Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 107, No. 3, June 1995, pp. 233-244.
© Printed in India.

Resonance Raman intensity analysis of polyatomic molecules
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Abstract. A time-dependent quantum mechanical (TDQM) method of
wavepacket propagation in computing resonance Raman intensities for polyatomic
systems, has been developed and demonstrated by applying it to cis-stilbene and
trans-azobenzene. In the case of the former, Raman excitation profiles (REPs) for
the various vibrational modes have also been computed. It is observed that the
calculated absorption spectrum and the REPs compare very well with the experi-
mental results. A comparison of these results with those of the often used semiclassi-
cal approach reveals that the TDQM method can be used to study polyatomic
systems with as much ease as the semiclassical wavepacket method.
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1. Introduction

Understanding the spectral and dynamical features of polyatomic molecules has been
a challenging problem to both theoreticians and experimentalists. On the one hand,
most real-life problems that require the attention of experimental spectroscopists,
involve polyatomic systems with a large number of degrees of freedom, and on the
other, interpreting the spectroscopic data quantitatively from a theoretical point of
view has been a daunting task because of the formidable difficulties in dealing with
a high density of states. Therefore, one is invariably forced to look at alternative
strategies to learn about the dynamics of polyatomic molecules from the experimental
data. One such method, time dependent wavepacket dynamics, can be used to interpret
the observed resonance Raman intensities, and is discussed here.

Itis known that under resonance excitation, the observed Raman intensities contain
information related to the displacement of the vibrational mode in the first excited state
and therefore, to the dynamics associated with it. Resonance Raman intensity analysis
by the wavepacket propagation technique was first developed semiclassically (Lee and
Heller 1979; Heller et al 1982; Tannor and Heller 1982), using the concept of localized
wavepackets. Its validity even when the wavepacket is not localized has been estab-
lished by Ramakrishna and Coalson (1988). Polyatomic molecules like cis-stilbene
(Myers and Mathies 1984), bacteriorhodopsin (Myers et al 1983), isoprene and hexa-
triene (Myers et al 1982) have been studied using Heller’s approach.
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In the time-dependent picture, the initial wavepacket |i), corresponding to the
ground electronic and vibrational state, is transferred by a photon to the electronically
excited state. The transposed wavepacket starts moving on the excited state surface
under the influence of the excited state Hamiltonian (H,,). This wavepacket [i(t))
moves away from the Franck—Condon region in time t. The moving wavepacket
can then be overlapped with various vibrational levels |i) or |f) of the ground
electronic state (where |f) corresponds to the ground electronic-first (v = 1) vibra-
tional state), thus leading to autocorrelation (ili()> and correlation {fli(z))
functions. The Fourier transformation of {i|i(t)) multiplied by the damping factor,
exp(— I't/h) (where I contributes to homogeneous broadening) gives the absorption
spectrum. Similarly, the square of the half Fourier transformation of {f]i(t) ) multi-
plied by the same damping factor gives the Raman excitation profile (REP). In the
case of Raman intensity analysis, traditionally, the semiclassical approach using
Manneback’s recursion formula (Manneback 1951) is used for large polyatomic
molecules (Myers and Mathies 1984; Myers et al 1982, 1983). However, for small
molecules with a few atoms, a rather simple and computationally tractable time-dependent
quantum mechanical (TDQM) approach has been proposed by Imre and coworkers
(Williams and Imre 1988a) to analyse resonance Raman excitation profiles. This
TDQM approach has been successfully used to understand absorption and emission
spectra of O, (Williams and Imre 1988b) and photodissociation (Kalyanaraman and
Sathyamurthy 1993, 1994) processes of systems such as OH and HI.

In this paper, we have applied the TDQM approach to polyatomic systems, since it
provides a simple theoretical basis to understand resonance Raman intensities of poly-
atomics. With this approach, we have successfully generated the absorption spectrum and
the REPs for various Raman active modes of modal system, viz. cis-stilbene, in order to test
the utility of this approach. This has been previously studied semiclassically by Myers and
Mathies (1984), and is an interesting system as it undergoes isomerization along a barrier-
Jess excited state potential surface within a few femtoseconds. A comparison of our TDQM
simulation results with those obtained by the semiclassical method (Myers and Mathies

1984) shows that the TDQM approach is equally viable for polyatomic systems.
 We begin with §2, which discusses resonance Raman intensity analysis from two
theoretical viewpoints, a sum-over-states method (time-independent approach) and
a time-independent method. In addition, we give a brief outline of the commonly used
semiclassical time-dependent (SCTD) technique and the TDQM method. In §3, we
present the computational details of the latter, using cis-stilbene as an example. In the
final section 4, we report some preliminary results obtained using the TDQM tech-
nique on the isomerization dynamics of transazobenzene. The salient features of the
TDQM approach are then summarized.

2. Theory

Resonance Raman intensity analysis

Resonance Raman intensities (Albrecht 1961; Tang and Albrecht 1970) can be cal-
culated using either the sum-over-states or the time-dependent method. In the sum-
over-states method, the resonance Raman amplitude for the transition from the initial state
|i> to the final state | ) (where both the vibrational eigenstates |i) and | /) correspond
to the electronic ground state) can be given by the Kramers—Heisenberg—Dirac (KHD)
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dispersion expression (Kramers and Heisenberg 1925; Dirac 1927)
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where E,, is the energy separation between the zeroth vibrational levels of the ground
and the excited electronic states, E, the energy corresponding to the vibrational state
|v) of the excited electronic state, E; the zero-point energy of the ground electronic
state, E, the energy of the incident photon, M the electronic transition moment, and
I' the homogeneous broadening.

The complete expression for resonance Raman cross section can be given as,
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where, Eg is the energy of the scattered photon. Here E,, Eg, Eqq, E;, E, and T" are in
cm™!, Misin A, and o, in A2 /molecule.

Evaluation of the resonance Raman cross-section using the sum-over-states
approach involves summing over all the vibrational levels of the resonant eleetronic
state. This method, therefore, requires knowledge of all the eigenstates in the excited
state surface, which is perhaps intractable for polyatomic molecules. The alternative
time-dependent theory of Raman scattering (Lee and Heller 1979; Heller et al 1982,
Tannor and Heller 1982) has an advantage in that knowledge of all the eigenstatgs in
the excited surface is not required. Further, Heller’s approach provides a more
transparent physical picture of the dynamics. In the time-dependent picture, the energy
denominator in (2) is replaced by an exponential function and the resonance Raman
cross section (Lee and Heller 1979) is expressed as a half Fourier transform of the
correlation function < f1i(t) ),

8ne*M*EZE,
9hlc*
where, e is the charge of the electron, ¢ the velocity of light, A = h/2n (h being Planck’s

constant), and |i(¢) > is the evolving wavepacket at various intervals of time, under the
influence of the excited state Hamiltonian H,_, i.e

ex?

|i(t) ) = exp(—iH,1)/R)|i>. 4)
Similarly, the expression for the absorption cross-section (Kulander and Heller 1978;
Heller et al 1982) in the time-dependent formalism is
4dne* M2E, (**
6h%cn

Jw {Si@)> exp[i(E, + E;)t/h —Te/h]de 2 . (3)

0 p(EL)=

o (Ep)= <ili(t)yexp[i(E, + E;)t/h —T|t|/h]dt, (5)

-0
where, n is the refractive index of the solution.

In (3) and (5) above, the dynamical information is contained in the correlation
functions. Therefore, by computing the Raman amplitude and the absorption cross
section, and then comparing these data with experimental results, one can learn about
the structural dynamics in the excited electronic state.

2.2 Correlation function calculations

As described in the introduction, the correlation function calculation requires the
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knowledge of |i(t)) in the excited state surface at different times. This is normally
obtained by evolving the ground state wave function |i) (at t = 0) under the influence of
the excited state Hamiltonian (H,, ). Two methods, namely, the SCTD and the TDQM,
are used to study the evolution of the wavepacket on the excited state surface. Both
approaches are compared below. We have considered harmonic as well as linear
dissociative excited state potentials. However, it is assumed that the ground and the
excited state normal coordinates are identical [with no Duschinsky effect (Siebrand
and Zgierski 1979)] and that there are no changes in frequency on going from the
ground to the excited state. In the absence of Duschinsky effect, the multidimensional
autocorrelation function <i|i(t) > will be the product of {i;|i;(t) ), wherej=1,2.... N(N
being the total number of vibrational modes present in the molecule). Similarly, the
multidimensional correlation function < f]i(t)) is the product of {f,|i(¢)> in the
Raman active mode (k) and <i;|i;(t)),j=1,2....(N-1). That is,

N
ili(®)) = 1:1 <ij|ij(t)>’ (6)
N-1
i@y = <fli@y TT <5l (M

Both the SCTD and TDQM methods have some common limitations (Myers 1990)
viz., (a) accurate ground electronic state normal mode analysis is necessary to interpret
Raman intensities in terms of their mode-specific dynamics, (b) nuclear dynamics,
occurring only on time scales shorter than the electronic dephasing time, can be
studied, and (c) collisionally activated processes are not reflected in the resonance
Raman intensitites.

2.3 Semiclassical time dependent (SCTD ) method

The implementation of the time-dependent formulation of Raman scattering (Heller
1975, 1978, 1981; Lee and Heller 1979; Heller et al 1982; Tannor and Heller 1982)
makes use of approximate semiclassical methods for the solution of the time-dependent
motion of the wave packet. This method gives simple expressions for fundamental and
overtone Raman intensities, which depend only on potential energy surface features in
the Franck—Condon region. Further, it is assumed that the classical trajectories govern
the dynamics of the wavepacket. Assuming the ground and the excited state potentials
to be harmonic (so that they can be expressed in dimensionless coordinates (gq) as,
V(q) = (1/2)hw(q — q,)*, where g, is the equilibrium value corresponding to the mini-
mum of the potential) and their frequencies (w) to be identical, the position and the
momentum of the centre of the wavepacket is governed by classical dynamics. Thus, the
one-dimensional absorption and Raman correlation functions are given by the follow-
ing forms (Myers et al 1982; Tannor and Heller 1982),

i) =esp| —st1-emen- gt Eet |, ®
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where, s = A?/2 (A is the dimensionless displacement). The sign in (9) depends on the
sign of A. Substituting for the one-dimensional overlaps in (3) and (5), the multidimen-
sional expressions for the fundamental Raman and the absorption cross-sections

ey
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(Myers and Mathies 1987) are given as
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where mode 1 corresponds to the Raman active mode. From the above expressions it
can be observed that in a molecule the Raman amplitudes of various modes differ only
by the factors s}/* and (e ~'*' — 1), which are responsible for changes in magnitude and
band shape of the REP respectively.

In case of a linear dissociative excited state potential [V(q) = — B4q], where f is the
slope of the excited state potential, the one dimensional time-dependent correlation

functions (Myers et al 1983) are given as

. —1/2 2 2 H 3
Glit)> = (1 +f9)2—t> exp[—ew—tzz:;;—a—)t—z} (12)
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Thus, substituting these values of { fi(t)» and (ili(¢)) in (3) and (5), and multiplying
by exp(—iEyot/h), where E, is the energy separation between the ground and the
excited state potential, REP and the absorption spectrum can be obtained. ‘

2.4 Time-dependent quantum mechanical ( TDQM ) approach

Unlike the SCTD approach, in this method the iaitial wave function for the ground
electronic—ground vibrational state (]i)) for a harmonic oscillator is first computed and
then transposed to the excited electronic state after multiplying with the transition dipole
moment. The propagation of the transposed wave function in the excited electronic state is
obtained by solving the time-dependent Schrodinger equation, using standard
methodology (Feit et al 1982; Kosloff and Kosloff 1983a, b; Kosloff 1988; Mohan and
Sathyamurthy 1988). Once the propagated wavepacket |i(t) ) is obtained, the autocor-
relation function, <{i]i(t)> and the correlation function, {(f|i(t)) can be computed.

In this method, the main objective is to solve the time-dependent Schrodinger
equation,

weD gy, 14)
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where
2

0
Hex= “(I/Z)hw'a"‘q—f'i“ V(Q): (15)

and, ¥, (g, t = 0) is the wave function corresponding to a particular vibrational state (v)
in the ground electronic state. For a harmonic oscillator

¥,(q) = N, H,(@)exp[(— 1/2)(q — 4.)], (16)

where N, is the normalization constant and H, the Hermite polynomial corresponding
to the vth vibrational state.

The wave function ¥,(q) is computed in a spatial grid which satisfies the following
conditions: (i) the grid must be large enough to accommodate the wave functions of all
states, and the magnitude of the wave functions should be negligible at the houndary,
and (ii) the grid spacings should be small enough to resolve the ground state wave
function and to accommodate the spatial bandwidth of the wave function. In the
present study, the initial wavefunction y/4(q,t = 0) or |i) is specified on a chosen grid of
2048 points with a grid spacing of 0-1 dimensionless units. The time evolution of the
wavefunction on the excited state is given by

li9)> = Uli(to)> (17)
where t,, corresponds to zero time and U is the time evolution operator:
U =exp(—iH, At/h), At=t—t,. (18)

In practice, the propagator is sliced at several time intervals and at each time step,
a fourth-order finite difference (Manthe and Koppel 1990a,b) scheme is used to
represent U. In the present calculation, the time evolution involves a total of 8192 steps
with each step (At) corresponding to 0-01 fs.

The integrals (i|i(t)) and {fli(t) ) are computed using the extended Simpson’s rule
(Abramowitz and Stegun 1968). Similar to the SCTD case, the absorption and
resonance Raman cross sections can be computed by substituting <ili (t)> and {fli(t)»
in (3) and (5). .

3. Simulation for cis-stilbene

The experimentally observed vibrational modes of cis-stilbene (Warshel 1975; Myers
and Mathies 1984), their respective frequencies and the relative dimensionless displace-
ments (A) are given in table 1 and the exact values for M, Eqq, B and A, have been taken
from Myers and Mathies (1984, 1487). The TDQM method has been applied to
generate the absorption spectrum and the REPs. The values of M, E,,, fand A are the
variables normally used in the simulation, to match the Raman amplitudes and
absorption spectrum with the experimental data. In the following part, we give one
example each of a single mode calculation for a linear dissociative and 2 harmonic
excited state potential. Many other-vibrational mode calculations are not shown since
they follow similar behaviour except for changes in amplitude’and shape of the (ili(z)>

and {f1i(2))-

3.1 Single mode correlation functions

Firstly, a single mode that is dissociative with vibrational frequency o = 560cm ™,

e 4
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Table 1. | Frequencies and excited state displacements of
various vibrational modes of cis-stilbene (Warshel 1975;
Myers and Mathies 1984).

Dimensionless
Description of Frequency displacement
vibrational modes! (incm™Y) |A|
¢$—-C=C ben 165 44
oop ring def 403 1-73
H oop wag 963 1-16
Trigonal ring def 1001 0-67
ring H rocik, C~¢ str 1187 070
C-C-H ben 1233 0-40
Ring str, vinyl H rock 1328 0-52
Ring str 1490 0-38
Ring str 1575 0-64
Ring str 1600 1-05
Ethylenic C=C str 1629 1-60

!Description of vibrations:
tor:torsion, def: deformation, oop:out of plane, ben be-
nding, str:stretching.

‘t=0fs
o~
= 10fs
5
B
- 20fs
30fs
I T I
-5 0 5 10 15
DIMENSIONLESS DISPLACEMENT
(A)

Figurel. Moving wavepacket picture for dynamics on a linear dissociative excited
state potential surface.

Eyo=29300cm ™! and M =09 A is considered. This mode (j) corresponds to torsion
about the central C—C double bond of cis-stilbene. In this case, the autocorrelation
function, {i;]i,(z)> will be maximum at time t = 0 and it decays eventually to zero as the
wavepacket |i;(f)) moves away from the Franck-Condon region. The moving
wavepacket on a linear dissociative potential at different times (¢) is shown in figure 1.
The calculated autocorrelation, |<i;|i;(t)>], (solid line) and the Raman correlation
functions, | f;1i;() |, (dotted line) for » = 560 cm ™! are shown in figure 2. The Raman
correlation function is zero at the start but it increases to a maximum as |i;(t) > overlaps
maximum with |f;> and decreases as it moves further away.
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CORRELATION FUNCTION (arb. units)

<

10 20 30 40
TIME (fs)

Figure 2. Autocorrelation, | {i;|i;(t)>|(solid line) and Raman correlation function,

[<f;li;®)>] (dotted line), where j corresponds to C-C, torsional mode (linear

dissociative) with frequency @ = 560cm ™ 1.

(a)

(b)

CORRELATION FUNCTION (arb. units)

—t
0 20 40 60 80
TIME (fs)

Figure 3. («) Autocorrelation function, |{i;|i;(t)>|, and (b) Raman corre¢lation

function, | (f;]i;(t) |, where j corresponds to C,—C, torsional mode (harmonic) with
frequency w = 1629 cm ™ 1.

In the case of ethylenic C-C stretching mode with frequency w (1629cm™1), the
excited state potential is assumed to be harmonic and the autocorrelation and Raman
correlation functions are expected to consist of periodic recurrences. This is due to the
fact that the wavepacket moves back and forth, thus appearing again in the Franck-
Condon region, after a vibrational period. The autocorrelation function, |<i;]i;(t)>|
and the Raman correlation function, |{ f;]i;(#)| for  =1629cm™* and I’ = 50cm ™ *
are shown in figures 3(a) and 3(b) respectively.

3.2 Multimode correlation functions:

'he multimode autocorrelation function <i|i(t)) is computed by taking the product of
I the <i;}i;(z) ) for the various vibrational modes (j). Similarly, the Raman eorrelation
anction { f|i(t)) is computed by taking the product of { f,|i,(t)) for the Raman active
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mode (k) and <i;|i;(t) > for the rest of the modes (j). At ¢ = 0, all the modes are in phase and
hence |i]i() | is maximum, but as time increases these modes get out of phase. As a result,
the multimode autocorrelation function decays within 10 fs as shown in figure 4a and it
does not show any recurrence up to 100 fs. The multimode Raman correlation function
first increases from zero to a maximum value and then decays irreversibly as expected.
[<f1i(®)>| for 560 and 1629cm™"' and 1629cm ™! are shown in figures 4(b) and (c)
respectively. The simulated absorption spectrum obtained by full Fourier transformation
of the multimode autocorrelation function is shown in figure 5(a) and the REPs for 560
and 1629cm ™' modes, obtained by half Fourier transformation of the respective
multimode Raman correlation functions, are shown in figures 5(b) and (c) respectively.

A comparison of the figures available for various autocorrelation and Raman
correlation functions, from Myers and Mathies (1984, 1987), Myers (1990) and from our

\ (a)

Ve
/

(b)

(c)

CORRELATION FUNCTION (arb. units)

T

L B AR B
0 2 4 6
TIME (fs)

oo

10

Figure 4. (a) Multimode autocorrelation function, [<i[i(t)>|; (b) Multimode
Raman correlation function, |  f|i(t) )| for C,~C, torsion (w = 560 cm ~ '), and (c) for
C,-C, stretch (w = 1629cm ™).

INTENSITY (arb. units)

T T T T
25000 30000 35000 40000 45000 50000
FREQUENCY (cm™)

Figure 5. (a) Simulated absorption spectrum; (b) Simulated REPs of cis-stilbene
for C,~C, torsion (0 =560cm™!), and (¢) C,~C, stretch (@ = 1629 cm™1).
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INTENSITY (arb. units)

| T T T
400 450 500 550 600
WAVELENGTH (nm)

Figure 6. Simulated (dotted line) and experimental (solid line) absorption spec-
trum of trans-azobenzene.

calculation reveals that they are very similar thus demonstrating the practicability of
the TDQM method for polyatomic systems.

4. Azobenzene as a new model system

In order to study the dynamics (including the mechanism) of isomerization, the
time-dependent wavepacket propagation technique has been applied to trans- azoben-
zene. It undergoes isomerization upon UV [*(x — 7*)] or VIS [Y(n — n*)] excitation.
The quantum yield (@,gns-cis) Of isomerization depends on both wavelength and
temperature (Rau 1990). @,,,.s-cis) has been found to be greater for }(n — n*) excita-
tion than for !(r — #*). There has also been a debate in the literature about the nature
of the state (singlet or triplet) participating in the isomerization of trans-azobenzene,
and also the possible routes of isomerization, viz., rotation or inversion (Rau 1990).

In trans-azobenzene, we have selected the 912cm ™! mode to be dissociative along
which possibly inversion (or ¢—N=N-¢ torsion) occurs, as has been proposed by
Lorriaux et al (1979). In order to get the best fit absorption spectrum, the simulated
values of zero-zero energy (E,,), homogeneous broadening (I'), transition dipole
moment (M) and the slope of linear dissociative potential are 20470cm ™ 1 50cm™1,
0-8A and 980cm ™! in that order. The simulated absorption spectrum (dotted line)
obtained by the TDQM method ¢pmpares very small well with the experimental one
(solid line) as shown in figure 6. Further work is in progress along the direction of
simulating the experimental Raman excitation profiles reported earlier (Okamoto et al
1986) for the Raman active modes of trans-azobenzene and thereby, propose a suitable
mechanism for isomerization (Biswas and Umapathy 1995). '

Summary

7e have demonstrated that the implementation of the TDQM method is straight
srward and that one can compute the absorption spectrum and the Raman excitation
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profile which are comparable to the experimental results. Using the TDQM approach,
we could obtain information on the displacements at anytime after excitation but before
the electronic dephasing time, since the computation involves a stepwise approach.

The relative dimensionless displacements derived from the moving wavepacket
picture or the excitation profile simulation for different vibrational modes, can be
related to the internal coordinates (i.e bond length, bond angle and dihedral angle) of
a given system. Changes in the internal coordinates for the respective vibrational mode
at different times, thus lead us to visualize the nuclear motion in the primary stages of
a photoexcited process. For systems which undergo structural changes on excitation in
the early femtosecond time scale and which cannot be studied experimentally, this
(theoretical) time dependent approach is the best alternative. Further work is in
progress in using this TDQM technique for systems like azobenzene which undergo
ultrafast isomerization dynamics.
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List of symbols

liy ground electronic and vibrational state (v = Q);

Lf> ground electronic first vibrational state (v = 1);

li(t)> moving wavepacket on the excited state surface;

r homogeneous broadening;

{ili(t)> autocorrelation function;

{Sliey correlation function;

[v) vibrational states of the excited electronic state;

Oiny Raman cross section;

0, absorption cross section;

At relative changes in time;

A relative dimensionless displacement;

) vibrational frequency;

B slope of the linear dissociative potential;

v, (q,1) vibrational state (v) as a function of
dimensionless coordinate (g) and time (t);

d/ot derivative with respect to time;

8%/oq? Laplacian operator;

U forward time evolution operator;

Ym—n*), Y(n—n*) electronic states;
quantum yield for trans to cis isomerization;
phenyl ring.

qbrrans—*cis
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