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Heavy rare earth chromites of the formula LnCrO3 with Ln =

Ho, Er, Yb, Lu and Y are shown to be multiferroic, exhibiting

canted antiferromagnetism at low temperatures (TN = 113–

140 K) and a ferroelectric transition in the 472–516 K range.

Multifunctional materials, especially multiferroics, have attracted

great attention recently because of their potential applications.1 A

few metal oxides are known to exhibit ferroelectricity at relatively

high temperatures and a magnetic transition at lower tempera-

tures, typical examples being BiFeO3
2 and YMnO3

3 both of which

are antiferromagnetic. Heavy rare earth manganites LnMnO3

(Ln = Ho, Er and Yb) also exhibit multiferroic properties.4 It is of

great interest to discover materials which are simultaneously

ferroelectric and ferromagnetic. BiMnO3 is found to be ferro-

electric (FE) below 450 K (TE) and ferromagnetic (FM) below

105 K (TC).5 BiCrO3 is reported to exhibit a ferroelectric

transition at 440 K and parasitic ferromagnetism below 114 K.6

Bi2Mn4/3Ni2/3O6 and Bi2MnNiO6 are found to show both

ferroelectric and ferromagnetic properties.7 It has been shown

recently that YCrO3 is a canted antiferromagnet (CAFM) below

140 K and undergoes a ferroelectric transition around 473 K.8 By

analogy with the rare earth manganites,3,4 it appeared to us that

the heavy rare-earth chromites (LnCrO3, Ln = Ho, Er, Yb and

Lu) may also show such multiferroic behavior. We have, therefore,

investigated the properties of several rare-earth chromites to

explore their possible multiferroic nature.

Several rare-earth chromites (LnCrO3, Ln = La, Nd, Ho, Er,

Yb and Lu) were prepared by solid state reactions and

characterized by X-ray diffraction. They were all found to belong

to the orthorhombic system (Pbnm) as reported in the literature.

Although these chromites are formally considered to be anti-

ferromagnetic, low-temperature magnetic measurements show

them to be CAFMs just like YCrO3.
9 In Fig. 1, we show typical

magnetization data of LaCrO3 and LuCrO3. They exhibit non-

linear behavior of the magnetization with respect to the field below

TN as shown in the inset of Fig. 1b. Detailed magnetic measure-

ments have shown the weak ferromagnetic moment of the Cr3+

spins to be due to Dzialoshinski–Moriya (D–M) interaction in the

chromites. There is some evidence for temperature-independent

constant-canting-angle coupling in LuCrO3. These chromites also

show magnetic domain effects below TN.

Dielectric measurements show that the heavier rare-earth

chromites (LnCrO3, Ln = Ho, Er, Yb and Lu) undergo a

transition in the temperature range 439 K–485 K (Tmax)

accompanied by a maximum in the dielectric constant. In Fig. 2,

we show the temperature variation of the dielectric constant in the
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Fig. 1 Temperature variation of the magnetization of (a) LaCrO3 and

(b) LuCrO3 under field-cooled and zero-field-cooled conditions (H =

100 Oe). The inset in (b) shows the field dependence of magnetization of

LuCrO3.

Fig. 2 Temperature variation of the dielectric constant, e, of LuCrO3 at

different frequencies. Inset shows the e–T curves for LaCrO3, at different

frequencies.
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case of LuCrO3. We do not, however, find such a transition in the

cases of LaCrO3 or NdCrO3 as exemplified for LaCrO3 in the inset

of Fig. 2. The temperature variation of the dielectric constant of

YbCrO3 and ErCrO3 is similar to that of LuCrO3 as can be seen

from Fig. 3. We see from Fig. 2 and 3 that the Tmax is frequency

dependent. In order to obtain the FE transition temperature, we

employed a Curie–Weiss plot, wherein the reciprocal of dielectric

constant in the high-temperature region (T . Tmax) was plotted

against temperature.10 The Curie–Weiss plots yielded frequency-

independent TE values which are in the 472–516 K range for

HoCrO3, ErCrO3, YbCrO3 and LuCrO3. The dielectric constants

of the rare earth chromites show a large dispersion below TE, but

are frequency independent above TE (see Fig. 2), behavior

commonly observed in relaxor ferroelectrics.11 It is noteworthy

that the value of dielectric constant increases as the size of the rare-

earth ion decreases. The maximum value of the low frequency

dielectric constant is around 5000 in LaCrO3 and 32000 in

LuCrO3. The polarization–electric field hysteresis loops of the

heavier rare-earth chromites are similar to those of leaky dielectrics

and are comparable to the hysteresis loop in YCrO3.
8 Like YCrO3,

the heavy rare earth chromites show low values of polarization and

may, therefore, be considered to be weakly ferroelectric.

Based on the present findings, we can draw the phase diagram,

shown in Fig. 4, to describe the multiferroic properties of the heavy

rare-earth chromites. The phase diagram demarcates three distinct

regions: CAFM FE, PM FE and PM PE where PM and PE stand

for the paramagnetic and the paraelectric regimes respectively. The

TN decreases with the decrease in the radius of the rare-earth ion

while the TE increases slightly with decrease in size.

Since the reported structures of the rare-earth chromites belong

to the centrosymmetric orthorhombic system (Pbnm), it would be

in order to comment on why ferroelectricity manifests itself. It has

been pointed out recently that ferroelectric materials could be

locally non-centrosymmetric although they are globally centro-

symmetric, as exemplified by YCrO3.
8 A detailed study of the pair

distribution functions12 (PDF) of YCrO3 based on neutron

diffraction data indicates that in the short distance range (1–6 Å),

the data give the best fit to a non-centrosymmetric P21 space group

in the low-temperature FE phase. In the high-temperature PE

phase, however, the PDF data conform to the centrosymmetric

structure in the same distance range. The PDF data over the entire

distance range of 1–22 Å can be fitted reasonably well with the

centrosymmetric structure.

We have employed first-principles calculations to determine the

effects of magnetic ordering and the size of the A-cation on the

ferroelectricity of the chromites, through the cases of LuCrO3

which exhibits ferroelectricity and of LaCrO3 which is paraelectric

at all temperatures. Our calculations are based on density

functional theory within a gradient corrected (PW91) local spin

density approximation (LSDA), as implemented in the PWSCF

package13 with ultrasoft pseudopotentials14 and plane-wave basis

with energy cut-offs of 25 Ry and 150 Ry in representing Kohn–

Sham wave-functions and electron densities respectively. In all our

calculations, we have used experimental lattice parameters of the

crystal unit cell as ferroelectricity is known to be sensitive to unit

cell volume.

We determined L point (k = (000)) phonons of LuCrO3 and

LaCrO3 in the cubic perovskite structures (see Table 1) using the

frozen phonon method. While LaCrO3 has no L point instabilities

in the PM form, it exhibits a weak ferroelectric instability upon

ferromagnetic ordering. On the other hand, LuCrO3 exhibits

Fig. 3 Temperature variation of the dielectric constants of (a) ErCrO3

and (b) YbCrO3 at different frequencies.

Fig. 4 Variation of the ferroelectric transition temperature TE, and

magnetic transition temperature, TN, in the heavy rare-earth chromites.

Table 1 Calculated phonon frequencies at gamma point L (cm21) (i is imaginary)

LaCrO3 (PM) LaCrO3 (FM) LuCrO3 (PM) LuCrO3 (FM)

L15 (polar) 538.09 579.28 623.53 715.83
L15 (polar) 338.68 231.75 327.95 224.37
L25 (non-polar) 227.94 107.6 106.83 187.71i
L15 (A off-center) 24.43 58.1i 144.8i 177.53i
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strong ferroelectric instabilities in both PM and FM orderings. We

note that a change in magnetic ordering strongly affects the

phonon frequencies, with a substantial softening upon FM

ordering (relative to the PM phase) of the L25 mode which

involves only the oxygen displacements. Since the modes of

rotational instabilities belong to the subspace containing L25, they

are expected to behave similarly. Secondly, the softest polar (L15)

mode in both the chromites in the PM and FM phases involves

A-cation off-centering, which softens upon FM ordering. In

contrast, the hardest L15 mode is hardened further on FM

ordering.

Since these chromites exhibit antiferromagnetism, we have

determined the energetics of A-cation off-centering in the G-type

antiferromagnetic ordering (involving two formula units per cell).

As shown in Fig. 5, while the La displacement is stable at its high

symmetry site, Lu exhibits a double energy well, with a tendency to

be off-centered. It gains about 136 meV per formula unit due to

off-centering by about 0.4 angstrom (comparable to the displace-

ment of Pb in PbTiO3). The frequency of the unstable L15 mode

corresponding to Lu off-centering in the AFM ordered state is

64 cm21. The instabilities at the zone boundary are expected to

compete with ferroelectric instabilities (we find more unstable

modes, R25 (CrO6 rotational mode) at 339i cm21 and R15 at

146i cm21 in AFM ordering) and the final ground state possibly

involves a combination of these instabilities.

We have investigated the possibility of broken inversion

symmetry in LuCrO3 with respect to the theoretical structure

optimized with the Pbnm symmetry. The theoretical Pbnm

structure exhibits less distorted CrO6 octahedra and more distorted

LuO8 polyhedra in comparison with the experimental structure.

We then broke the inversion symmetry by off-centering Lu atoms

along each Cartesian direction by 1% of the lattice constant and

relaxing the structure with lower symmetry. This results in a small

gain in energy (of about 1 meV per formula unit) and

correspondingly small polarization (less than 0.35 mC cm22,

computed from the Berry phase formula15) upon breaking the

inversion symmetry along each of the three directions. These

values are small and comparable to the magnitudes of computa-

tional errors. However, our results showing (a) the existence of a

ferroelectric instability in the cubic structure, (b) its dependence on

magnetic ordering, and (c) the small but non-zero values of

polarization support the occurrence of ferroelectricity in LuCrO3.

It would appear that local magnetic ordering can induce local non-

centrosymmetry and weak ferroelectric polarization in these

materials.

In conclusion, heavy rare-earth chromites HoCrO3, ErCrO3,

YbCrO3, LuCrO3 and YCrO3 belong to a new family of

multiferroics exhibiting canted antiferromagnetism at low tem-

peratures. Further studies are necessary to fully understand the

multiferroic properties of these chromites.
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