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Abstract

It is shown that many of the conjectured dualities involving orbifold compactification
of M-theory follow from the known dualities involving M-theory and string theory in
ten dimensions, and the ansatz that orbifolding procedure commutes with the duality
transformation. This ansatz also leads to a new duality conjecture, namely that M-
theory compactified on T 8/Z2 is dual to type I string theory on T 7. In this case the
‘twisted sector states’ in M-theory live on sixteen membranes transverse to the internal
manifold.
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Introduction: In recent past it has been realised that the moduli space of string theories
contains a special point, known as the M-theory, whose low energy limit corresponds to
the eleven dimensional supergravity theory[1, 2, 3, 4]. Compactification of M-theory
on various orbifolds have been studied, and have been conjectured to be dual to various
known string theory compactifications[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In this paper we
shall try to get a systematic understanding of some of these duality conjectures in terms of
other duality conjectures involving M-theory and ten dimensional string theories; namely
the equivalence of M-theory on S1 and type IIA string theory, and the self-duality of type
IIB string theory.

The basic idea is an old one. Suppose two theories A and B are equivalent, and
suppose further that the theory A has a symmetry σA which gets mapped to a symme-
try σB under the equivalence relation. Then naively we would expect that the theory A
modded out by the symmetry σA will be equivalent to the theory B modded out by the
symmetry σB. Unfortunately, this naive expectation does not always work, and there are
specific instances where this procedure gives nonsensical answer[16]. It works when the
equivalence relation between the two theories involves a T -duality transformation rather
than a more general U -duality transformation; it also works when the adiabatic argument
given in ref.[16] can be applied. Nevertheless, there are many interesting examples of
dual pairs constructed by this (or closely related) method where neither of these condi-
tions hold[17, 18, 16, 10, 19]. We shall start with the assumption that this procedure of
obtaining dual pairs works even when one of the theories corresponds to M-theory com-
pactification rather than string theory compactification, and show that in most cases it
leads to sensible answers.3 One of the exceptions is M-theory compactification on S1/Z2,
where this procedure would indicate that the dual theory is type IIB string theory, whereas
in actual practice it is known to be the E8 × E8 heterotic string theory[5].
Notation: To begin with let us set up some notations. For either M-theory or string
theory compactified on an n dimensional torus T n, we shall denote by In the transfor-
mation that changes the sign of all the coordinates on the torus. This is usually not a
symmetry for odd n. For type IIA theory, and for M-theory, this can be made into a
symmetry by combining it with an internal transformation, which, besides other effects,
changes the sign of the three form gauge field. We shall denote this combined transforma-
tion by Jn. For type IIA theory, the internal part of this transformation can be identified
to world-sheet parity transformation. For the type IIB theory, the world-sheet parity
transformation is itself a symmetry of the theory. We shall denote this transformation by
Ω. Finally, both type IIA and type IIB theory possesses a symmetry which is easiest to
describe in the light-cone gauge Green-Schwarz formalism. In this formalism this trans-
formation changes the sign of all the left-moving fermions on the world-sheet. We shall
denote this transformation by (−1)FL, where FL stands for the space-time fermion number
arising in the left-moving sector of the world-sheet. Acting on the massless bosonic fields

3Some related observations were made in ref.[15].
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in the theory, the effect of this transformation is to change the sign of all the fields arising
from the Ramond-Ramond (RR) sector.

The only other Z2 symmetry that we shall encounter in this paper is a Z2 symmetry
transformation acting on a special class of K3 surfaces[20, 21, 22, 8]. This has the following
properties:

1. Modding out the K3 surface by this symmetry preserves SU(2) holonomy.

2. Acting on the lattice of second cohomology elements of K3, it exchanges the two
E8 factors leaving the rest of the lattice invariant.

3. It has eight fixed points.

We shall denote this symmetry by σ.
We begin our discussion with M-theory on S1/{1,J1}. According to ref.[5] this theory

is equivalent to E8 × E8 heterotic string theory. On the other hand, by using the known
duality transformation between M-theory on S1 and type IIA string theory, one can easily
verify that the transformation J1 in M-theory gets mapped to the transformation (−1)FL

in the type IIA theory. Thus naively we would conclude that M-theory on S1/{1,J1}
should be equivalent to type IIA theory modded out by {1, (−1)FL}. However, the latter
theory is known to be equivalent to the type IIB theory. Thus we see that the naive
procedure of getting dual pairs through orbifolding breaks down in this case. However,
as we shall see, this procedure does work in most of the other cases.
M-theory on T 5/{1,J5}: M-theory on T 5 is equivalent to type IIA on T 4. In M-theory
the transformation J5 is equivalent to J1 ·I4. This goes over to the symmetry (−1)FL ·I4 in
the type IIA theory. Thus we would conclude that M-theory on T 5/{1,J5} is equivalent
to the type IIA theory on T 4/{1, (−1)FL · I4}. It is clear that the spectrum of massless
states coming from the untwisted sector in the two theories will be identical, since by
construction it is guaranteed that the fields that are even (odd) in M-theory on T 5 under
J5 get mapped to fields that are even (odd) in type IIA on T 4 under (−1)FL · I4. Thus
we only need to verify that the spectra from the ‘twisted sector’ agree. In M-theory the
twisted sector contributes 16 tensor multiplets[6, 7]. On the type IIA side, the space-
time part I4 of the Z2 symmetry has sixteen fixed points on T 4. Thus in order that the
spectrum of massless states in the two theories agree, one must verify that at each fixed
point, the twisted sector of the type IIA theory contains a single tensor multiplet.

It is easy to verify this result by working in the light cone gauge Green-Schwarz
formalism. First of all, one can analyse the surviving supersymmetry generators, and
verify that they belong to the chiral N = 2 supersymmetry algebra in six dimensions, as
is the case for M-theory on T 5/{1,J5}. The spectrum may be analysed as follows. Both
on the left and the right hand sector there are four periodic bosons and fermions and four
anti-periodic bosons and fermions. Thus the total vacuum energy vanishes. Quantization
of the eight fermionic zero modes (four from the left and four from the right) gives a
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sixteen fold degenerate state. Through careful analysis of the transformation laws of the
fermion zero modes under the six dimensional Lorentz group one can verify that there
sixteen states indeed belong to a tensor multiplet of the chiral N = 2 supersymmetry
algebra.

Instead of presenting the details of this calculation, we shall map this type IIA orbifold
into a type IIB orbifold via a T -duality transformation, which would make this equivalence
obvious. Let us denote by 6, 7, 8, 9 the compact directions, and make an R → 1/R duality
transformation on the 6th coordinate. If Xm

L , Xm
R (6 ≤ m ≤ 9) denote the left and right

moving components of the bosonic coordinates in the type IIA theory, and Y m
L , Y m

R denote
the left and right moving components of the bosonic coordinates in the type IIB theory,
then the two sets of variables are related as

Y 6

L = −X6

L, Y m
L = Xm

L for 7 ≤ m ≤ 9, Y m
R = Xm

R for 6 ≤ m ≤ 9 .
(1)

Now both the transformations I4, as well as (−1)FL , in the type IIA theory can be
represented as a T -duality rotation of the form4

(X6

L + iX7

L, X8

L + iX9

L, X6

R + iX7

R, X8

R + iX9

R)

→ (eiθL(X6

L + iX7

L), eiφL(X8

L + iX9

L), eiθR(X6

R + iX7

R), eiφR(X8

R + iX9

R)) . (2)

In particular the transformation I4 corresponds to

(θL, φL; θR, φR) = (−π, π;−π, π) , (3)

and the transformation (−1)FL corresponds to

(θL, φL; θR, φR) = (2π, 0; 0, 0) . (4)

Note that the rotation by 2π has no effect on the bosonic coordinates which transform as
vectors, but acts on the left moving fermions transforming in the spinor representation
as a change of sign. This is precisely the effect of (−1)FL . Thus the combined effect of
(−1)FL and I4 is given by

(θL, φL; θR, φR) = (π, π;−π, π) , (5)

From eq.(1) we see that the transformation (2) can be rewritten in terms of the coordinates
in the type IIB theory as

(Y 6

L + iY 7

L , Y 8

L + iY 9

L , Y 6

R + iY 7

R, Y 8

R + iY 9

R)

→ (eiθ′
L(Y 6

L + iY 7

L ), eiφ′

L(Y 8

L + iY 9

L ), eiθ′
R(Y 6

R + iY 7

R), eiφ′

R(Y 8

R + iY 9

R)) , (6)

where
(θ′L, φ′

L; θ′R, φ′

R) = (−θL, φL; θR, φR) . (7)

4This notation is similar to the one used in [23].
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From eqs.(5) and (7) we see that the transformation (−1)FL · I4 in the type IIA theory
corresponds to

(θ′L, φ′

L; θ′R, φ′

R) = (−π, π;−π, π) (8)

in the type IIB theory. This can easily be identified to be the transformation I4 in type
IIB theory.5 This leads us to conclude that type IIA on T 4/{1, (−1)FL · I4} is equivalent
to type IIB on T 4/{1, I4}.

Using the earlier equivalence between M-theory on T 5/{1,J5} and type IIA theory on
T 4/{1, (−1)FL · I4} we then conclude that M-theory on T 5/{1,J5} is equivalent to type
IIB on T 4/{1, I4}. The latter is a special case of type IIB theory on a K3 surface, and is
known to give one tensor multiplet from each of the fixed points in the twisted sector. In
fact the duality between type IIB on K3 and M-theory on T 5/{1,J5} has already been
conjectured in refs[6, 7]. Thus we have reproduced the conjectured duality of refs.[6, 7]
by assuming that the orbifolding procedure commutes with the duality transformation.
M-theory on T 9/{1,J9}: This case may be analyzed along more or less similar lines
as the previous model. Using identical logic we see that this theory is expected to be
dual to type IIA theory on T 8/{1, (−1)FL · I8}. Under a further R → 1/R duality
in one of the eight compact directions, this theory reduces to type IIB on T 8/{1, I8}.
The duality between M-theory on T 9/{1,J9} and type IIB on T 8/{1, I8} has already
been conjectured[24], where it was shown that each of the 256 fixed points in the type
IIB theory gives one left-moving chiral boson neutral under supersymmetry, which upon
fermionization maps to 512 chiral fermions, one associated with each of the 512 fixed
points of T 9 under J9 in the M-theory.
M-theory on (S1 × K3)/{1,J1 · σ}: This model was analyzed in ref.[8]. The spectrum
of massless states in this model corresponds to that of a chiral N = 1 supergravity theory
with nine tensor-, eight vector- and twenty huper-multiplets. Using the duality between
M theory on S1 and the type IIA theory, and noting that the symmetries J1 and σ
in M-theory corresponds to (−1)FL and σ respectively in the type IIA theory, we can
map this model to type IIA on T 4/{1, (−1)FL · σ}. The spectra of massless states in the
untwisted sector match trivially. The spectra of massless states in the twisted sector can
be seen to match in the following way. In the M-theory orbifold, the ‘twisted sector states’
consist of eight tensor- and eight hyper-multiplets of the chiral N = 1 supersymmetry
algebra[8], thus we need to show that the twisted sector states in the type IIA orbifold also
consist of eight tensor multiplets. Since K3/{1, σ} has eight fixed points, this amounts to
proving that there is one tensor- and one hyper- multiplet coming from each fixed point.
The spectrum of massless states coming from the twisted sector of the type IIA orbifold
can be computed by noting that locally the space K3/{1, σ} near the fixed point has
the same structure as the space T 4/{1, I4}. Thus the spectrum of massless states per

5One can also verify explicitly, by using the standard map between the massless fields in the type IIA
and the type IIB theories under duality transformation, that the action of (−1)FL · I4 on the massless
fields in the type IIA theory is identical to that of I4 on the massless fields in the type IIB theory.
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fixed point from the twisted sector must be the same as that in type IIA on T 4/{1, I4}.
As has already been argued, the latter theory has one tensor multiplet of the N = 2
supersymmetry algebra per fixed point. This corresponds to one tensor- and one hyper-
multiplet of the N = 1 supersymmetry algebra. Thus type IIA on K3/{1, (−1)FL · σ}
does have eight hyper- and eight tensor- multiplets from the twisted sector.6 This shows
that the massless spectrum of M-theory on (S1×K3)/{1,J1 ·σ} agrees with that of type
IIA string theory on K3/{1, (−1)FL · σ}.

We would also like to relate this to a type IIB compactification. Conventional T -
duality transformation on type IIA on K3 will give us back type IIA on K3, so we need
to use a different strategy. For this we shall choose a special K3 surface, namely an
orbifold T 4/{1, I4}. We do not suffer from any loss of generality this way, since once we
establish the duality at one point in the moduli space, it holds at all other points as well.
Also for convenience we shall take the T 4 to be the product of four circles, each at the
self-dual radius. Let η denote a transformation

(X6, X7, X8, X9) → (X6, X7, X8, X9 + πR) , (9)

where Xm denote the coordinates on T 4 and R denotes the radius of the ninth circle.7

Then if we define our K3 surface to be T 4/{1, I4}, the transformation σ on this K3
can be identified to I4 · η.8 There are sixteen fixed points of this transformation on T 4,
but modding out by I4 identifies them pairwise. This gives eight fixed points on K3 as
expected.

Thus our starting point, type IIA on K3/{1, (−1)FL ·σ}, is now represented as type IIA
on T 4/{1, I4, (−1)FL · I4 · η, (−1)FL · η}. The transformation I4, in the notation of eq.(2),
is represented by the transformation given in (3). Let us now make an R → 1/R duality
transformation in the sixth coordinate. This would convert the type IIA theory to type
IIB. Using eqs.(3), (4) and (7) we see that the transformation (−1)FL and I4 in the type
IIA theory are mapped to (−1)FL and (−1)FL · I4 in the type IIB theory respectively. The
transformation η remains the same in the type IIB theory, as this represents a shift in the
9th direction whereas the duality transformation is being performed in the 6th direction.
This leads us to the conclusion that the theory under consideration is equivalent to type
IIB on T 4/{1, (−1)FL · I4, I4 · η, (−1)FL · η}. Let us now trade in the coordinates Y m

labelling the T 4 of the type IIB theory in favour of new coordinates Zm defined as

Zm = Y m for 6 ≤ m ≤ 8 , Z9 = Y 9 + (πR/2) . (10)

In terms of the new coordinates Zm, the symmetries {1, (−1)FL · I4, I4 · η, (−1)FL · η}
map onto {1, (−1)FL · I4 · η, I4, (−1)FL · η} with η denoting shift of Z9 by πR. Noting

6Incidentally, this provides us with a new class of string compactification with more than one tensor
multiplets in six dimensions.

7Note that η commutes with (−1)FL and I4, since translation of X9 by 2πR is an identity transfor-
mation on T 4.

8This is a slightly different notation from ref.[9].
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that T 4/{1, I4} denotes a K3 surface, and furthermore, that the symmetry I4 · η de-
notes the transformation σ on this K3 surface, we can identify the model as type IIB on
K3/{1, (−1)FL · σ}.

Note that during the course of the manipulation that we have performed in going from
the type IIA compactification to the type IIB compactification, the Z2 transformation I4

in the type IIA theory that was responsible for creating the K3 out of T 4 has been mapped
to σ · (−1)FL acting on the K3 surface on which the type IIB theory is compactified. On
the other hand, the Z2 transformation that generated (−1)FL ·σ on the original K3 surface
has been mapped to the Z2 transformation that generates the final K3 out of T 4. As a
result, viewed as compactification on an orbifold of K3, the twisted sector states in the
original theory will get mapped to the untwisted sector states of the final theory. On the
other hand, the twisted sector states in the final theory will be mapped onto the untwisted
sector states of the original theory.

We can now map this model to another model by using the S-duality of the type
IIB theory in ten dimension[25]. Under this, the transformation (−1)FL gets mapped to
the world-sheet parity transformation Ω[16], whereas the transformation σ is unchanged.
Thus one would expect that the type IIB compactification that we have obtained is also
equivalent to type IIB on K3/{1, Ω · σ}. Note that this implicitly assumes that the S-
duality transformation commutes with the orbifolding procedure, and since this S-duality
is not part of a T -duality group, we must explicitly check that the spectrum from the
twisted sector matches between the two theories. However, the latter model is precisely
the one that was analysed by Dabholkar and Park[9] and was shown to have identical
spectrum of massless states as M-theory on (S1 × K3)/{1,J1 · σ} at a generic point in
the moduli space. Thus we see that following this chain of dualities we have been able to
‘prove’ the equivalence between the M-theory compactification on (S1 × K3)/{1,J1 · σ}
and type IIB compactification on K3/{1, Ω · σ}. We have also seen that at one stage in
this chain of dualities, the twisted sector states and part of the untwisted sector states got
exchanged. This would explain why the eight tensor multiplets that arise from the ‘twisted
sector’ of M-theory on (S1 × K3)/{1,J1 · σ} appear in the untwisted sector in type IIB
on K3/{1, Ω · σ}, and the eight vector multiplets that arise in the ‘twisted sector’ in type
IIB on K3/{1, Ω ·σ} appear in the untwisted sector in M-theory on (S1×K3)/{1,J1 ·σ}.
M-theory on T 4/{1, I4}: This is a special case of M-theory on K3, and so we expect
the spectrum of massless states to be identical to that of M-theory on K3. Using the
relationship between the massless fields in M-theory on S1 and type IIA theory, we can
easily identify the symmetry I4 in M-theory on T 4 as the symmetry J3 ·(−1)FL in the type
IIA theory.9 Thus this particular M-theory compactification is expected to be dual to
type IIA on T 3/{1,J3 · (−1)FL}. This is an orientifold[26] since J3 involves a world-sheet
parity transformation. One could analyse the spectrum of massless states in this theory

9One way to see this is to note that upon rewriting T 4 as S1 × T 3, the transformation I4 in the
M -theory can be regarded as the product J1 · J3. J1 maps to (−1)FL in the type IIA theory, whereas
J3 of M -theory is mapped to J3 of the type IIA theory.
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directly, but we can simplify the analysis by making a T -duality transformation that
inverts the radii of all the three circles of T 3. This converts the type IIA theory to type
IIB theory. Using the standard relationship between the massless fields in the two theories
it is easy to see that the transformation J3 · (−1)FL gets mapped to the world sheet parity
transformation Ω in the type IIB theory. Thus this orbifold compactification is equivalent
to type IIB on T 3/{1, Ω}. This is nothing but the type I string theory compactified on
T 3. Thus we conclude that M-theory on T 4/{1, I4} is equivalent to type I theory on T 3.
Using the conjectured duality between type I and SO(32) heterotic string theory in ten
dimensions, this can be further related to heterotic string theory compactified on T 3. The
equivalence between M-theory on K3 and heterotic string theory on T 3 has already been
conjectured in ref.[2].
M-theory on T 8/{1, I8}: The analysis in this case proceeds exactly as in the previous
case, leading us to the conclusion that this theory is equivalent to type IIA on T 7/{1,J7 ·
(−1)FL}, which, in turn, is equivalent to the type I theory on T 7. In the type I theory,
viewed as an orientifold of the type IIB theory, the ‘twisted sector states’ are open strings
living on 32 nine-branes[26] and give rise to SO(32) gauge fields and their superpartners.
The duality transformation that maps this to the type IIA theory on T 7/{1, (−1)FL ·
J7} involves inverting the radius of each of the seven circles of T 7, and converts the
32 nine-branes into 32 membranes. At a generic point in the moduli space these 32
membranes can be grouped into 16 pairs, the membranes in each pair being related by
the transformation (−1)FL · J7. Since the map from the type IIA theory to M-theory on
S1 converts a membrane to a membrane, we see that in the M-theory the twisted sector
states live on 16 membranes moving on the internal manifold T 8/{1, I8} (which would
appear as 32 membranes on T 8).10 Each of these 16 membranes contributes one vector
multiplet of the supersymmetry algebra. This is analogous to the situation for M theory
on T 5/{1,J5}, where the ‘twisted sector states’ come from the sixteen five-branes moving
on the internal manifold, each of which correspond to one tensor multiplet of the chiral
N = 2 supersymmetry algebra.
Conclusion: We have seen that in many cases the duality involving M-theory orbifolds
may be understood by assuming that duality transformations commute with orbifolding.
There are, however, specific examples where this procedure breaks down, notably when
one gets extra supersymmetry generators in the ‘twisted sector’ of one of the theories. It
will be extremely interesting to have a systematic understanding of when and why duality
transformation commutes with the orbifolding procedure, since this will give us a global
understanding of the interconnections between various dualities in string theory.

I wish to thank K. Dasgupta and S. Mukhi for useful discussions.

10This, in turn, implies that each of the 256 fixed points on T 8/{1, I8} acts as a source of −1/16 units
of anti-symmetric tensor field charge.
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