the N = 8

supersymmetric string theory is also described by the same analytic function in all domains

of the moduli space. The choice of the integration contour, encoded in the choice of M1, M2

and M3, differs in different domains separated by the walls of marginal stability. The proof

of this follows the same logic as in the case of N = 4 supersymmetric string theories [13, 18].

First of all we note that S-duality transformations take us from one domain bounded by walls

of marginal stability to another such domain [13, 14]. In particular if the original domain is

bounded by walls of marginal stability on which the dyon of charge (Q, P ) decays into dyons

of charge (αiQ + βiP, γiQ + δiP ) and ((1 − αi)Q − βiP,−γiQ + (1 − δi)P ), then S-duality

transformation of the charges and the moduli by the SL(2, ZZ) matrix

(
a b
c d

)
maps it into

a new domain in which

(
αi βi

γi δi

)
is replaced by [13, 37]

(
α′

i β ′
i

γ′
i δ′i

)
=

(
a b
c d

) (
αi βi

γi δi

) (
a b
c d

)−1

. (1.9)

Thus we can find the index for the dyons in other domains by an S-duality transformation

of our original formula. On the other hand explicit S-duality transformation of (1.5) by the

SL(2, ZZ) matrix

(
a b
c d

)
leads to a new formula for the index where we replace in (1.5)

Ψ(ρ̌, σ̌, v̌) and (M1, M2, M3) by [13, 19]

Ψ(d2ρ̌ + b2σ̌ + 2bdv̌, c2ρ̌ + a2σ̌ + 2acv̌, cdρ̌ + abσ̌ + (ad + bc)v̌) (1.10)

and

(a2M1 + b2M2 − 2abM3, c
2M1 + d2M2 − 2cdM3,−acM1 − bdM2 + (ad + bc)M3) (1.11)

respectively. Thus if we can show that the partition function Ψ is manifestly invariant under
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the S-duality transformation:

Ψ(ρ̌, σ̌, v̌) = Ψ(d2ρ̌+b2σ̌+2bdv̌, c2ρ̌+a2σ̌+2acv̌, cdρ̌+abσ̌+(ad+bc)v̌),

(
a b
c d

)
∈ SL(2, ZZ) ,

(1.12)

then the result for the index in different domains in the moduli space will be given just by

changing the integration contour according to (1.11). We prove (1.12) explicitly in §3.

In order to use (1.11) to find the integration contour in different domains in the moduli

space we need information about the choice of contour in at least one such domain. This can be

gotten from the results of weak coupling calculation in the first description. In particular if we

consider the domain bounded by the walls corresponding to the decays (Q, P ) → (Q, 0)+(0, P ),

(Q, P ) → (Q, Q) + (0, P − Q) and (Q, P ) → (Q − P, 0) + (P, P ), then we need to choose the

Mi’s as M1, M2 >> −M3 >> 0 [13,18].2 An explicit prescription for (M1, M2, M3) at different

points in the moduli space satisfying (1.11) can be found in [17, 19].

The S-duality invariance of Ψ allows us to calculate the jump in the index across a wall of

marginal stability by calculating the residue at the pole(s) the contour crosses as we deform it

from the initial position to the final position calculated according to (1.11). It follows from the

corresponding analysis in N = 4 supersymmetric string theories [13, 19, 20] that as we cross a

wall of marginal stability associated with the decay into a pair of half-BPS states3

(Q, P ) → (Q1, P1) + (Q2, P2) , (1.13)

(Q1, P1) = (αQ + βP, γQ + δP ), (Q2, P2) = (δQ − βP,−γQ + αP ) , (1.14)

αδ = βγ, α + δ = 1, α, β, γ, δ ∈ ZZ , (1.15)

2Although we are using these decays to label different domains in the moduli space, we shall see in §4 that
the actual jump in the index across many of these walls vanishes in the N = 8 supersymmetric string theory.

3It follows from the analysis of [13, 38, 39, 40] that in the restricted subspace of the moduli space we are
considering, such decays occur on codimension 1 subspaces. This is a necessary (but not sufficient) condition
for an index to jump across this subspace, since for higher codimension subspaces we can avoid the change
in the index by going around the subspace. We shall see later that for a subset of the decays of the type
described in (1.13)-(1.15) for which (αQ+βP ) and (δQ−βP ) are null and as a result the final decay products
are half-BPS under the full N = 8 supersymmetry algebra and not just the N = 4 subalgebra that we are
considering here, the index B14 jumps discontinuously. Thus we expect that such decays will continue to occur
on a codimension one subspace of the full moduli space even after turning on the RR sector moduli. For the
other decays of the type described in (1.13)-(1.15) for which either (αQ + βP ) or (δQ − βP ) fails to be null,
the change in B14 vanishes. Thus the associated subspace may or may not remain codimension one in the full
moduli space. Finally, if we consider decays which fail to satisfy (1.14) and/or (1.15), then it follows from the
analysis of [13, 38, 39, 40] that such decays occur on subspaces of codimension > 1 in the restricted subspace
of the moduli space we are considering and hence also in the full moduli space. The change in B14 associated
with such decays always vanishes.
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the contour crosses the pole at

ρ̌γ − σ̌β + v̌(α − δ) = 0 . (1.16)

Thus the jump in the index across a wall of marginal stability is given by the residue of the

integrand in (1.5) at the pole at (1.16). We check in §4 that the jump in the index predicted

by this formula at the wall associated with the decay (Q, P ) → (Q, 0) + (0, P ) reproduces the

expected change in the index across a wall of marginal stability [25,26,27,28,29,30,31,32,33].

Similar agreement at the other walls of marginal stability then follows from S-duality invariance

of Ψ.

Refs. [21, 22] proposed formulæ similar to the one given in (1.6) for the 1/8 BPS dyon

spectrum in type IIB string theory on T 6. However both these proposals treated the dyon

spectrum as universal independent of the region of the moduli space where we calculate the

spectrum. Thus in any given region in the moduli space these proposals differ from ours in a

subtle way. As we shall see below eq.(4.1), the index jumps discontinuously across a wall of

marginal stability only for states with Q2P 2− (Q ·P )2 < 0. Thus the subtle difference between

our results and those proposed in [21, 22] arises only for such states.

Since for positive Q2P 2 − (Q ·P )2 we do not have any associated wall of marginal stability,

the index calculated from (1.5), (1.6) is independent of the choice of (M1, M2, M3) and the

formula for the index d(Q, P ) takes the form [24,22]

d(Q, P ) = (−1)Q·P+1
∑

s|Q2/2,P 2/2,Q·P ;s>0

s ĉ

(
Q2P 2 − (Q · P )2

s2

)
. (1.17)

This formula is manifestly S-duality invariant since Q2P 2 − (Q · P )2, gcd(Q2/2, P 2/2, Q · P )

and (−1)Q·P are S-duality invariants.

The partition function (1.6) has been derived for the 1/8 BPS states whose unbroken

supersymmetries lie in the right-handed N = 4 supersymmetry algebra. The index for 1/8

BPS states whose unbroken supersymmetries lie in the left-handed N = 4 supersymmetry

algebra can be obtained from the former by world-sheet parity transformation exchanging

these two supersymmetry algebras. This effectively replaces the O(6, 6) invariant metric L by

−L in all formulæ. In particular this changes (Q2, P 2, Q · P ) to (−Q2,−P 2,−Q · P ). Thus

the new partition function is related to the previous one by the transformation (ρ̌, σ̌, v̌) →

(−ρ̌,−σ̌,−v̌). This however produces the same analytic function Ψ(ρ̌, σ̌, v̌) since each term in

the sum in (1.6) is invariant under the transformation (ρ̌, σ̌, v̌) → (−ρ̌,−σ̌,−v̌). Thus the same
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partition function Ψ(ρ̌, σ̌, v̌) contains information about both types of 1/8 BPS states, but the

choice of (M1, M2, M3) in (1.5) for these two types of dyons are related by the transformation

(M1, M2, M3) → (−M1,−M2,−M3), accompnied by L → −L replacement in the expression

for Mi’s in terms of the moduli given in [17, 19]. Also for a given charge vector (Q, P ), the

physical location of the walls of marginal stability in the moduli space, computed in [13], will

differ for the two algebras due to the L → −L replacement in the associated formulæ.

Finally we note that some of the N = 2 supersymmetric models discussed in [41] have

properties close to that of N = 4 supersymmetric string theories. It will be interesting to

explore if the phenomenon of having a universal partition function independent of the domains

in the moduli space holds for these theories as well.

2 Microstate counting

In this section we shall describe how we arrive at the formula (1.6) for the dyon partition

function. We shall carry out our analysis in the weak coupling limit of the first description

of the theory, regarding it as a collection of KK monopole – D1-D5 system carrying momenta

along the circles S1 and S̃1. As in [9], in this limit we can regard the degrees of freedom of

the KK monopole, the D1-D5 center of mass motion and the D1-D5 relative motion as three

non-interacting systems and calculate the partition function of the combined system by taking

the product of the three partition functions.

Since we are computing the partition function of 1/8 BPS states, special care must be

taken to ensure that all the fermion zero modes associated with the 28 broken supersymmetry

generators are soaked up. As described in §1, each pair of fermion zero modes are soaked

up by an insertion of (−1)F 2h factor in the helicity trace. Let us examine how the fermion

zero modes get distributed between the three subsystems described above. First of all the

KK monopole associated with S̃1 breaks 16 of the 32 supersymmetries of the original theory.

Thus the world-volume theory on the KK monopole has 16 fermion zero modes which must

be soaked up by a factor of (−1)F (2h)8 inserted into the partition function. The classical

D5-brane in the KK monopole background breaks 8 of the remaining 16 supersymmetries and

hence its world-volume carries 8 fermion zero modes. We need a factor of (−1)F (2h)4 inserted

into the partition function of the D5-brane to soak up these zero modes. Finally it is known

from the analysis of [24] that the system describing the dynamics of the D1-branes inside the

D5-brane has four fermion zero modes and hence requires a factor of (−1)F (2h)2 inserted into
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the partition function to soak up these zero modes. This determines how the 14 factors of (2h)

are distributed among different components of the partition function.

The above analysis also shows that in order to get a non-vanishing result for the index

we must keep both the KK monopole and the D5-brane in their ground state. In particular

we cannot excite any mode carrying momentum along S1. If we did, then such a system will

break more supersymmetries and we shall need additional factors of (2h) to be inserted into

the partition function in order to get a non-vanishing result. Since the total power of 2h is

fixed to be 14, this would require removing some factors of 2h from some other component of

the partition function, making the corresponding contribution vanish.4 Thus the non-trivial

contribution to the partition function comes solely from the relative motion of the D1-D5

system. This was evaluated in [24], yielding the answer5

∑

k≥1

∑

l≥0

∑

j∈zz

(
1 − e2πi(lσ̌+kρ̌+jv̌)

)−2
e2πi(lσ̌+kρ̌+jv̌) ĉ(4kl − j2) , (2.1)

where ĉ(u) has been defined in eq.(1.7). This can be identified with the contribution to (1.6)

from the k ≥ 1 terms.

In arriving at (2.1) we have implicitly assumed that leaving aside the degeneracy implied

by the 8 broken supersymmetry generators, there is a unique supersymmetric state describing

the D5-brane bound to the KK monopole. Is this true? A D5-brane in flat space has alto-

gether 16 fermion fields on its world-volume. As pointed out before, classically a D5-brane

in the background of the KK monopole has eight unbroken supersymmetries and breaks eight

supersymmetries. Thus the world-volume theory of the D5-brane should contain eight free

goldstino fermions. These, together with the four scalar fields associated with the Wilson

lines along T 4 describe a free (4,4) supersymmetric field theory in 1+1 dimensions spanning

the time coordinate and the coordinate along S1. The rest of the eight fermion fields on the

D5-brane world-volume combine with the four scalar fields describing motion along the Taub-

NUT space to give an interacting (4,4) supersymmetric sigma model with Taub-NUT target

space. By the standard argument the number of supersymmetric ground states of this system

is equal to the number of harmonic forms on the Taub-NUT space which is 1 [42, 43]. Since

the harmonic form is normalizable the state describes a bound state [44,45]. This confirms our

4This should be contrasted with the corresponding analysis in N = 4 supersymmetric string theories where
the KK monopole and the D5-brane can have excitations carrying left-moving momentum along S1 without
breaking any additional supersymmetry.

5The (−1)Q·P factor in eqs.(1.4), (1.5) relating the index to the partition function has the same origin as in
the case of N = 4 supersymmetric string theories [5, 17, 18] and will not be discussed here.
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implicit assumption that leaving aside the degeneracy implied by the 8 broken supersymmetry

generators, there is a unique supersymmetric state describing the D5-brane bound to the KK

monopole.

The above analysis holds when the S1 and S̃1 circles are orthogonal. When we switch

on a modulus that changes the angle between S1 and S̃1 there is an attractive force between

the D5-brane and the KK monopole, giving rise to additional potential terms [9]. Since in

the limit in which the size of the Taub-NUT space is large this potential term as well as the

Taub-NUT metric affects mainly the modes independent of the S1 coordinate, we can treat

the non-zero mode oscillators carrying momentum along S1 as free and focus our attention on

the supersymmetric quantum mechanics describing the zero modes. The latter is obtained via

dimensional reduction of the 1+1 dimensional field theory to 0+1 dimensions. This system

was analyzed in [46, 47, 48] in the context of quarter BPS dyon spectrum in the N = 4 su-

persymmetric gauge theories and the result may be summarized as follows. Besides the fully

supersymmetric ground state described above the system has a set of states where 4 of the

eight remaining supersymmetries are broken. Depending on the angle between S1 and S̃1 these

partially supersymmetric states have either only positive or only negative momentum along

S̃1, and there are precisely |j| states carrying S̃1 momentum j.6 Thus the partition function

for these dyons can be written as
∞∑

j=1

je±2πiv̌j = e2πiv/(1 − e2πiv)2 . (2.2)

Note that the result for the partition function is independent of whether we use positive or

negative momentum along S̃1.

The partially supersymmetric states described above are not relevant for the computation

at hand since due to the four additional broken supersymmetries we need to insert a factor of

(−1)F (2h)2 into the partition function. This effectively uses up all the factors of (2h) in order

to saturate the fermion zero modes of the KK monopole - D5-brane system, and there is no

left over factors of 2h which we can insert into the partition function of the D1-D5 system. As

a result the contribution from such terms vanish.

We must note however that in computing the full partition function we must also include

states with Q1 = 0, ı.e. no D1-branes if there are 1/8 BPS states in this sector. Proceeding

6We are counting only those states which, from the space-time viewpoint, preserve quarter of the super-
symmetries of the right-handed N = 4 supersymmetry algebra. There are also states preserving quarter of
the supersymmetries of the left-handed supersymmetry algebra; for these states the sign of S̃1 momentum is
opposite.
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as before we can see that the KK monopole soaks up a factor of (2h)8 and the 8 broken

supersymmetries associated with the classical D5-brane soak up another factor of (2h)4. Thus

we are left with a factor of (2h)2. However unlike in the Q1 6= 0 case where these factors needed

to be inserted in the D1-D5 partition function to get a non-vanishing contribution, here we

are free to use them to either get additional excitations on the D5-brane from the left-moving

modes7 of the D5-brane world-volume theory carrying negative momenta along S1, keeping

the zero-mode part of the theory in the fully supersymmetric ground state, or keeping the

non-zero modes in their ground state and using one of the partially supersymmetric bound

states of the zero-mode part of the D5-brane world-volume theory. The contribution from the

first set of states can be computed by recalling from [24] that the left-moving fields on the

D5-brane world-volume have the following (j, 2h) assignment: four scalars with (j, 2h) = (0, 0)

representing the Wilson lines along T 4, one scalar each for (j, 2h) = (1, 1), (1,−1), (−1, 1)

and (−1,−1) representing the coordinates along the Taub-NUT space, and 2 fermions each for

(j, 2h) = (1, 0), (−1, 0), (0, 1) and (0,−1). Following [24] this yields the answer

1

2

d2

dỹ2

∞∏

l=1


(1 − ql)−4





∏

j=±1

∏

ej=±1

(1 − qlyj ỹ
ej)−1






{
∏

j=±1

(1 − qlyj)2

} 



∏

ej=±1

(1 − qlỹ
ej)2









∣∣∣∣∣∣
ey=1

,

q ≡ e2πiσ̌, y ≡ e2πiv̌ . (2.3)

Explicit evaluation of this term leads to

∞∑

l=1

[
−2

(
1 − e2πilσ̌

)−2
e2πilσ̌ +

∑

j=±1

(
1 − e2πi(lσ̌+jv̌)

)−2
e2πi(lσ̌+jv̌)

]
. (2.4)

Using the fact that ĉ(u) = 0 for u < −1 and ĉ(0) = −2, ĉ(−1) = 1, (2.4) can be identified with

the k = 0, l ≥ 1 terms in the sum in (1.6).

Finally we turn to the contribution to the partition function from the partially supersym-

metric bound states of the D5-brane to the KK monopole. To evaluate this contribution we

note that since the extra factor of (2h)2 is now absorbed by the supersymmetric quantum

mechanics describing the D5-brane motion in the KK monopole background, we need to eval-

uate the trace over the non-zero mode oscillators without any factor of 2h. The corresponding

contribution is given by (2.3) without the 1
2
∂2

ey operation. At ỹ = 1 this reduces to 1, indicating

7Exciting the right-moving modes will break the right-handed N = 4 supersymmetry algebra but preserve
the left-handed N = 4 supersymmetry algebra. As mentioned in §1, we shall not include such states in the
definition of the partition function even though they describe 1/8 BPS dyons.
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that we cannot excite any of the oscillators carrying momentum along S1. Thus the contribu-

tion to the partition function from this set of states is given by (2.2). This can be identified

as the k = 0, l = 0 term in (1.6).

The sum of the expressions given in (2.1), (2.4) and (2.2) gives the complete contribution

to the partition function stated in (1.6).

3 S-duality invariance of the partition function

In this section we shall give a proof of S-duality invariance of the partition function encoded

in (1.12). This requirement may be expressed as

Ψ(ρ̌, σ̌, v̌) = Ψ(ρ̌′, σ̌′, v̌′) , (3.1)

where

ρ̌′ = d2ρ̌+b2σ̌+2bdv̌, σ̌′ = c2ρ̌+a2σ̌+2acv̌, v̌′ = cdρ̌+abσ̌+(ad+bc)v̌,

(
a b
c d

)
∈ SL(2, ZZ) .

(3.2)

The proof of (3.1) goes as follows. We first note that

kρ̌ + lσ̌ + jv̌ = k′ρ̌′ + l′σ̌′ + j′v̌′ , (3.3)

where

k′ = a2k + c2l − acj, l′ = b2k + d2l − bdj, j′ = −2abk − 2cdl + (ad + bc)j . (3.4)

Furthermore we have

4k′l′ − j′2 = 4kl − j2 . (3.5)

Using these relations in (1.6) we get

Ψ(ρ̌, σ̌, v̌) =
∑

k≥0

∑

l≥0

∑

j∈zz
j>0 for k=l=0

(
1 − e2πi(l′σ̌′+k′ρ̌′+j′v̌′)

)−2

e2πi(l′σ̌′+k′ρ̌′+j′v̌′) ĉ(4k′l′ − j′2) . (3.6)

If we can now show that k′, l′ and j′ take values over the same range as k, l and j, then the

right hand side of (3.6) can be identified as Ψ(ρ̌′, σ̌′, v̌′). This would prove the desired relation

(3.1). We shall prove this separately for the S-duality transformations S =

(
0 1
−1 0

)
and
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T =

(
1 1
0 1

)
. Since these two matrices generate the whole SL(2, ZZ) group, once we have

proven invariance of Ψ under S and T , it proves invariance of Ψ under the full SL(2, ZZ)

S-duality group.

First consider the transformation by S. In this case (3.4) takes the form

k′ = l, l′ = k, j′ = −j . (3.7)

Thus k′ and l′ run over non-negative integers. Furthermore for (k′, l′) 6= (0, 0), j′ can take

arbitrary integer values, whereas for k′ = l′ = 0, j′ takes only negative integer values. Using

j′ → −j′ symmetry of the summand in (3.6) for k′ = l′ = 0 we can turn this into sum over

positive integer values of j′. Thus the range of (k′, l′, j′) coincides with the range of summation

over (k, l, j). This proves invariance of Ψ under the transformation S.

We now turn to the transformation T . In this case (3.4) gives

k′ = k, l′ = k + l − j, j′ = j − 2k . (3.8)

Using the j → −j invariance of the k = l = 0 term in (1.6) we shall take the sum over the

original variable j to run over negative integer values. We now see from (3.8) that k′ always

takes non-negative integer values. This agrees with the corresponding range of values of k. To

determine the range of values taken by l′ we shall consider two cases separately. First consider

the case k = l = 0. In this case l′ = −j. Since j < 0, we see that l′ takes positive integer

values. On the other hand for (k, l) 6= (0, 0) we have

(k + l)2 − j2 = (k − l)2 + 4kl − j2 ≥ −1 , (3.9)

where in the last step we have used the fact that j2 ≤ 4kl + 1 for ĉ(4kl − j2) to be non-zero.

Furthermore the inequality (3.9) is saturated only if k = l and j2 = 4kl + 1 = 4k2 + 1. Since

j, k, l ∈ ZZ, the only solution to this is k = l = 0, j = ±1. This contradicts our assumption

that (k, l) 6= (0, 0). Thus we see that the bound cannot be saturated and we must have

(k + l)2 ≥ j2 . (3.10)

Since k, l are non-negative integers this gives k+ l ≥ |j|. Thus l′ given in (3.8) is a non-negative

integer.

Next we shall examine the range of j′ for k′ = l′ = 0. From (3.8) we see that in this case

k = 0, j = l and j′ = j = l. Furthermore l cannot vanish, since for k = l = 0, j must be a
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negative integer and hence we cannot have j = l. This shows that l and hence j′ = l must be

a positive integer. Thus the allowed range of values of k′, l′ and j′ takes the form

k′ ≥ 0, l′ ≥ 0, j′ ∈ ZZ, j′ > 0 for k′ = l′ = 0 . (3.11)

This coincides with the allowed range of values of k, l and j after flipping the sign of j for

k = l = 0. As argued before, the latter operation preserves the form of Ψ.

In order to complete the proof of invariance of Ψ under the transformation T we must now

verify that all the values in the range (3.11) are realized, ı.e. given any triplet (k′, l′, j′) subject

to the condition (3.11) we can find a triplet (k, l, j) satisfying (3.8) within the allowed range.

For this we need to invert (3.8) as

k = k′, l = k′ + l′ + j′, j = j′ + 2k′ , (3.12)

and repeat our arguments in the opposite direction. This is a straightforward exercise and we

find that for any triplet k′, l′ and j′ satisfying (3.11), k and l given in (3.12) are non-negative

integers, j is an integer, and for k = l = 0, j is a positive integer which can be turned into

a negative integer using the j → −j symmetry of the summand. This completes the proof of

invariance of Ψ under the S-duality transformation T .

This establishes S-duality invariance of Ψ given in (1.12). Note that inclusion of the k = 0

terms in (1.6), which count the contribution from 1/8 BPS dyons with vanishing D1-brane

charge, is essential for getting an S-duality invariant partition function. Without this term the

range of k′, l′ and j′ will not coincide with that of k, l and j.

4 Wall crossing

In this section we shall carry out an independent computation of the change in the index of a

1/8 BPS dyon as we cross a wall of marginal stability at which the 1/8 BPS dyon breaks up

into a pair of half-BPS dyons, and compare the result with the result predicted from (1.6).

Let us first compute the jump in the index predicted by (1.6). According to eqs.(1.13)-

(1.16), as we cross the wall of marginal stability associated with the decay (Q, P ) → (Q, 0) +

(0, P ), the contour will cross the pole at v̌ = 0. Such poles of Ψ come from the k = l = 0

term in (1.6). Thus the change in the index as we cross this wall is given by the residue of the

integrand in (1.5) at the pole at v̌ = 0. This gives

∆d(Q, P ) = (−1)Q·P+1 Q · P ĉ(−1) δQ2,0 δP 2,0 = (−1)Q·P+1 Q · P δQ2,0 δP 2,0 . (4.1)
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Using S-duality invariance we see that for a more general decay of the type given in (1.13)-

(1.15) we must have (αQ + βP )2 = 0 and (δQ − βP )2 = 0 for ∆d(Q, P ) to be non-zero.

Combining these with the constraints (1.15) we get

α =
1

2
−

Q · P

2
√

(Q · P )2 − Q2P 2
, β =

Q2

2
√

(Q · P )2 − Q2P 2
,

γ = −
P 2

2
√

(Q · P )2 − Q2P 2
, δ =

1

2
+

Q · P

2
√

(Q · P )2 − Q2P 2
. (4.2)

Since α, β, γ, δ must be integers, this gives strong constraints on Q2, P 2 and (Q · P )2. In

particular Q2P 2 − (Q · P )2, known as the discriminant, must be negative. Furthermore for a

given (Q, P ) there is at most a single wall of marginal stability corresponding to α, β, γ, δ

given by (4.2). This is an enormous simplification compared to the corresponding results in

N = 4 supersymmetric string theories [13].

Note that (1.6) has a pole at kρ̌ + lσ̌ + jv̌ = 0 for every (k, l, j) in the range of summation

given in (1.6). Comparing this to (1.16) we see that the poles given in (1.16) arise from the

(k, l, j) = (γ,−β, α − δ) term in the sum in (1.6). The restrictions (1.15) on α, β, γ, δ then

pick out those (k, l, j) for which 4kl − j2 = −1. Can the poles associated with other values

of (k, l, j) cause further jumps in the index? To answer this question we note that given

that the original contour, appropriate to the weak coupling region of the first description, has

M1, M2 >> |M3| > 0, it satisfies

M1, M2 > 0, M1M2 > M2
3 . (4.3)

Since the conditions (4.3) are invariant under the S-duality transformation (1.11), all the

contours corresponding to different domains of the moduli space satisfy (4.3). It is now easy

to see that while deforming a contour associated with one such (M1, M2, M3) to a contour

associated with another (M1, M2, M3) satisfying (4.3), we never hit the pole at kρ̌+ lσ̌+jv̌ = 0

unless 4kl − j2 < 0, – indeed for 4kl − j2 ≥ 0, ℑ(kρ̌ + lσ̌ + jv̌) is positive on the initial and

the final contours and hence can be made to remain positive during the deformation. Since

ĉ(u) = 0 for u < −1, this gives 4kl − j2 = −1 as the condition for hitting the pole. All such

poles are of the form given in (1.15).

For an independent computation of the jump in the index across the wall of marginal

stability associated with the decay (Q, P ) → (Q, 0) + (0, P ), we use the following argument

[25, 26, 27, 28, 29, 30, 31, 33]. Let us recall first the corresponding computation in N = 2

supersymmetric string theories where a half BPS state breaks 4 of the 8 supersymmetries and
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hence has 4 fermion zero modes. Now consider a wall of marginal stability where a half BPS

state decays into a pair of half BPS states. On one side of the wall the decay products form a

bound state with large separation between the components. This bound state ceases to exist

on the other side of the wall causing a jump in the index. Thus the change in the index can be

computed by computing the index associated with such bound states. Although naively the

system has 8 fermion zero modes – 4 associated with each component – four of these zero modes

take part in the interaction which form the bound state. Thus we are left with four fermion

zero modes as is expected of a single half-BPS state of the theory. The detailed analysis of the

quantum mechanics leading to the formation of the bound state yields a multiplicative factor

of (−1)Q·P+1 Q · P to the index of these bound states, thereby leading to the formula

∆d(Q, P ) = (−1)Q·P+1 Q · P dh(Q, 0) dh(0, P ) , (4.4)

for the jump in the index. Here dh(Q, 0) and dh(0, P ) denote the index of half-BPS states

carrying charges (Q, 0) and (0, P ) respectively and represent the contribution to the bound

state index due to the internal degeneracy of each component.

If we consider the decay of a quarter BPS dyon of N = 4 supersymmetric string theory

into a pair of half-BPS dyons, then the following argument due to Denef [33] may be used

to generalize the above result. A quarter BPS state in N = 4 supersymmetric string theory

breaks 12 of the 16 supersymmetries and hence has 12 fermion zero modes. On the other hand

the pair of half-BPS states each carry 8 fermion zero modes. Of the 16 fermion zero modes

associated with the pair, 4 are used up in formation of the bound state as before, leaving us

with 12 fermion zero modes required to give rise to a quarter BPS supermultiplet. As before

supersymmetric quantum mechanics produces a degeneracy factor of (−1)Q·P+1 Q ·P and leads

to (4.4) for the change in the index across a wall of marginal stability. Note that if we had

replaced one or both of the decay products by a quarter BPS state then the resulting system

would have too many fermion zero modes and hence the index would vanish [33]. This shows

that in N = 4 supersymmetric string theories the change in the index occurs only across walls

where a quarter BPS dyon decays into a pair of half BPS dyons.

Let us now apply the same line of argument to the decay of a 1/8 BPS state in N = 8

supersymmetric string theories. As pointed out before, such a dyon is accompanied by 28

fermion zero modes. On the other hand a pair of half-BPS states in this theory carries a total

of 32 fermion zero modes of which 4 are used up for bound state formation. Thus we are again

left with the correct number of fermion zero modes and the quantum mechanics of bound
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states leads to the degeneracy factor of (4.4). We now note that for the class of charge vectors

we are considering, – which in the second description involve charges carried by elementary

string states and solitons without any D-branes charges, – the only half BPS states are those

associated with elementary string states carrying charge (Q, 0) with Q2 = 0 (ı.e. no left- or

right-moving world-sheet excitation) and their S-duals carrying charges (aQ, cQ) with Q2 = 0,

gcd(a, c) = 1. Examination of the spectrum of elementary string states shows that there is

a unique half BPS supermultiplet associated with the charge (Q, 0) and hence also with the

charges (aQ, cQ). Thus we have dh(aQ, cQ) = δQ2,0, and in particular

dh(Q, 0) = δQ2,0, dh(0, P ) = δP 2,0 . (4.5)

Substituting this into (4.4) we get a result in clear agreement with (4.1).
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