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Abstract

Macroscopic entropy of an extremal black hole is expected to be determined completely

by its near horizon geometry. Thus two black holes with identical near horizon geometries

should have identical macroscopic entropy, and the expected equality between macroscopic

and microscopic entropies will then imply that they have identical degeneracies of microstates.

An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a

four dimensional black hole. The two black holes have identical near horizon geometries but

different microscopic spectrum. We suggest that this discrepancy can be accounted for by black

hole hair, – degrees of freedom living outside the horizon and contributing to the degeneracies.

We identify these degrees of freedom for both the four and the five dimensional black holes

and show that after their contributions are removed from the microscopic degeneracies of the

respective systems, the result for the four and five dimensional black holes match exactly.
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1 Introducion and summary

Since the Bekenstein-Hawking entropy of a black hole is proportional to the area of the event

horizon of the black hole [1, 2, 3] one expects that the horizon of the black hole contains

the key to understanding the black hole microstates. Wald’s modification of the Bekenstein-

Hawking formula in higher derivative theories of gravity [4, 5, 6, 7] deviates from the area law,

but nevertheless expresses the black hole entropy in terms of the horizon data. The situation

becomes even better in the extremal limit where an infinite throat separates the horizon from

the rest of the black hole space-time and the near horizon configuration can be regarded as

a fully consistent solution to the field equations [8, 9, 10, 11, 12]. The classical Wald entropy

can be related to the value of the classical Lagrangian density evaluated in this near horizon

geometry [13]. This leads one to expect that we should be able to define a macroscopic quantity,

computed from quantum string theory in the near horizon geometry, that captures complete

information about the microscopic degeneracies of the corresponding black hole. Quantum

entropy function is such a proposal relating the microscopic degeneracies of extremal black

holes to an appropriate partition function of quantum gravity in the near horizon geometry of

the black hole [14, 15] (see also [16, 17]).

Irrespective of any specific proposal, if the postulate that the microscopic degeneracy of

an extremal black hole can be related to some computation in the near horizon geometry is

correct, then this leads to an immediate consequence: two black holes with identical near

horizon geometries will have identical degeneracies of microstates. There are some trivial
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counterexamples with straightforward resolutions. For example the near horizon geometry of

an extremal black hole in flat space-time is independent of the asymptotic values of the moduli

fields due to the attractor mechanism [9, 10, 11, 13, 18, 19], but the microscopic degeneracy

of states, carrying the same quantum numbers as the black hole, jumps across the walls of

marginal stability as we vary the asymptotic moduli [20, 21, 22, 23, 24]. The resolution of this

puzzle is provided by the fact that for a given set of charges there are typically many classical

solutions. One of these is a single centered black hole solution but the others contain multiple

centers [25,26,27,28,29,30,31,24]. As we cross a wall of marginal stability some of these multi-

centered solutions cease to exist and hence cause a jump in the total entropy. This precisely

accounts for the jump in the total degeneracy across the walls of marginal stability, thereby

showing that the degeneracy of states associated with a single centered black hole remains

unchanged as we cross a wall of marginal stability. This suggests a natural modification of the

original proposal: string theory in the near horizon geometry captures information about the

microscopic degeneracy of the single centered black holes only. This is clearly natural from a

physical perspective: the near horizon geometry of a given black hole should encode information

only about the particular solution which produces the particular near horizon geometry. Multi-

centered black holes have multiple horizons with multiple near horizon geometry, and hence

the contribution to their degeneracies should involve studying string theory in the near horizon

geometry of each of these black holes.1

In order to make this modified proposal concrete we must independently define microscopic

degeneracy of a single centered black hole. Typically microscopic computation involves study-

ing degeneracies of various brane configurations and cannot distinguish whether a given state

would correspond to a single centered or a multi-centered configuration in the limit when the

state becomes a black hole. However in asymptotically flat four dimensional space-time there

is a simple algorithm for calculating the spectrum of single centered black holes in the mi-

croscopic theory; we simply need to set the asymptotic values of the moduli to be equal to

their attractor values.2 In that case all multi-centered black hole solutions disappear and the

1The near horizon AdS2 geometry of a black hole can fragment into multiple throats carrying different
charges [32, 33, 34]. However for such solutions the charges carried by the fragments are mutually local, ı.e.
have (~qi · ~pj − ~qj · ~pi) = 0 where (~qi, ~pi) denote the electric and magnetic charge vectors of the ith throat. Since
such configurations do not contribute to the entropy [28,30], the conclusion that the near horizon geometry of
a black hole captures the degeneracies of single centered black holes remains unchanged.

2This is sufficient but not necessary; all we need is that the asymptotic values of the moduli should be
chosen such that we can continuously deform them to the attractor values without crossing any wall of marginal
stability.
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microstate counting only picks up the contribution from the single centered black holes.

In this paper we focus on a different counterexample that cannot be resolved by invoking

the existence of multi-centered black holes. This involves the BMPV black hole [35], whose

microscopic description involves a D1-D5 system of type IIB string theory on K3×S1, carrying

momentum along S1 and equal angular momentum in two planes transverse to the D5-brane.

The macroscopic description of this is a five dimensional rotating black hole. By placing this

black hole at the center of a Taub-NUT space we get a four dimensional black hole [36]. Since

near the origin the Taub-NUT space appears as flat space, the near horizon geometries of the

four and five dimensional black holes are exactly identical [37, 38]. However the microscopic

description of the four dimensional black hole involves D1-D5-brane moving in the background

of a Kaluza-Klein monopole and the degeneracies of this system are different from those of just

the D1-D5 system [20]. This would seem to contradict the claim that the microscopic degen-

eracies of single centered black holes are completely encoded in their near horizon geometries.

We suggest the following resolution of this puzzle. Common sense tells us that the near

horizon geometry should capture the degeneracies associated with the dynamics of the horizon.

If the black hole has no hair, that is no degree of freedom living outside the horizon that could

contribute to the degeneracy, then the near horizon geometry would capture the complete

information about the microscopic degeneracy of the black hole. However if the black hole

solution contains degrees of freedom living outside the horizon then the full degeneracy of

the black hole has to be computed by combining the contribution from the horizon with

the contribution from the degrees of freedom living outside the horizon, and the combined

contribution will then have to be compared with the microscopic degeneracies. Thus two black

holes having identical near horizon geometry can have different microscopic degeneracies if they

have different sets of degrees of freedom living outside the horizon. We expect that at least for

extremal black holes the separation between the contribution from the black hole hair and the

contribution from the horizon degrees of freedom can be done rigorously since the horizon is

separated from the asymptotic space-time by an infinite throat. Thus two such extremal black

holes with identical near horizon geometry will have identical degeneracies of microstates after

we remove the contribution from the degrees of freedom living outside the horizon.3

In the rest of the paper we shall identify the degrees of freedom living outside the horizon

for both the BMPV black hole and the four dimensional extremal black hole obtained by

3This is similar in spirit to the phenomenon that for a stack of N D3-branes, string theory living in the
bulk of the near horizon AdS5 × S5 geometry does not capture the U(1) center of mass degrees of freedom of
the D3-branes [39].
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placing the BMPV black hole in a Taub-NUT geometry, and then show that their microscopic

degeneracies agree after we remove the contribution due to the hair. The organisation of the

sections will be as follows. In §2 we identify the hair degrees of freedom of the five dimensional

BMPV black hole, and remove their contribution from the partition function to determine the

partition function associated with the horizon degrees of freedom. The result is given in (2.17).

In §3 we repeat the same analysis for the four dimensional black hole obtained by placing the

BMPV black hole at the center of Taub-NUT space. The result, given in (3.20), is found to

agree with (2.17). It of course remains a challenge to reproduce these microscopic results from

a macroscopic calculation, e.g. of the quantum entropy function. In the two appendices we

describe explicit construction of the bosonic modes associated with the hair degrees of freedom.

Before concluding this section we would like to add a word of caution. While we have

identified appropriate hair degrees of freedom for the five and four dimensional black holes

after whose removal the result for the partition function of the two black holes agree, we have

not proved that these are the only hair degrees of freedom. If there are additional hair degrees

of freedom which differ for these two black holes then it could spoil the agreement. On the

other hand if there are additional hair degrees of freedom which are common to both black

holes then the agreement between the partition functions of the two black holes after hair

removal will continue to hold.

2 Analysis of the BMPV black hole entropy

We begin with the analysis of microscopic degeneracy of the five dimensional quarter BPS

black hole in type IIB string theory on K3. The microscopic description involves Q5 number

of D5-branes wrapped on K3 × S1 and Q1 number of D1-branes wrapped on S1 carrying

−n units of momentum along S1 (with n > 0) and J units of angular momentum. For

simplicity we shall take Q5 = 1 without any loss of generality since the result depends on Q1

and Q5 only through the combination Q5(Q1 − Q5). Our convention for angular momentum

and supersymmetry generators will be as follows. We denote the SO(4) rotation group of

the five dimensional space-time by SU(2)L × SU(2)R and identify the angular momentum

J with twice the diagonal generator of SU(2)L. We also denote by h the eigenvalue of the

diagonal generator of SU(2)R. Since supersymmetry transformation parameters of type IIB

on K3 are chiral spinors in six dimensions, when we regard them as representations of the

SO(1, 1) × SU(2)L × SU(2)R subgroup of the Lorentz group, with SO(1, 1) acting on the
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common direction of the D1-brane and the D5-brane, the SO(1, 1) quantum numbers will be

correlated with the SU(2)L × SU(2)R quantum numbers. We shall now argue that in order

that the configuration described above describes a quarter BPS state, we must choose the

convention that the left-chiral spinors of SO(1, 1) carry (J = 0, 2h = ±1) and the right-chiral

spinors of SO(1, 1) carry (J = ±1, h = 0). The argument goes as follows. First of all note

that since the D1-D5-brane system carries negative momentum along S1, it must be allowed to

carry left-moving excitations without violating supersymmetry. Thus the left-chiral excitations

must be neutral under the unbroken supersymmetries of the system. This in turn implies that

these supersymmetry transformation parameters must be left-chiral spinors of SO(1, 1), – since

left-chiral supersymmetry transformation parameters act on the right-chiral modes and vice

versa. We shall now argue that the unbroken supersymmetry transformation parameters must

also carry J = 0, – this would force us to choose the convention described above. In order

that the system can carry macroscopic J charge, a large number of internal modes must carry

non-vanishing J charge. Now most of the bosonic degrees of freedom come from the motion

of the D1-brane inside the D5-brane, ı.e. along the K3 direction. This leads to four bosons for

each D1-brane describing its position along K3. These modes are clearly neutral under the

SO(4) rotation along the space transverse to the D1-D5-brane system, and hence do not carry

any J charge. On the other hand for every D1-brane we also have eight fermionic modes, –

four carrying (J 6= 0, h = 0) and four carrying (J = 0, h 6= 0).4 The requirement of unbroken

supersymmetry freezes the modes on which supersymmetry acts, ı.e. those which form partners

of the bosons. Now since we want to excite the modes carrying J charge, we must freeze the

ones with J = 0. Thus the latter must be acted upon by supersymmetry and paired with the

bosons. Since the bosons carry J = 0, the supersymmetry transformation parameter must also

carry J = 0. This establishes the desired result.

We denote by d5D(n,Q1, J) the helicity trace −Tr
(
(−1)2h+J (2h)2

)
/2! of five dimensional

black hole carrying quantum numbers (n,Q1, J), and define

Z5D(ρ, σ, v) =
∑

n,Q1,J

d5D(n,Q1, J) exp [2πi{(Q1 − 1) σ + (n− 1) ρ+ Jv}] . (2.1)

The −1 in (Q1 − 1) reflects the fact that a D5-brane wrapped on K3 carries −1 units of D1-

brane charge. On the other hand the −1 in (n−1) has been introduced due to the fact that this

charge measured at ∞ differs from that measured on the horizon [40,41,42] – a Chern-Simons

4These have opposite relation between the SO(1, 1) and SU(2)L × SU(2)R quantum numbers, but we shall
not need to use this information here.
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coupling in the action produces −1 unit of this charge from the region between the horizon

and infinity. Thus if −n is the total momentum along S1 carried by the black hole, the charge

measured at the horizon will be −(n − 1). Explicit computation shows that Z5D defined in

(2.1) has the form

Z5D(ρ, σ, v) = e−2πiρ−2πiσ
∏

k,l,j∈zz
k≥1,l≥0

(
1 − e2πi(σk+ρl+vj)

)−c(4lk−j2)

×
{

∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4

}
(−1) (eπiv − e−πiv)2

+ e−2πiρ−2πiσ
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
(eπiv − e−πiv)2 , (2.2)

where the coefficients c(n) are defined via the equation

8

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+
ϑ3(τ, z)

2

ϑ3(τ, 0)2
+
ϑ4(τ, z)

2

ϑ4(τ, 0)2

]
=

∑

j,n∈zz
c(4n− j2) e2πinτ+2πijz . (2.3)

Eq.(2.2) requires some explanation. The first line of (2.2) denotes the contribution from the

relative motion of the D1-D5 system and was computed in [43]. The asymptotic expansion of

the degeneracies of this system has been studied recently in [41,44]. The second line represents

contribution from the ‘center of mass modes’ of the D1-D5 system. This contribution can be

calculated as follows. Since the D1-D5 system breaks the translation symmetries along the four

directions transverse to the brane, the (1+1) dimensional world-volume theory of this system,

spanned by the time coordinate and the coordinate along S1, will contain four goldstone bosons

associated with the four broken translation generators. Furthermore since the ground state

of the D1-D5 system also breaks eight out of the sixteen supersymmetries of type IIB string

theory on K3, we shall have eight goldstino fermions carrying the same quantum numbers as

the broken supersymmetry transformation parameters. This leads to four left-moving and four

right-moving fermions living on the D1-D5-brane world-volume. In our convention the left-

moving fermions carry (J = 0, 2h = ±1) and the right-moving fermions carry (J = ±1, 2h = 0).

We need to count excitations of this system preserving four supersymmetries, parametrized

by left-chiral spinors on the D1-D5-brane world-volume. Since these transformations act on

the right-moving fermions and bosons, the BPS condition will freeze all the right-moving

excitations except the zero modes. Since the right-moving fermions carry J = ±1, h = 0,

quantization of a pair of right chiral zero modes would produce a pair of states with J = ±1
2
,
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h = 0. Thus the net contribution of four right chiral zero modes to the trace, containing a

factor of (−1)Je2πivJ = e2πiJ(v+ 1

2
), is a factor of (eπi(v+ 1

2
) + e−πi(v+ 1

2
))2 = −(eπiv − e−πiv)2. This

accounts for the last two factors in the second line of (2.2). The BPS condition does not restrict

the left-moving degrees of freedom and the terms in the curly bracket in the second line of

(2.2) represent contribution from these left-moving excitations. In particular the zero modes

of the left-moving fermions, carrying helicities ±1/2, soak up the factors of −(2 h)2/2! in the

helicity trace so that if we leave aside these zero modes, contribution to the helicity trace from

the rest of the modes involve computing the Witten index Tr(−1)F . Since the left-moving

fermions have J = 0, their oscillators lead to the last term in the product inside the curly

bracket. On the other hand the left-moving bosons, transforming under (2, 2) representation

of SU(2)L × SU(2)R, carry ±1 units of J quantum numbers and lead to the first two terms

inside the curly bracket. Finally the term in the last line of (2.2) removes the contribution of

the n = 0 term5 from eq.(2.1), ı.e. it subtracts the term whose ρ dependence is of the form

e−2πiρ. The rationale for subtracting this term is that for n = 0 the D1-D5 system includes

contribution from half-BPS states. Thus it is more natural to consider the partition function

of pure quarter BPS states by subtracting the contribution due to the n = 0 term.

Now we need to analyze the contribution to the partition function from the degrees of

freedom of the black hole living outside the horizon and remove this contribution from (2.2)

to determine the expected microscopic degeneracies associated with the horizon. We begin by

writing down the action and the black hole solution. The relevant part of the action containing

the string metric Gµν , dilaton Φ and the Ramond-Ramond 3-form field strength F (3) = dC(2)

takes the form

1

(2π)7

∫
d10x

√
− detG

[
e−2Φ (R + 4Gµν ∂µΦ∂νΦ) − 1

12
F

(3)
MNPF

(3)MNP

]
, (2.4)

in α′ = 1 unit. For simplicity we shall set the asymptotic values of the moduli to their

attractor values for the specific black hole solution we analyze, so that all the moduli fields

including the dilaton are constants. The generalization to more general asymptotic values is

straightforward. In this case the rotating black hole solution describing Q5 D5-branes along

K3×S1, Q1 D1-branes along S1, −n units of momentum along S1 and angular momentum J ,

5Throughout this paper we shall denote the additive term proportional to e−2πiρ as the n = 0 term.
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takes the form6

dS2 =
(
1 +

r0
r

)−1
[
−dt2 + (dx5)2 +

r0
r

(dt+ dx5)2 +
J̃

4r
(dt+ dx5) (dx4 + cos θ dφ)

]

+ĝmn(~u) dumdun +
(
1 +

r0
r

)
ds2

flat ,

ds2
flat = r (dx4 + cos θdφ)2 +

1

r
(dr2 + r2dθ2 + r2 sin2 θ dφ2) ,

(θ, φ, x4) ≡ (2π − θ, φ+ π, x4 + π) ≡ (θ, φ+ 2π, x4 + 2π) ≡ (θ, φ, x4 + 4π) ,

eΦ = λ ,

F (3) ≡ 1

6
F

(3)
MNPdx

M ∧ dxN ∧ dxP

=
r0
λ

(
ǫ3 + ∗6ǫ3 +

1

r0

(
1 +

r0
r

)−1

(dx5 + dt) ∧ dζ
)
,

ǫ3 ≡ sin θ dx4 ∧ dθ ∧ dφ , (2.5)

where x5 is the coordinate of the circle S1 with period 2 π R5, u
m for m = 6, ..., 9 are the

coordinates of K3, ĝmn is the metric on K3, (2π)4 V is the volume of K3 measured in this

metric, λ is the asymptotic value of the string coupling, ∗6 denotes Hodge dual in the six

dimensions spanned by t, x5, x4, r, θ and φ with the convention ǫt54rθφ = 1, and

r0 =
λ(Q1 −Q5)

4V
=
λQ5

4
=

λ2|n|
4R2

5V
, (2.6)

J̃ =
J λ2

2R5 V
, (2.7)

ζ = − J̃

8r
(dx4 + cos θdφ) . (2.8)

Eq.(2.6) determines the asymptotic moduli V and λ/R2
5 in terms of the charges. This corre-

sponds to setting the asymptotic moduli to their attractor values. ds2
flat describes flat euclidean

space in the Gibbons-Hawking coordinates. Higher derivative corrections to the entropy of this

black hole have been discussed extensively in [45, 46, 47, 40, 48, 41, 42, 49].

Now the black hole solution breaks four translation symmetries and twelve of the sixteen

space-time supersymmetries, and hence we expect to have four bosonic zero modes and twelve

6Conventionally the BMPV black hole as well as the BMPV black hole at the center of Taub-NUT space is
expressed as a solution in five dimensional supergravity theory [35, 36, 37]. Here we express them as solutions
in a ten dimensional theory so that we can study the excitations which propagate along the internal directions.
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fermionic zero modes living on the black hole, forming part of the black hole hair.7 Typically the

quantization of the bosonic zero modes do not give rise to additional degeneracies but produces

new charge sectors instead, – this was illustrated in [50] in the context of four dimensional black

holes. However the quantization of the fermion zero modes does affect the partition function.

The (J, h) quantum numbers of the fermion zero modes can be read out by comparison with the

microscopic description. Since the four unbroken supersymmetries are labelled by left-chiral

spinors on the D1-D5 world-volume, eight of the broken supersymmetries are right-chiral and

four of the broken supersymmetries are left-chiral. This leads to eight right-chiral and four

left-chiral zero modes. The left-chiral zero modes carrying (J = 0, h = ±1
2
) soak up the factors

of −(2 h)2/2! in the helicity trace, so that for the rest of the degrees of freedom we only need to

calculate the Witten index Tr(−1)2h+J . On the other hand the right-chiral zero modes carry

(J = ±1, h = 0) and their contribution to the partition function is given by

(eπiv − e−πiv)4 . (2.9)

This however is not the end of the story. Given a zero mode we can explore whether it is

possible to lift it to a full fledged field in (1+1) dimensions spanned by the coordinates (t, x5).

If we can lift them to such fields then the oscillation modes of these fields would produce

additional contribution to the partition function of the black hole hair. To this end we note

that if the black hole solution had been Lorentz invariant in the (x5, t) plane, then any broken

symmetry would automatically lead to a massless goldstone or goldstino field on the black

hole world volume instead of just the zero modes. In particular the bosonic zero modes would

lift to scalar fields, left-chiral fermion zero modes would lift to left-moving fermion fields and

right-chiral fermion zero modes would lift to right-moving fermion fields. However the black

hole solution (2.5) does not have (1+1) dimensional Lorentz invariance, and hence a priori we

cannot use results in 1+1 dimensonal quantum field theory to conclude that associated with a

broken symmetry we shall have a massless field living on the world-volume of the black hole.

Nevertheless we shall now argue that the left-moving modes are not affected by the breaking

of Lorentz invariance and continue to exist. Our argument will be somewhat heuristic, but

we compensate for it by giving a detailed construction of these modes in appendix A. First

we note that the source of Lorentz non-invariance in (2.5) are the (dt + dx5)2 term and the

7Given that black hole solution outside the horizon changes under these translations and supersymmetry
transformations, it is clear that these modes are non-vanishing outside the horizon. What is not apparent at
this stage is whether they have support entirely outside the horizon. For now we shall proceed by assuming
that this is the case, but will study this issue in detail in appendix A.
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(dt + dx5) (dx4 + cos θ dφ) terms in the metric. This structure of the metric shows that only

the g++ and g+i components of the metric violate the Lorentz invariance. Since these lead to

g−− and g−i components of the metric but no g++ or g+i components, we see that the Lorentz

violating terms in the equation of motion of various modes around the solution must involve

∂− derivatives or −··· components of fields. In particular the left-moving fields ϕ for which

∂−ϕ = 0 do not couple to the g−− or g−i components of the metric and should continue to

describe solutions to linearized equations of motion around the black hole background. Thus we

can conclude that the world-volume of the black hole will have four left-moving bosonic fields

carrying (J = ±1, 2h = ±1) and four left-moving fermion fields carrying (J = 0, 2h = ±1).

Their contribution to the partition function is given by
∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4 . (2.10)

Multiplying this by the contribution (2.9) from the zero modes we get the total contribution

to the partition function from the degrees of freedom living outside the horizon

Zhair
5D (ρ, σ, v) = (eπiv − e−πiv)4

∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4 . (2.11)

Let Zhor
5D (ρ, σ, v) denote the partition function associated with the horizon degrees of free-

dom of the five dimensional black hole. Naively we have the relation Z5D = Zhor
5D × Zhair

5D .

However we shall now argue that there is an extra additive contribution to Z5D, and the

correct relation is

Z5D = Zhor
5D × Zhair

5D + Zextra
5D . (2.12)

The extra contribution Zextra
5D comes from starting with a configuration where the black hole

does not carry any momentum along S1, and then exciting its hair degrees of freedom carrying

momentum. As can be seen from (2.6), the initial configuration is singular in the supergravity

approximation. Thus it describes a ‘small black hole’ in five dimensions,8 and hence its hair

degrees of freedom are different from the ones we analyzed earlier. In particular since the D1-D5

system without momentum breaks only four left-chiral and four right chiral supersymmetries,

we have only four right chiral zero modes instead of 8, and hence a factor of −(eπiv − e−πiv)2

will be missing from the hair degrees of freedom. Furthermore since the D1-D5-brane world-

volume theory now has full (1+1) dimensional Lorentz invariance, the right-chiral modes are

8Here, as well as in §3, we shall denote by ‘small black hole’ any object which is singular in the supergravity
limit, carrying Q1, Q5 and J quantum numbers but no momentum along S1. Thus it includes small black ring
configurations as well [51, 52].
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now lifted to full right-moving fields, However the requirement of unbroken supersymmetry

still freezes the right-moving excitations to their ground state. Thus the net contribution from

the hair is given by

Zhair
small = −(eπiv − e−πiv)2

∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4 . (2.13)

Let us denote by Zhor
small the contribution from the horizon degrees of freedom of the small

black hole. Then Zextra
5D will be obtained by taking the product Zhor

small ×Zhair
small and subtracting

the n = 0 contribution. On the other hand Zhor
small may be determined by identifying the

n = 0 contribution in Zhor
small × Zhair

small with the partition function of the D1-D5 system with no

momentum along S1. The latter is simply the negative of the last term in (2.2):

− e−2πiρ−2πiσ
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
(eπiv − e−πiv)2 . (2.14)

Dividing (2.14) by the ρ independent term in the series expansion of (2.13) gives

Zhor
small(ρ, σ, v) = e−2πiρ−2πiσ

∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
. (2.15)

Zextra
5D is now obtained by multiplying (2.15) by (2.13) and then subtracting the n = 0 term,

ı.e. the term proportional to e−2πiρ in the series expansion:

Zextra
5D (ρ, σ, v) = −e−2πiρ−2πiσ (eπiv − e−πiv)2

∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)

×
∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4

+e−2πiρ−2πiσ (eπiv − e−πiv)2
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
. (2.16)

Using (2.2), (2.11), (2.12) and (2.16) we now get

Zhor
5D (ρ, σ, v) = (Z5D − Zextra

5D )/Zhair
5D

= −e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,l,j∈zz
k≥1,l≥0

(
1 − e2πi(σk+ρl+vj)

)−c(4lk−j2)

+e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
. (2.17)
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The presence of the (eπiv − e−πiv)−2 factor may lead one to believe that Zhor
5D has a double pole

at v = 0 and hence the index extracted from this partition function will suffer from the contour

prescription ambiguities discussed in [22, 23, 24]. However using the relation
∑

j c(4n− j2) =

24 δn,0 and the v → −v symmetry one can show that the sum of the two terms in (2.17) has

no singularity at v = 0. Thus (2.17) leads to an unambiguous result for the index of quarter

BPS states associated with the horizon degrees of freedom. We also note that since the factor

of −(2 h)2/2! in the helicity trace is soaked up by the fermion zero modes associated with the

hair, the partition function Zhor
5D measures the Witten index Tr(−1)F = Tr(−1)2h+J of the

black hole microstates associated with the horizon in a given (n,Q1, J) sector.

3 Analysis of the four dimensional black hole entropy

Now we turn to the degeneracies of four dimensional black holes obtained by placing the five

dimensional black hole described above at the center of Taub-NUT space. The corresponding

solution is given by [36]

dS2 =
(
1 +

r0
r

)−1 [
−dt2 + (dx5)2 +

r0
r

(dt+ dx5)2

+
J̃

4

(
1

r
+

4

R2
4

)
(dx4 + cos θ dφ) (dt+ dx5)

]

+ĝmn du
mdun +

(
1 +

r0
r

)
ds2

TN ,

eΦ = λ ,

F (3) =
r0
λ

(
ǫ3 + ∗6ǫ3 +

1

r0

(
1 +

r0
r

)−1

(dx5 + dt) ∧ dζ̃
)
, (3.1)

where

ζ̃ = − J̃
8

(
1

r
+

4

R2
4

)
(dx4 + cos θdφ) , (3.2)

ds2
TN =

(
4

R2
4

+
1

r

)−1

(dx4 + cos θdφ)2 +

(
4

R2
4

+
1

r

)
(dr2 + r2dθ2 + r2 sin2 θ dφ2) . (3.3)

Here R4 is a constant labelling the asymptotic radius of the x4 circle. Note that for R2
4 = 4r0

the 44, 45 and 55 components of the metric become constant independent of r. Thus 4r0 is

the attractor value of R2
4. We shall proceed with the solution for general R4. Using (3.3) we

can express the solution given in (3.1) as

dS2 = −e20 + e21 + e22 + e23 + e24 + e25 + ĝmn du
m dun ,
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F (3) =
r0
λ r2

[(
1 +

r0
r

)−3/2
(

1

r
+

4

R2
4

)−1/2

(e2 ∧ e4 ∧ e5 + e0 ∧ e1 ∧ e3)

+
J̃

8 r0

(
1 +

r0
r

)−2

(−e0 ∧ e2 ∧ e3 + e0 ∧ e4 ∧ e5 − e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5)
]
,

(3.4)

where

e0 =
(
1 +

r0
r

)−1

(dt+ ζ̃),

e1 =

(
dx5 + dt−

(
1 +

r0
r

)−1

(dt+ ζ̃)

)
,

e2 =
(
1 +

r0
r

)1/2
(

1

r
+

4

R2
4

)−1/2

(dx4 + cos θdφ),

e3 =
(
1 +

r0
r

)1/2
(

1

r
+

4

R2
4

)1/2

dr ,

e4 =
(
1 +

r0
r

)1/2
(

1

r
+

4

R2
4

)1/2

r dθ ,

e5 =
(
1 +

r0
r

)1/2
(

1

r
+

4

R2
4

)1/2

r sin θ dφ . (3.5)

Since x4 has period 4π, the asymptotic circle parametrized by x4 has finite radius. Thus

asymptotically we have four non-compact space-time dimensions. Also since x4 now represents

a compact coordinate, the quantum number J is interpreted as the momentum along x4 instead

of angular momentum. However for small r the solution approaches that given in (2.5), and

both solutions have identical near horizon geometry. To see this explicitly we take the near

horizon limit by first defining new coordinates (ρ, τ, y) via

r = r0 βρ, t = τ/β, x5 = y − t (3.6)

and taking the limit β → 0. In this limit both (2.5) and (3.1) take the form9

dS2 = r0
dρ2

ρ2
+ dy2 + r0(dx

4 + cos θdφ)2 +
J̃

4r0
dy(dx4 + cos θdφ) − 2ρdydτ

9We could take a more careful limit by beginning with a non-extremal black hole and scaling the non-
extremality parameter also by β as reviewed in [14]. However this does not play any role in the present
discussion.
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+r0
(
dθ2 + sin2 θdφ2

)
+ ĝmndu

mdun ,

eΦ = λ ,

F (3) =
r0
λ

[
ǫ3 + ∗ǫ3 +

J̃

8 r2
0

dy ∧
(

1

ρ
dρ ∧ (d x4 + cos θ dφ) + sin θ dθ ∧ dφ

)]
. (3.7)

Thus we expect that the contribution to the degeneracy from the horizon degrees of freedom

will be identical for the four and the five dimensional black holes. In particular the quantum

entropy function will give identical results for the two solutions. We shall now try to test this

at the microscopic level by computing the degeneracies associated with the four dimensional

black hole horizon.

The microscopic degeneracy associated with the four dimensional black hole is different

from that of the five dimensional black hole, as it receives additional contribution from the

modes living on the Taub-NUT space as well as the modes associated with the motion of

the D1-D5-brane in the Taub-NUT space [20]. If we denote by d4D(n,Q1, J) the sixth helicity

trace10 −B6 ≡ −Tr((−1)2h+J(2h)6)/6! for the states of the four dimensional black hole carrying

quantum numbers (n,Q1, J) then the four dimensional partition function defined via

Z4D(ρ, σ, v) =
∑

n,Q1,J

d4D(n− 1, Q1, J) exp [2πi{(Q1 − 1) σ + (n− 1) ρ+ Jv}] , (3.8)

has the form [53,54, 38, 55, 20]11

Z4D(ρ, σ, v) = −e−2πiρ−2πiσ−2πiv
∏

k,l,j∈zz
k,l≥0,j<0 for k=l=0

(
1 − e2πi(σk+ρl+vj)

)−c(4lk−j2)
. (3.9)

Note that we now have (n − 1) in the argument of d4D in (3.8), matching the coefficient of

ρ in the exponent. This reflects the fact that for the four dimensional black holes the charge

measured at the horizon agrees with the charge measured by an asymptotic observer. The

e−2πiρ factor in (3.9) is a reflection of the fact that the ground state of the Taub-NUT space

carries −1 unit of momentum along S1; however this is visible only after taking into account

the higher derivative term in the action involving the gravitational Chern-Simons term. Finally

we note that there is no need to subtract the n = 0 contribution from the sum, since in the

10h now denotes the third component of the angular momentum in the (3+1) dimensional theory. J represents
a U(1) charge in the four dimensional theory and its inclusion in the trace is purely a matter of convenience.

11The correct sign of the partition function has been determined in [56]. Note that d4D(n, Q1, J) used here
differ from the index used in [56] by a factor of (−1)J due to the insertion of (−1)J in our definition of B6.
However the definition of partition function in [56] has an explicit factor of (−1)J+1 inserted.
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presence of a Taub-NUT space even the n = 0 states are quarter BPS. The near horizon

geometry of the n = 0 black hole will however lose the memory of the Taub-NUT background

and will have enhanced supersymmetries.

We now need to remove the contribution to Z4D from the degrees of freedom living outside

the horizon. We begin by counting the fermionic modes living outside the horizon. First of all,

there are 12 broken supersymmetry generators leading to 12 fermion zero modes. They carry

h = ±1
2

and soak up the −(2 h)6/6! factor from the helicity trace. Thus the effect of removing

their contribution is to map the helicity trace index to the Witten index of the remaining

system [20, 56]. Had the black hole world-volume theory been Lorentz invariant in the (x5, t)

coordinates, eight of the zero modes would lift to right-moving fermion fields and four of the

zero modes would lift to left-moving fermion fields on the black hole world-volume. As in the

case of five dimensional black holes, we expect that the breaking of Lorentz invariance does

not affect the equations for the left-moving modes and hence we should be able to lift the

four left-chiral fermion zero modes into full fledged left-moving fermion fields on the black hole

world-volume. These modes produce a contribution to the Witten index of the form

∞∏

l=1

(1 − e2πilρ)4 . (3.10)

Next we turn to the bosonic modes living on the black hole. As before we shall proceed

by pretending that the black hole world-volume has Lorentz invariance in the (x5, t) plane,

and then take into account the lack of Lorentz invariance by freezing the right-moving fields.

Our arguments will be heuristic, but we give more explicit construction of some of the modes

in appendix B. The black hole solution given in (3.1) admits a normalizable closed 2-form

inherited from the normalizable harmonic 2-form of the Taub-NUT space [57, 58]. It is given

by

ω = − r

4r +R2
4

sin θdθ ∧ dφ+
R2

4

(4r +R2
4)

2
dr ∧ (dx4 + cos θdφ) . (3.11)

Using the metric (3.1) one can easily check that this harmonic form is supported outside the

near horizon throat geometry. Thus any 2-form field along this harmonic form will give rise

to a scalar mode living outside the horizon. From the NSNS and RR 2-form fields of type

IIB string theory we get two scalar modes. Furthermore the 4-form field with self-dual field

strength, reduced on the 22 internal cycles of K3, generate 3 right chiral and 19 left chiral 2-

form fields in type IIB string theory on K3.12 Picking up the components of these fields along

12In our convention the right-chiral 2-form fields have self-dual 3-form field strength and the left-chiral 2-form
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the 2-form ω we get 19 left-moving scalars and 3 right-moving scalars on the black hole world-

volume. By the logic given earlier we expect the left-moving modes to survive even after taking

into account the breaking of the Lorentz invariance in the (x5 − t) plane. Besides these there

are three goldstone bosons associated with the three broken translational symmetries. After

freezing the right-moving modes we get three more left-moving modes on the black hole world-

volume. Thus we have altogether 2+19+3=24 left-moving scalars living outside the horizon.13

Since they do not carry any J quantum number (which now corresponds to momentum along

x4), their contribution to the black hole partition function is given by

∞∏

l=1

(1 − e2πilρ)−24 . (3.12)

We shall now argue that the four dimensonal solution carries four more left-moving bosonic

excitations living outside the horizon and carrying J-charge ±1. Explicit construction of these

modes have been discussed in appendix B. Physically these modes represent the motion of

the D1-D5 system relative to the Taub-NUT space. Normally if in a composite system we

try to displace one component relative to the other there will be a drastic change in the near

horizon geometry and we would not expect such deformations to be described by modes living

outside the horizon. However since the Taub-NUT space is non-singular everywhere, the near

horizon geometry of a D1-D5-Taub-NUT system is described by that of the D1-D5 system,

and hence moving the Taub-NUT space relative to the D1-D5 system should not alter the

near horizon geometry. Thus such deformations should be described by modes living outside

the horizon. Furthermore since the coordinates labelling the transverse position of the D1-D5

system transform in the vector representation of SO(4), these modes should carry J = ±1. By

the standard argument based on the lack of Lorentz invariance in the x5 − t plane, we expect

the right-moving modes to be frozen but the left-moving modes should be freely excitable. The

contribution from these modes to the partition function is given by

∞∏

l=1

[(
1 − e2πi(lρ+v)

)−2 (
1 − e2πi(lρ−v)

)−2
]
. (3.13)

Can there be additional zero modes associated with the motion of the D1-D5-system relative

to the Taub-NUT space? The five dimensional black hole world volume in flat transverse space

has four left-chiral fermion zero modes with (J, 2h) = (0,±1) and eight right-chiral fermion zero

fields have anti-self-dual 3-form field strength in six dimensions.
13Explicit form of these deformations can be found in appendix B.
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modes with (J, 2h) = (±1, 0), – all living outside the horizon. By an argument similar to the one

in the previous paragraph, we expect them to be approximate zero modes even when we place

the five dimensional black hole in the Taub-NUT background. The four left-chiral fermion zero

modes form part of the 12 goldstino zero modes of the combined system and have already been

counted before. Four of the eight right chiral fermion zero modes must form superpartners

of the bosonic zero modes describing the motion of the D1-D5-brane system in transverse

space. This gives rise to a factor of −e−2πiv(1 − e−2πiv)−2 from summing over bound states

in the supersymmetric quantum mechanics describing the zero mode dynamics [58, 59, 20, 56].

The other four right-chiral fermion zero modes which are not paired with the bosons under

supersymmetry would give a factor of −(eπiv − e−πiv)2 since they carry J = ±1. Thus these

two factors cancel exactly and we do not get any additional contribution to the hair from these

zero modes.

Combining (3.10), (3.12) and (3.13) we get the net contribution to the four dimensional

black hole partition function from the hair:

Zhair
4D (ρ, σ, v) =

∞∏

l=1

[(
1 − e2πilρ

)−20 (
1 − e2πi(lρ+v)

)−2 (
1 − e2πi(lρ−v)

)−2
]
. (3.14)

Let Zhor
4D denote the partition function of the horizon degrees of freedom of the four dimen-

sional black hole. Then naively we have the relation Z4D = Zhor
4D × Zhair

4D , but as in the case of

five dimensional black holes, Z4D receives an extra contribution from the configuration where

a small five dimensional black hole carrying no momentum along S1 is placed at the center of

the Taub-NUT space and the momentum along S1 is carried by the hair degrees of freedom.

Denoting the extra contribution by Zextra
4D we have

Z4D = Zhor
4D × Zhair

4D + Zextra
4D . (3.15)

Zextra
4D is given by the product of horizon partition function of the small black hole as given in

(2.15) and the contribution from the hair degrees of freedom. The latter now consists of four

bosons and four left- and four right-moving fermions associated with the motion of the small

black hole in Taub-NUT space, and eight right-moving fermions, eight right-movimg bosons and

twenty four left-moving bosons associated with the fluctuations in Taub-NUT space. Instead of

going through a detailed analysis of these modes we simply note that the number and dynamics

of these modes is identical to those describing the dynamics of the Taub-NUT space and the

overall motion of the D1-D5 system in Taub-NUT space as discussed in [20, 56]. Thus the
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partition function associated with the hair degrees of freedom can be read out from [20, 56].

In particular the contribution from the degrees of freedom associated with the overall motion

of the D1-D5 system can be read out from eq.(5.2.22) of [56] for N = 1:14

− e−2πiv (1 − e−2πiv)−2
∏

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4 . (3.16)

On the other hand the degrees of freedom of the Taub-NUT space contributes

∏

l≥1

(1 − e2πilρ)−24 . (3.17)

Taking the product of (2.15), (3.16) and (3.17) gives

Zextra
4D (ρ, σ, v) = −e−2πi(v+ρ+σ)

(
1 − e−2πiv

)−2
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)

∞∏

l=1

[(
1 − e2πilρ

)−20 (
1 − e2πi(lρ+v)

)−2 (
1 − e2πi(lρ−v)

)−2
]
. (3.18)

Using (3.9), (3.14), (3.15) and (3.18), and the relations

c(0) = 20, c(−1) = 2, c(u) = 0 for u ≤ −2 , (3.19)

we get

Zhor
4D (ρ, σ, v) = (Z4D − Zextra)/Z

hair
4D

= −e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,l,j∈zz
k≥1,l≥0

(
1 − e2πi(σk+ρl+vj)

)−c(4lk−j2)

+e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,j∈zz
k≥1

(
1 − e2πi(σk+vj)

)−c(−j2)
. (3.20)

This is identical to Zhor
5D given in (2.17). We also note that since the −(2 h)6/6! term in the

trace has been absorbed by the fermion zero modes living outside the horizon, Zhor
4D measures

the Witten index Tr(−1)F of the microstates associated with the horizon in a given (n,Q1, J)

14The factor of −e−2πiv (1 − e−2πiv)−2 arises from the sum over bound states of the quantum mechanics
describing the motion of the D1-D5-system in Taub-NUT space. The main difference from the computation of
Zhair

4D is that when the core of the black hole describing the D1-D5 system carries zero momentum, we have only
eight fermion zero modes living on the D1-D5 system instead of twelve. Thus an extra factor of −(eπiv−e−πiv)2

is missing here.
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sector. The equality of Zhor
4D and Zhor

5D now shows that the Witten indices associated with the

near horizon degrees of freedom of the four and the five dimensional black holes are exactly

identical.

Note added: It has been shown in [60] that the hair modes describing the transverse oscil-

lations of the five dimensional black hole, and the oscillations of the BMPV black hole relative

to the Taub-NUT space for the four dimensional black hole, develop curvature singularities

at the future horizon. Thus they should not be included among the hair degrees of freedom.

Since they contributed the same amount to the respective partition functions, the agreement

between the partition functions of four and five dimensional black holes after hair removal

continue to hold.
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A Explicit construction of the left-moving bosonic modes

on the BMPV black hole

Since our argument leading to the existence of left-moving modes on the BMPV black hole has

been somewhat abstract we shall now explicitly demonstrate the existence of such modes. For

simplicity we shall focus on the left-moving bosonic zero modes associated with the transverse

oscillations. If we introduce new coordinates

w1 = 2
√
r cos

θ

2
cos

x4 + φ

2
, w2 = 2

√
r cos

θ

2
sin

x4 + φ

2
,

w3 = 2
√
r sin

θ

2
cos

x4 − φ

2
, w4 = 2

√
r sin

θ

2
sin

x4 − φ

2
, (A.1)

then the solution given in (2.5) takes the form

dS2 = ψ(r)−1
[
dx+dx− + (ψ(r) − 1)(dx+)2

]
+ χi(~w) dx+ dwi + ĝmn du

mdun + ψ(r) ~dw
2
,

x± ≡ x5 ± t , r ≡ 1

4
~w2, ψ(r) ≡

(
1 +

r0
r

)
, χi(~w) dwi = ψ(r)−1 J̃

4r
(dx4 + cos θ dφ)

C(2) =
1

2
Cij(~w)dwi ∧ dwj + C+i(~w)dx+ ∧ dwi + C+−(~w)dx+ ∧ dx− , (A.2)
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where C(2) denotes the RR 2-form field and Cij , C+i and C+− are some fixed functions of ~w.

We can now use the following algorithm to generate the deformations describing left-moving

transverse oscillations of the black hole:

1. We first consider a deformation of the solution generated by the diffeomorphism

wi → wi + ai (x+ + c) f + (x+ + c)~a · ~wwi g,

x− → x− − 2~a · ~w ψ2 f − (x+ + c)ψ (~a · ~χ f + ~a · ~w ~w · ~χ g) ,
x+ → x+ , (A.3)

where ~a denotes an arbitrary constant four dimensional vector, ~a · ~w ≡ aiwi, c is an

arbitrary constant and f and g are functions of r satisfying

g =
1

2
ψ−2 (ψ2f)′ . (A.4)

Here ′ denotes derivative with respect to r. The diffeomorphism has been chosen such

that all the terms in δ(dS2) to first order in ai are proportional to (x+ + c) without

any derivative acting on it. By accompanying this diffeomorphism by a suitable gauge

transformation of C(2) we can ensure that δC(2) also is proportional to (x+ + c) without

any derivative acting on it.

2. We now replace the overall factor of x+ + c by an arbitrary function ǫ(x+) everywhere

in the deformed solution. Thus the deformed configuration is proportional to ǫ(x+).

Furthermore, by construction it is guaranteed to be a solution to the equations of motion

for ǫ(x+) = x+ + c. This in turn shows that if we substitute the deformed configuration

into the equations of motion then the terms proportional to ǫ(x+) and ∂+ǫ(x
+) must

vanish automatically.

3. Our goal is to ensure that the deformed configuration is a solution to the equations

of motion to linear order in ǫ for arbitrary function ǫ(x+). Since the field equations

are second order in derivatives, and terms involving ǫ(x+) and ∂+ǫ(x
+) are guaranteed

to vanish, it only remains to ensure that the terms involving ∂2
+ǫ vanish. Such terms

can arise in the ++ component of the metric equation, and the vanishing of the term

proportional to ∂2
+ǫ can be shown to require15

GijδGij = 0 , (A.5)

15Note that since the three form field strengths contain at most a single derivative of ǫ, they do not directly
contribute any term proportional to ∂2

+ǫ in the equations of motion.
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where i, j run over the four transverse spatial coordinates, Gij is the background metric

and δGij denotes the first order deformation of the metric. This imposes one additional

constraint on the functions f and g. Once this condition is satisfied we have a set of

deformations parametrized by four arbitrary function aiǫ(x+).16

At the end of the second step this procedure gives

δ
(
dS2

)
= −1

2
ǫ(x+)ψ−2ψ′ ~a · ~w (f + 4rg)

(
dx+ dx− − (dx+)2

)

+
1

2
ǫ(x+)ψ′~a · ~w (f + 4rg) ~dw

2
+ ǫ(x+)ψ f ′~a · ~dw ~w · ~dw

+2 ǫ(x+)ψ g~a · ~dw ~w · ~dw + 2 ǫ(x+)ψ g~a · ~w ~dw
2
+ ǫ(x+)ψ g′~a · ~w ~w · ~dw ~w · ~dw

−ǫ(x+)ψ−1 dx+ d (ψ(~a · ~χ f + ~a · ~w ~w · ~χ g))
+ǫ(x+)χi dx

+ d
(
ai f + ~a · ~wwi g

)
+ ǫ(x+) ∂kχ

i (ak f + ~a · ~wwk g) dx+dwi ,

δ C(2) =
1

2
ǫ(x+) (∂k Cij + ∂i Cjk + ∂j Cki) (akf + ~a · ~wwk g) dwi ∧ dwj

+ǫ(x+) ∂kC+− (akf + ~a · ~wwk g) dx+ ∧ dx−

+ǫ(x+) ∂kC+− dw
k ∧ (2ψ2 f ~a · ~dw + ~a · ~w (ψ2f)′ ~w · ~dw)

−ǫ(x+) ∂k C+− (~a · ~χ f + ~a · ~w ~w · ~χ g) ψ dwk ∧ dx+

+ǫ(x+) (∂lC+k − ∂kC+l) (al f + ~a · ~wwl g) dx+ ∧ dwk . (A.6)

Substituting this into (A.5) gives

2ψ′ (f + 4rg) + ψ f ′ + 10ψ g + 4 r ψ g′ = 0 . (A.7)

Using eq.(A.4) we can regard (A.7) as a second order linear differential equation for f . Thus

it has two independent solutions. It is easy to verify that the general solution to (A.4), (A.7)

is

f = (A0 r
−2 +B0)ψ

−2, g = −A0 r
−3 ψ−2 , (A.8)

where A0 and B0 are two arbitrary constants. Requiring that the solution gives a normalizable

deformation of the metric and the 2-form field near r = 0 we get A0 = 0. Thus we have

f = B0 ψ
−2 , g = 0 . (A.9)

It is easy to verify that the deformations of the metric and the 2-form field associated with

this choice of f is normalizable both at r = 0 and at r = ∞. Thus we have normalizable

16This analysis is similar in spirit, although much simpler than, the one carried out in [61].
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deformation of the solution parametrized by four indendent functions ai ǫ(x+). This shows

the existence of four left-moving modes on the black hole world-volume. Furthermore the

contribution to the norm of the deformation from the throat region r << r0 vanishes, showing

that these modes are located outside the horizon.

We expect that a similar argument can be used to construct the four left-moving fermionic

modes on the black hole world-volume. In this case we shall need to use the broken supersym-

metry generators to generate the fermionic deformation of the solution. However we shall not

carry out this analysis explicitly.

B Explicit construction of the left-moving bosonic modes

on the four dimensional black hole

In this appendix we shall give explicit construction of the bosonic zero modes living on the

four dimensional black hole. We begin with the left-moving zero modes associated with the

harmonic two form ω in the Taub-NUT space given in (3.11). For any 2-form field B – either

the NSNS or RR sector 2-form field of the ten dimensional type IIB string theory or a four

form field with two legs along an internal 2-cycle of K3 – we consider a deformation of the

form

δB = ǫ(x+)ω , (B.1)

for any function ǫ(x+) of x+ = x5 + t. This gives

d(δ B) = ǫ′(x+) dx+ ∧ ω

= −ǫ′(x+)
1

r2R2
4

(
1

r
+

4

R2
4

)−2 (
1 +

r0
r

)−1

(e0 ∧ e2 ∧ e3 + e0 ∧ e4 ∧ e5 + e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5) , (B.2)

where the 1-forms ei’s have been defined in (3.5). d(δB) given in (B.2) can be shown to be anti-

self-dual. Hence d(δB) is both closed and co-closed and δB given in (B.1) provides a solution

to the linearized equations of motion of Bµν around the background (3.1). For the 3-form field

strength deformation given in (B.2) one also finds that there is no contribution to the stress

tensor from the interference term between the deformation and the leading order field strength

given in (3.4). As a result the deformation (B.1) also satisfies the metric equation of motion at

the linearized level. However in order that (B.1) corresponds to a valid configuration in string

theory, B must correspond to a left-chiral 2-form (which has anti-self-dual field strength in our
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convention). Since type IIB on K3 has 2+19=21 left-chiral 2-form fields we get 21 left-moving

bosonic modes from this construction. Finally this deformation is normalizable with the metric

given in (3.1) and the norm is supported outside the throat, ı.e. outside the r << r0, R
2
4 region.

Thus these modes should be counted as part of the black hole hair.

Next we shall describe the left-moving modes associated with the 3 transverse motion of

the black hole. For this we introduce new coordinates (y1, y2, y3) via

y1 = r cos θ cos φ, y2 = r cos θ sin φ, y3 = r cos θ . (B.3)

In this coordinate system the metric given in eq.(3.1) takes the form

dS2 = ψ(r)−1
{
dx+dx− + (ψ(r) − 1) (dx+)2

}
+
J̃

4
χ(r)ψ(r)−1 (dx4 + Aα(~y) dyα) dx+

+ψ(r)χ(r)−1
(
dx4 + Aα(~y) dyα

)2
+ ψ(r)χ(r) ~dy

2
+ ĝmn du

mdun , (B.4)

where

ψ(r) = 1 +
r0
r
, χ(r) =

1

r
+

4

R2
4

, Aα(~y) dyα = cos θ dφ . (B.5)

We can now generate an x+ dependent deformation of this solution by first considering a

diffeomorphism

yα → yα + (x+ + c) (bα f̃ +~b · ~y yα g̃) ,

x− → x− − 2~b · ~y χψ2 f̃ ,

x4 → x4 − (x+ + c)Aα (bα f̃ +~b · ~y yα g̃) , (B.6)

and then replacing (x+ + c) by ǫ(x+) in the deformed solution. Here c, b1, b2, b3 are arbitrary

parameters, ~b · ~y ≡ bα yα, and f̃ and g̃ are functions satisfying

g̃ =
1

r
ψ−2 χ−1(ψ2 χ f̃)′ . (B.7)

This gives

δ(dS2) = −ǫ(x+)ψ−2 ψ′
~b · ~y
r

(f̃ + r2g̃)
(
dx+dx− − (dx+)2

)

+
J̃

4
ǫ(x+) (ψ−1χ)′

~b · ~y
r

(f̃ + r2g̃) dx+ (dx4 + ~A · ~dy)

+
J̃

4
ǫ(x+)ψ−1 χ (∂αAβ − ∂βAα) (bα f̃ +~b · ~y yα g̃) dyβ dx+
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+ǫ(x+) (ψ χ−1)′
~b · ~y
r

(f̃ + r2g̃) (dx4 + ~A · ~dy)2

+2 ǫ(x+)ψ χ−1 (∂αAβ − ∂βAα) (bα f̃ +~b · ~y yα g̃) dyβ (dx4 + ~A · ~dy)

+ǫ(x+) (ψ χ)′
~b · ~y
r

(f̃ + r2g̃) ~dy2 + 2 ǫ(x+)ψ χdyα d
(
bα f̃ +~b · ~y yα g̃

)
.

(B.8)

One can construct the deformation of the 2-form field in a straightforward manner but we

shall not do this here.17 Our construction guarantees that when we substitute the deformation

(B.8) (and the corresponding deformation of the 2-form field) into the linearized equations of

motion in the black hole background, all terms up to first derivative of ǫ(x+) vanish. Requiring

the coefficient of the ∂2
+ǫ term to vanish gives us the equation:

ψ−1 χ (ψ χ−1)′(f̃ + r2 g̃) + 3ψ−1 χ−1 (ψ χ)′(f̃ + r2 g̃) + 2 (f̃ ′ + 4 r g̃ + r2 g̃′) = 0 . (B.9)

Using eq.(B.7) we can regard (B.9) as a second order linear differential equation for f̃ . Thus it

has two independent solutions. It is easy to verify that the general solution to (B.7), (B.9) is

f̃ = (Ã0 r
−3 + B̃0)ψ

−2 χ−1, g̃ = −3 Ã0 r
−5 ψ−2 χ−1 , (B.10)

where Ã0 and B̃0 are two arbitrary constants. Requiring that the solution gives a normalizable

deformation of the metric and the 2-form field near r = 0 we get Ã0 = 0. Thus we have

f̃ = B̃0 ψ
−2 χ−1, g̃ = 0 . (B.11)

It is easy to verify that the deformations of the metric and the 2-form field associated with

this choice of f̃ is normalizable both at r = 0 and at r = ∞. Thus we have normalizable

deformation of the solution parametrized by three indendent functions bα ǫ(x+). This shows

the existence of three left-moving modes on the black hole world-volume describing the left-

moving transverse oscillation modes of the black hole. Furthermore the contribution to the

norm of the deformation from the throat region r << r0, R
2
4 vanishes, showing that these

modes are located outside the horizon.

Finally we turn to the zero modes describing the motion of the D1-D5 system relative to

the Taub-NUT space. We shall not carry out the construction in detail but describe these

17For this one needs to accompany the diffeomorphism (B.6) by an appropriate gauge transformation of the
2-form field such that every term in the deformation has an explicit factor of (x+ + c) without any derivative
acting on it. We then replace (x+ + c) by ǫ(x+).
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deformations in the limit R2
4 >> r0. To leading order in this limit, the deformations associated

with these left-moving modes are in fact given by the ones described in (A.6). Indeed the

arguments of appendix A show that for r << R2
4 when the Taub-NUT metric can be replaced

by flat metric, the deformations given in (A.6) satisfy the linearized equations of motion. On

the other hand since the function f in (A.6) approaches a constant for r >> r0, the metric

fluctuations fall off as 1/r2 and the contribution to the norm of the deformation from this

region is small. Thus the deformation given in (A.6) is supported in the region r ∼ r0, and

for r ∼ R2
4 >> r0, where the deviation of the Taub-NUT metric from the flat metric becomes

significant, the deformation is close to zero. Thus we conclude that in the region where the

deformation (A.6) is supported it remains an approximate solution to the equations of motion.18

Our analysis also allows us to determine the J quantum numbers of various deformations.

Since in the region r << R2
4 the parameters ~a labelling the deformation in (A.6) transform

in the vector representation of the SO(4) rotation group acting on the coordinates ~w, they

carry J = ±1. This may also be seen by noting that under a translation x4 → x4 + β, these

modes transform with a phase e±iβ/2. Since x4 has period 4π, this shows that these modes

carry ±1 quantum of x4 momentum. On the other hand the deformations describing the

overall transverse motion of the black hole, described by the parameters bα, are neutral under

x4 translation, and hence has J = 0. The different transformation properties of the modes

labelled by ~a and ~b help demonstrate that they are distinct deformations of the solution.
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