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Abstract

We show that the tachyonic kink solution on a pair of D-p-branes in the bosonic string
theory can be identified with the D-(p − 1)-brane of the same theory. We also speculate
on the possibility of obtaining the D-(p − 1)-brane as a tachyonic lump on a single D-p-
brane. We suggest a possible reinterpretation of the first result which unifies these two
apparently different descriptions of the D-(p − 1) brane.
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1 Introduction and Summary

During the last year various relationships between the D-branes of type II and type I string

theories have been discovered. In particular, it was found that quite often a D-brane can

be realised as a soliton solution associated with the tachyon field on a brane-antibrane

pair of higher dimension[1, 2, 3, 4]. This fact has been used to show that the D-branes of

type II and type I string theories can be classified by elements of the appropriate K-group

of space-time[5, 6, 7, 8]. Various other applications / generalisations of these results have

also been proposed[9, 10, 11].

In this paper we shall extend these results to the D-branes of bosonic string theory[12].

This theory contains D-branes of all dimensions, unlike type IIA (IIB) string theory which

contains D-branes of even (odd) dimensions only. There is a tachyonic mode even on a

single D-brane in the bosonic string theory; but when we bring two parallel D-branes

close to each other, we get extra tachyonic modes from open strings stretched between

the two D-branes. It is this tachyonic mode which will be of interest to us. The potential

involving this tachyonic mode is even; and according to one possible interpretation of

our results, it has a (local) minimum at non-zero value of the tachyon field. Thus there

are two degenerate minima, and we can have tachyonic kink solution which interpolates

between the two minima. We shall show that this kink solution describes a D-brane of one

lower dimension. Thus if we start with a pair of D-p-branes, the tachyonic kink solution

describes a D-(p − 1)-brane.

Before we outline the steps involved in our analysis, let us briefly discuss the motiva-
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tion. Since bosonic string theory itself is unstable due to the presence of the tachyon in

the closed string sector; and since the D-branes themselves are also unstable due to the

presence of the tachyon in the open string sector, it is natural to question the usefulness

of the results of this paper. We propose the following reasons for our study:

• Quite often bosonic string theory provides a simpler setting compared to superstring

theories for the study of various issues. Since there are several issues which are ill

understood in regarding D-branes as solitons in type II / type I string theories,

studying these issues in bosonic string theory might be of help. One such issue

involves studying the fate of the diagonal U(1) gauge field living on the brane-

antibrane pair after tachyon condensation[9, 5]. Yet another issue is an explicit

construction of the soliton / vacuum configuration on the brane-antibrane pair as

a classical solution of the open string field theory living on the pair. These issues

might be simpler to study in the bosonic string theory.

• On a more speculative side, we would like to point out that in view of recent devel-

opments in the subject of string duality, it seems unlikely that the bosonic string

theory will forever remain outside the scheme that unifies all string theories as dif-

ferent limits of the same underlying theory. Already some explicit proposals have

been made which relate bosonic string theory to other theories with world-sheet

supersymmetry[13]. Study of D-branes in the bosonic string theory is certainly go-

ing to be important if we are to study such duality relations; although due to lack

of supersymmetry our task will be much more difficult.

The steps involved in proving the equivalence of a tachyonic kink solution and a lower

dimensional D-brane are very similar to the ones used in [3], where we derived a similar

result for type I / type II string theory.2 However, there is a crucial difference: unlike in

[3] where the boundary conformal field theory interpolating between the p-brane pair and

the (p− 1)-brane was a free fermionic field theory, in the present case it corresponds to a

level one SU(2) current algebra theory. We now outline the basic idea of the proof:

1. First we compactify one of the directions (x) tangential to the p-brane pair along

a circle of radius R, and switch on half a unit of Wilson line along x on one of the

p-branes. This makes the open string states with two ends lying on two different

2Related issues have been discussed in [14, 15, 16].
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branes anti-periodic under x → x+2πR. As a result, the zero x-momentum mode is

absent from this open string sector, and at a critical radius Rc, the lowest momentum

mode of the tachyon associated with such an open string becomes massless. The

critical radius turns out to be half of the self-dual radius where the conformal field

theory associated with the scalar field X develops an SU(2)L × SU(2)R current

algebra.

2. By exploiting the SU(2)L × SU(2)R current algebra, one can show that the vertex

operator associated with the massless mode of the tachyon represents an exactly

marginal deformation. Switching on a vacuum expectation value α of this mode gives

rise to a solvable boundary conformal field theory (BCFT), so that the spectrum

and correlation functions in this BCFT can be calculated for all values of α. In

particular we show that at α = 1, the BCFT is identical to the one describing a

D-(p−1)-brane located on a circle of radius Rc (with the directions tangential to the

D-(p − 1)-brane being orthogonal to the circle.) On the other hand, by explicitly

examining the form of the tachyon background, we find that it corresponds to a

tachyonic kink on a circle of radius Rc. This allows us to identify the tachyonic kink

on a circle of radius Rc to a D-(p − 1)-brane on a circle of radius Rc.

3. In the final step, we increase the radius R back to infinity. Although at R = Rc all

values of α are allowed, we find that as soon as R increases beyond Rc, the tachyonic

mode which was massless at R = Rc develops a tadpole for a generic value of α. This

shows that a generic α is no longer a solution of the equations of motion. However,

there are two inequivalent values of α where the tadpole vanishes − α = 0 and

α = 1. If we take the radius back to infinity keeping α = 0, we recover the original

D-p-brane pair, whereas if we do so at α = 1, we expect to recover the tachyonic

kink solution. On the other hand, by examining the BCFT corresponding to this

configuration, we find that it describes a D-(p−1)-brane of the bosonic string theory

in 26 dimensional Minkowski space. This proves the identification of the tachyonic

kink solution on the D-p-brane pair with the D-(p − 1)-brane.

The paper is organised as follows. For simplicity of notation we shall consider the case

p = 1, although generalisation to arbitrary p is completely straightforward. Also we shall

work in units where the fundamental string tension is given by 1/(2π), i.e. α′ = 1. In

section 2 we discuss some general properties of a pair of D-branes wrapped on a circle,
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and carry out the step 1 of our analysis. We also outline in slightly more detail the logic

of our analysis in steps 2 and 3. In sections 3 and 4 we explicitly carry out steps 2 and 3

of our analysis. In section 5 we speculate on the possibility of constructing the D0-brane

as a tachyonic lump on a single D-string. Again, this result can be easily generalized to

the case of a D-p-brane. In section 6 we suggest a possible reinterpretation of the results

of sections 3 and 4 which unifies the two apparently different descriptions of the lower

dimensional D-brane.

2 Pair of D-strings Wrapped on a Circle

Our starting point will be a coincident pair of D-p-branes in bosonic string theory. The

open strings living on this system are described by 2 × 2 Chan Paton (CP) factors. The

massless sector of the open string contains a U(2) gauge field living on the brane world-

volume. All open string states transform in the adjoint representation of U(2) − i.e. they

are neutral under the U(1) and transform in the singlet plus a triplet representation of

SU(2). States with CP factor I (the 2 × 2 identity matrix) are in the singlet represen-

tation of SU(2), whereas those with CP factors σi (the Pauli matrices) are in the triplet

representation of SU(2).

The ground state of the open string in each sector describes a tachyon field with

m2 = −1 . (2.1)

The first excited states correspond to the U(2) gauge fields as well as (25 − p) massless

scalars in the adjoint representation of U(2). Higher excited states correspond to massive

modes. We shall denote the tachyonic state with CP factor σ1 by T . Let V (T ) denote

the classical effective potential for this tachyon obtained after integrating out the other

massive string modes. Since the SU(2) gauge transformation corresponding to the group

element exp(iπσ3/2) takes T to −T , V (T ) must be an even function of T .3 We shall argue

shortly that V (T ) has (local) minimum at some values ±T0 such that

V (±T0) + 2Tp = 0 , (2.2)

where Tp denotes the tension of the D-p-brane. Thus for T = ±T0, the total energy

density on the brane pair vanishes and the system is indistinguishible from vacuum.
3If we also consider the tachyonic modes coming from CP factors σ2 and σ3, then there is an SU(2)

triplet of tachyon field, and the potential is invariant under the SU(2) transformation.
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If T0 6= 0, we can define the tachyonic kink solution on the D-p-brane pair as a solution

of the equations of motion of classical open string field theory, subject to the following

conditions:

1. Only those open string fields which carry CP factors I and σ1 are present as back-

ground.

2. The configuration is time independent, as well as independent of (p − 1) of the

spatial directions along the brane.

3. T depends on the remaining spatial direction − which we shall denote by x − such

that

T (x) → T0 as x → ∞ ,

→ −T0 as x → −∞ . (2.3)

T(x)

x

Τ0

−Τ0

Figure 1: The tachyonic kink on the pair of D-p-branes.

This has been illustrated in Fig.1 and describes a kink. From eqs.(2.2) and (2.3) we see

that the energy density vanishes as x → ±∞, and is concentrated near the core at x = 0.

Thus this describes a (p − 1) dimensional brane. We shall argue that this kink actually

describes the D-(p − 1)-brane of the bosonic string theory.
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Note that if (2.2) had not been true, the tachyonic kink defined this way would have

infinite tension when regarded as a (p − 1)-brane, since the energy density, integrated

along x, will not give a finite answer. Thus proving that the tachyonic kink describes the

D-(p − 1)-brane − which is known to have finite tension − automatically proves (2.2).

A somewhat different scenario, which is also consistent with the results of sections 3,

4 will be suggested in section 6. In this description T0 vanishes and the D-(p − 1)-brane

is regarded as a tachyonic lump on a pair of D-p-branes. The argument leading to the

vanishing of V (T0) is still valid, but in this case the negative contribution to the potential

energy, cancelling the tension of the pair of D-p-branes, comes from the vev of the tachyon

associated with the CP factor I.4

0 2πR

α

−α

T

xπR c c

Figure 2: The tachyonic kink on the pair of D-strings on a circle.

From now on we shall focus our attention on the case p = 1, and also compactify the

direction x tangential to the D-string pair on a circle of radius R. Associated with each

D-string is a U(1) gauge field which forms part of the full U(2) gauge group. We now

switch on half a unit of Wilson line on one of the D-strings. This breaks the U(2) gauge

symmetry to U(1)×U(1). Presence of this Wilson line does not affect the spectrum of

4Since V (T ) denotes the effective action obtained after integrating out the other fields, including the
tachyon field from the identity sector, it is automatically minimized with respect to this tachyon.
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open string states with CP factors I and σ3, which represent strings with both ends lying

on the same D-string. But for open strings with CP factors σ1 and σ2, corresponding

to open strings with two ends lying on two different D-strings, the wave function is now

required to be anti-periodic instead of periodic under x → x + 2πR. In particular the

tachyon T coming from CP factor σ1 now has a mode expansion of the form:

T (x) =
∑

n∈Z

Tn+ 1

2

ei(n+ 1

2
) x

R . (2.4)

The effective mass2 of Tn+ 1

2

is given by:

m2
n+ 1

2

=
(n + 1

2
)2

R2
− 1 . (2.5)

This shows that at the critical radius

Rc =
1

2
, (2.6)

the modes T±
1

2

become massless. In the next section we shall show that the combination

S ≡ T 1

2

+ T−
1

2

(2.7)

has vanishing potential as well, so that it represents an exactly marginal deformation of

the BCFT describing the D-string pair. We can parametrise a general vacuum expectation

value (vev) of this marginal operator as:5

T 1

2

+ T−
1

2

= α, T 1

2

− T−
1

2

= 0, Tr = 0 for |r| >
1

2
. (2.8)

From (2.4) we see that this corresponds to

T (x) = α cos
x

2Rc

= α cos x . (2.9)

This has been plotted in Fig.2, and clearly represents a tachyonic kink on a circle of radius

Rc = 1
2
.6

After switching on the tachyon vev, we would like to take the radius back to infinity.

We shall see in section 4 that as soon as we make R > Rc, the field S develops a tadpole

5Once the interactions are taken into account, the higher modes of the tachyon will also acquire
non-zero vev, but T (x) will continue to have the shape of a kink.

6It actually represents an anti-kink, but since bosonic D-branes do not carry any charge, there is no
distinction between a kink and an anti-kink.
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for a generic value of α. This is not surprising since S represents an exactly marginal

deformation only for R = Rc. However, we find that the tadpole vanishes for two inequiv-

alent values of α, namely, α = 0 and α = 1. Thus it is natural to identify the α = 1

configuration as the tachyonic kink on a circle of radius R. We show in section 4 that the

BCFT corresponding to this configuration is identical to the one describing a D-particle

on a circle of radius R. This equivalence continues to hold in the R → ∞ limit as well.

R

α1

1/2

Figure 3: The marginal flow in the R−α plane interpolating between a pair of D-strings
and a D-particle.

Thus we see that there is a series of marginal deformations which relate a pair of

D-strings to the D-particle. In the R − α plane, this marginal flow has been depicted in

Fig.3.

As a consistency check for this proposal, let us note that the mass of the wrapped pair

of D-strings on a circle of radius 1
2

is given by,

2 · 2π ·
1

2
· T1 . (2.10)

Using the relation[12]

Tp =
1

2π
Tp−1 , (2.11)

wee see that (2.10) is identical to the mass T0 of a single D-particle.
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3 CFT at R =
1
2

The world-sheet field that will be important for our analysis is the scalar field X associated

with the coordinate along the D-string. Besides this, there are 25 other scalar fields

X0, . . .X24, and the ghost fields b, c, b̄, c̄. Although X has radius 1
2
, it will be more

convenient for our analysis to regard this as a scalar field of radius 1, and then mod out

the theory by the transformation:

hX : X → X + π (3.1)

All closed string states, as well as open string states with CP factors I and σ3 are required

to be even under hX , whereas open string states with CP factors σ1 and σ2 are required

to be odd under hX .

We shall express X as a sum of the left and the right-moving parts:

X ≡ XL + XR , (3.2)

with hX acting on XL and XR as

hX : XL → XL +
π

2
, XR → XR +

π

2
. (3.3)

At unit radius, the CFT describing X possesses an SU(2)L×SU(2)R current algebra. This

allows us to introduce two other bosons:

φ ≡ φL + φR, φ′ ≡ φ′

L + φ′

R , (3.4)

through the relations:

e2iXL = ∂φL + i∂φ′

L, e2iXR = ∂φR + i∂φ′

R . (3.5)

The set of left-moving currents (∂XL, ∂φL, ∂φ′
L) transform as a triplet of SU(2)L; similarly

the right-moving currents transform as a triplet of SU(2)R. From (3.5) we can also write

down the SU(2) rotated version of these relations:7

e2iφL = ∂XL − i∂φ′

L, e2iφR = ∂XR − i∂φ′

R,

e2iφ′

L = ∂XL + i∂φL, e2iφ′

R = ∂XR + i∂φR . (3.6)

7There is some freedom in writing down these relations, since eq.(3.5) only defines φ, φ′ up to a
constant shift.
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We have already introduced the transformation hX . We now introduce a new trans-

formation:

gX : X → −X . (3.7)

We also introduce the transformations gφ, hφ, gφ′ and hφ′ in an identical manner. Then,

using eqs.(3.5), (3.6) we see that,

hX = gφ = gφ′ , gX = hφ = hφ′gφ′ . (3.8)

We shall use the convention where the open string world-sheet corresponds to the

upper half plane spanned by a complex coordinate z, and the right-moving currents are

holomorphic in z. The operator product expansion of the currents are given by,

∂XR(z)∂XR(w) ≃ ∂φR(z)∂φR(w) ≃ ∂φ′

R(z)∂φ′

R(w) ≃ −
1

2(z − w)2
, (3.9)

where ≃ denotes equality up to non-singular terms. There are similar relations involving

the left-moving currents.

Since both the D-strings are stretched along x, we impose Neumann boundary condi-

tion on X:

(XL)B = (XR)B ≡
1

2
XB , (3.10)

where the subscript B denotes boundary value. Using eq.(3.5) this translates into Neu-

mann boundary condition on φ and φ′:

(φL)B = (φR)B ≡
1

2
φB, (φ′

L)B = (φ′

R)B ≡
1

2
φ′

B . (3.11)

The vertex operator for the mode Tn+ 1

2

defined in (2.4) is given by:

Vn+ 1

2

= ie2i(n+ 1

2
)XB ⊗ σ1 . (3.12)

Thus the vertex operator for S ≡ (T 1

2

+ T−
1

2

) is given by:

VS = i(eiXB + e−iXB) ⊗ σ1 = i∂φB ⊗ σ1 . (3.13)

In deriving the right hand side of (3.13) we have used eq.(3.5). At this stage, the overall

normalization of VS is arbitrary. From (3.13) we see that VS represents the vertex operator

of a zero momentum gauge field Aφ along φ with CP factor σ1, − in other words a Wilson
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line along φ. This clearly is an exactly marginal deformation. We parametrize it by a

parameter α, normalized such that it corresponds to inserting an operator

exp(i
α

4
σ1

∮
∂tφBdt) , (3.14)

on the boundary of the world-sheet. t denotes a parameter along this boundary.

We shall now study the effect of switching on this Wilson line on the open string

states. Using the relations

[σ1, I] = 0 = [σ1, σ1] , (3.15)

we see that open string states with CP factors I and σ1 are neutral under this gauge field,

and hence the spectrum of these open string states is not modified upon switching on the

tachyon vev. On the other hand, since

[σ1, σ3 ∓ iσ2] = ±2(σ3 ∓ iσ2) , (3.16)

open string states in these sectors carry charge ±2 under Aφ. Thus the momentum pφ

along the φ direction gets shifted;

pφ → pφ ±
α

2
. (3.17)

Eq.(3.17) can be restated by saying that the hφ quantum number of the state is multiplied

by a factor:

exp(±iπ
α

2
) . (3.18)

Using the identification of hφ with gX (eq.(3.8)) and the fact that the open string spectrum

has no gX projection, we see that before switching on the tachyon vev, the open string

states in each CP factor contains both hφ even and hφ odd states. If α = 2, then, as

seen from eq.(3.18), the hφ quantum numbers get multiplied by −1. But this means that

the complete spectrum of open strings in each CP sector remains unchanged. Thus the

BCFT at α = 2 is equivalent to that at α = 0, and we conclude that α is a periodic

variable with period 2.

Although at the critical radius R = Rc, all values of α describe consistent BCFT, in

anticipation of the results of the next section let us pay special attention to the spectrum

at α = 1. We begin by tabulating the hφ and gφ eigenvalues of various open string states

at α = 0:
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CP factors gX = hφ hX = gφ

I ±1 1
σ1 ±1 −1
σ2 ±1 −1
σ3 ±1 1

Table 1: Spectrum at α = 0

For α = 1, the quantum numbers in sectors I and σ1 remain unchanged, but the hφ

eigenvalues in sectors σ3 ∓ iσ2 get multiplied by ±i. Thus the above table is modified to:

CP factors hφ = hφ′gφ′ gφ = gφ′

I ±1 1
σ1 ± 1 −1
σ2 ±i −1
σ3 ±i 1

Table 2: Spectrum at α = 1

Combining the open string spectrum from all sectors we see that in the Fock space,

• there is no gφ′ projection, and

• all φ′ momentum of the form:

pφ′ =
n

2
, n ∈ Z , (3.19)

are allowed.

Let us define a new field φ′′ related to φ′ by T-duality transformation:

φ′′

L = φ′

L, φ′′

R = −φ′

R , (3.20)

If wφ′′ denotes the winding charge along φ′′ (defined as ∆φ′′/2π), and gφ′′ denotes the

transformation φ′′ → −φ′′, then we have the relations:

pφ′ = wφ′′ , gφ′ = gφ′′ . (3.21)

We now note that in φ′′ coordinate,

1. The boundary condition (3.11) takes the form:

(φ′′

L)B = −(φ′′

R)B . (3.22)

In other words, we have Dirichlet boundary condition along φ′′.
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2. The full spectrum of open strings from all CP sectors has no gφ′′ projection in the

Fock space.

3. The φ′′ winding charge is quantized as:

wφ′′ =
n

2
, n ∈ Z . (3.23)

This is precisely the spectrum of open strings living on a single D-particle on a circle of

radius 1
2
.

One can ask whether the interaction among these open strings is also identical to that

among open strings living on a D-particle. The difference between the interaction rules

in the two theories comes from the CP factors. In the BCFT under consideration various

open string vertex operators are accompanied by CP factors, and there could be extra

selection rules, as only those products of CP factors with non-vanishing trace will give

non-zero amplitude. This requires, for example, that either each σi come in pairs, or they

appear in the combination σ1σ2σ3. But upon examining the hφ′ and gφ′ quantum numbers

carried by these states, we see that these selection rules are automatically imposed by hφ′

and gφ′ conservation laws, which are present also for the open string living on D-particle

on a circle. This shows that non only the spectrum, but also the correlation functions of

the BCFT obtained here agrees with those in the BCFT describing D-particle on a circle

of radius 1
2
.

This shows the equivalence between the tachyonic kink on a pair of D-strings on a

circle of radius 1
2
, and the D-particle on a circle of the same radius. In the next section we

shall show that this identification of the two boundary conformal field theories persists

even when we increase the radius back to ∞.

4 Taking the Radius Back to ∞

The analysis in this section will follow closely that of ref.[3]. The effect of increasing the

radius is achieved by perturbing by the closed string vertex operator:

∫
d2z∂XL∂XR ≡

∫
d2zVr . (4.1)

First we shall show that even at first order in (R −Rc), the field S develops a tadpole at

a generic value of α. This one point function is proportional to the two point function at

14



R = Rc of the open string vertex operator VS and the closed string vertex operator Vr in

the presence of the tachyonic background parametrised by α. This is given by8

〈VSVr〉α ∝ TrCP

[〈
∂XL∂XR(P )∂φB(Q) ⊗ σ1 exp(i

α

4
σ1

∮
∂tφBdt)

〉]
. (4.2)

In the left hand side of this equation 〈 〉α denotes the correlation function in the presence

of the tachyonic background. In the right hand side 〈 〉 denotes the correlation function

at α = 0; the effect of the tachyonic background has been taken into account by explicitly

putting the exponential factor inside the correlator. P denotes a point in the interior of

the world-sheet, Q denotes a point on the boundary, and TrCP denotes trace over the

Chan Paton factors. By explicitly carrying out the trace over the CP factors, and using

the relations (3.6), we can rewrite the right hand side of (4.2) as

1

2

〈
sin (

α

2
πwφ)

(
e2i(φL+φR) + e−2i(φL+φR) + e2i(φL−φR) + e−2i(φL−φR)

)
(P )∂φB(Q)

〉
, (4.3)

where,

wφ =
1

2π

∮
∂tφBdt . (4.4)

wφ measures the total φ winding charge carried by the closed string vertex operators

inserted in the interior. Since exp(±2i(φL +φR)) has wφ = 0, whereas exp(±2i(φL −φR))

has wφ = ±2, we can rewrite (4.3) as

1

2
(sin απ)

〈(
e2i(φL−φR) − e−2i(φL−φR)

)
(P )∂φB(Q)

〉
. (4.5)

Using the fact that φ satisfies Neumann boundary condition, one can easily show that

the correlation function appearing in (4.5) is non-zero. This shows that the one point

function of S for R > Rc is non-zero. It vanishes at α = 0 and at α = 1, as stated earlier.

We shall now focus our attention on the α = 1 point, and analyse a general correla-

tion function of open string vertex operators at a general radius R. This would require

summing over arbitrary number of insertions of Vr with appropriate weight factors. Thus

a typical correlation function to be analysed has the form:

〈 ∏

i

V i
open(Qi)

∏

m

Vr(Pm) exp
(
i
π

2
wφσ1

)〉
, (4.6)

8Ghost number conservation requires that we also insert appropriate number of ghost fields in the
vertex operators. But the correlation function factors into a matter part and the ghost part, and non-
trivial information comes from analysing the matter part. Hence we focus on the matter part of the
correlator.
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where wφ has been defined in eq.(4.4). Here Qi are points on the boundary of the world-

sheet and Pm are points in the interior. The effect of the exponential factor on the open

string vertex operators is to shift their φ momentum, which has already been taken into

account in the previous section. Thus we can interprete wφ appearing in (4.6) as the sum

of the φ winding charges of all the closed string vertex operators inserted in the interior.

Expressing Vr as

Vr =
1

4

(
e2i(φL+φR) + e−2i(φL+φR) + e2i(φL−φR) + e−2i(φL−φR)

)
, (4.7)

we see that the first two terms carry wφ = 0 whereas the third and the fourth terms carry

wφ = ±2. Since all terms have wφ even, we have the relation:

exp(i
π

2
wφσ1) = (−1)wφ/2 . (4.8)

This transforms Vr given in (4.7) to

1

4

(
e2i(φL+φR) + e−2i(φL+φR) − e2i(φL−φR) − e−2i(φL−φR)

)
= −∂φ′

L∂φ′

R = ∂φ′′

L∂φ′′

R , (4.9)

where φ′′ has been defined in eq.(3.20). Perturbing by the operator ∂φ′′
L∂φ′′

R has the effect

of increasing the φ′′ radius (or, equivalently, decreasing the φ′ radius). Thus we see that

the effect of increasing R in the presence of a tachyon background is achieved by increasing

the φ′′ radius in the same proportion, and ignoring the tachyon background. Since for

R = Rc = 1
2
, the open string spectrum corresponds to a D-particle on the φ′′ circle of

radius 1
2
, we see that if we increase R to λ · 1

2
, this would correspond to a D-particle on

the φ′′ circle of radius λ · 1
2

= R. As R → ∞, this corresponds to a D-particle in the

(25+1) dimensional Minkowski space.

This proves the equivalence of the BCFT describing the tachyonic kink solution on a

pair of D-strings, and that describing a D-particle. Note that the marginal deformation

interpolating between the two configurations does not involve the fields X0, . . .X24 at any

step. Thus by putting Neumann boundary condition on (p−1) of the fields X1, . . .X24 we

can make our initial configuration into a pair of D-p-branes, and the final configuration

into a D-(p − 1)-brane.
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Figure 4: The tachyon field on the D-string which produces a pair of D-particles.

5 D-particle as a Tachyonic Lump on a Single D-

string?

Following ref.[4], we can study a T-dual version of our analysis.9 In this case the massless

mode of the tachyon interpolates between a pair of D-particles situated at diametrically

opposite points on a circle of radius R̃ = 2, and a single D-string wrapped on a circle of

the same radius. Running the marginal flow backwards, we can conclude that tachyon

condensation on a D-string on a circle of radius R̃ produces a pair of D-particles at

diametrically opposite points on the same circle. From the point of view of the D-string,

the particular mode which condenses corresponds to:

T̃ (x) = α̃ cos x = α̃ cos
2x

R̃
, (5.1)

where T̃ is the tachyonic field living on the D-string. This has been plotted in Fig.4. This

can be viewed as a pair of lumps on the circle, one spanning the range 0 ≤ x ≤ πR̃, and

the other spanning the range πR̃ ≤ x ≤ 2πR̃. Although this configuration is symmetric

under T̃ → −T̃ (together with a translation along x), this symmetry will be destroyed

once interactions are taken into account.

9Many of the results of this section have been discussed earlier in refs.[14, 15, 16].
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This suggests that we can identify a single D-particle in 26 dimensional Minkowski

space as a tachyonic lump on an infinite D-string as shown in Fig.5. In this figure T̃0

denotes the minimum of the tachyonic potential Ṽ (T̃ ) satisfying,

Ṽ (T̃0) + T1 = 0 . (5.2)

This relation guarantees that the lump has a finite mass.

x

T
~

T
~
0

Figure 5: The tachyonic lump on a D-string, representing a single D-particle.

This analysis can be generalised by starting from a D-string compactified on a circle of

radius n for any integer n (including 1), and condensing the mode proportional to cosx.

This will produce n lumps on the circle, which can be identified as n uniformly spaced

D-particles on a circle of radius n[14, 15, 16].

6 Reconciling the Two Different Descriptions of D-

branes

The analysis of the previous sections suggests two different ways of viewing a D0-brane

(D-(p − 1)-brane), − as a kink on a D-string anti-D-string (D-p-brane anti-D-p-brane)

pair, and also as a lump on a single D-string (D-p-brane). In this section we shall show

that we can reinterprete the results of sections 3 and 4 in such a way that the second

18



description can explain all the results of this paper. To do this let us denote by fL(x) the

function shown in Fig.5. Thus on a single D1-brane, the configuration

T̃ (x) = fL(x) (6.1)

denotes a D0-brane. On the other hand, T̃ = T̃0 denotes the vacuum solution. Thus if T̂

denotes the 2 × 2 matrix valued tachyon field on a pair of coincident D-branes, then the

configuration:

T̂ (x) =
(

T̃0

fL(x)

)
(6.2)

will denote a single D0-brane. (6.2) can be rewritten as,

T̂ (x) =
1

2
(fL(x) + T̃0)I +

1

2
(T̃0 − fL(x))σ3 . (6.3)

Finally, using the U(2) gauge symmetry on the coincident D-string pair, we can replace

σ3 in eq.(6.2) by σ1. This gives,

T̂ (x) =
1

2
(fL(x) + T̃0)I +

1

2
(T̃0 − fL(x))σ1 . (6.4)

The coefficient of σ1 is the tachyon field T (x) of sections 2-4. From Fig.5 we see that this

has the form given in Fig.6. This appears to be a lump rather than a kink, as suggested

by the analysis of sections 4 and 5.

We shall now show that it is in principle possible to reinterprete the tachyonic configu-

ration of sections 4, 5 to be a lump rather than a kink. For this we need to note that Fig.2

can be redrawn as Fig.7 by changing the range of x parametrizing S1 from (0, 2πRc) to

(−πRc, πRc). In this form the tachyon configuration does appear as a lump rather than

a kink. The main question is: as we take the R → ∞ limit, does most of the circle get

covered by the configuration T ≃ ±T0 for some T0 6= 0 (shown in Fig.1), or does it get

covered by the configuration T ≃ 0 (as shown in Fig.8)? In the first case the configuration

is to be interpreted as a kink, whereas in the second case it is to be interpreted as a lump

as shown in Fig.6.

Note that in the second case T (x) → 0 as x → ±∞. In the case of the D-string -

anti-D-string pair of type IIB string theory this was unacceptable, since for T = 0 the

energy per unit length of the pair is finite, and hence the resulting solution would not

represent a localised lump of energy. In the present case however there is a tachyon from

the identity sector as well, and condensation of this tachyon can make the energy density
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x

T

Figure 6: Coefficient of σ1 in eq.(6.4).

T

- πRc
πRc x

Figure 7: A redrawing of the configuration of Fig.2.

vanish far away from the core even though the tachyon associated with the CP factor σ1

has no vev in this region. Indeed, this is precisely what happens for the configuration of

eq.(6.4). Thus if we reinterprete the results of section 3 and 4 this way, all the results of

this paper would be consistent with the hypothesis that the tachyonic lump on a single
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T

xπRπR-

Figure 8: A possible R → ∞ limit of the configuration of Fig.7. This provides an
alternative to the possibility shown in Fig.1.

D-string represents a D0-brane.
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