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ABSTRACT
Motivation: Cellular chemical signaling pathways form
complex networks that are beginning to be studied at the
level of chemical kinetics and databases of reactions.
Chemical reaction details are traditionally represented as
lists of reactions and rates. This does not map readily
to the block diagram representation familiar to biologists,
and obscures the functional organization of signaling net-
works. This study examines motifs in signaling chemistry
and reports common features that may help to formal-
ize such a mapping between pathway block diagrams
and the chemistry. The same motifs may facilitate data
representation and provide functional abstraction of the
chemistry.
Results: I classified 74 interactions between 25 signaling
pathways in terms of shared chemical motifs. All inter-
actions in this dataset consist of a few communicating
molecules from one set of pathways, and a replicating set
of reactions and molecules from another. Each unique
combination of interacting pathways duplicates the chem-
ical reaction scheme of this replicating set, but involves
different rate constants. Signaling pathways can therefore
be described in an object-oriented manner as sets of core
reactions with well-defined interfaces between pathways.
This generalization lends itself to designing simulators
and databases for signaling networks.
Availability: Software and example models are freely
available from http://www.ncbs.res.in/∼bhalla/examples/
EGFR example.html.
Contact: bhalla@ncbs.res.in

INTRODUCTION
The block diagram level representation of signaling
pathways is a standard and essential abstraction when
dealing with complex signaling networks. This level
of description lumps several chemical steps together
into blocks that exchange inputs and outputs with other
blocks. These blocks usually involve major signaling
enzymes or tightly coupled enzyme cascades. Genetic,
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pharmacological and molecular biological manipulations
have been used to identify upstream and downstream sig-
naling enzymes (Alberts et al., 1994; Lauffenburger and
Linderman, 1993), and high-throughput assays promise to
greatly expand the coverage of such signaling networks
(Tucker et al., 2001; Ideker et al., 2001). Such block
level descriptions are qualitative. It is valuable to analyse
signaling networks at the level of detailed chemical reac-
tions to understand signaling dynamics and quantitative
activation details (Bray, 1995; Bhalla and Iyengar, 1999).
The quantitative description of biological signaling relies
on an expansion of signaling block diagrams into chem-
ical reaction details. This expansion replaces qualitative
information about upstream and downstream interactions
with computable rate equations and specific molecular
species, whose values can be experimentally measured
and used to test signaling models. Unfortunately this
results in very complex reaction diagrams which do not
readily map onto simple block diagrams, and which are
difficult to scale up (Figure 1). This paper reports an
analysis of many such reaction schemes and describes
a consistent architecture in the chemistry of signaling
interactions. This facilitates encapsulation of complex
signaling chemistry into self-contained modules with con-
sistent interaction motifs. Other studies have considered
motifs at the level of ensembles of signaling pathways
(Asthagiri and Lauffenburger, 2000; Bhalla and Iyengar,
1999), but the focus of the current paper is at the level of
chemical architecture.

Several studies have been carried out at the ‘bottom up’
level of chemically detailed models of complex signal-
ing networks. Among these are models of the mitogen
associated protein kinase cascade (Huang and Ferrell,
1996; Levchenko et al., 2000; Kholodenko, 2000), pho-
totransduction (Lamb and Pugh, 1992; Blackwell, 2000),
chemotaxis (Morton-Firth et al., 1999), genetic circuits
(Arkin et al., 1998), and synaptic signaling (Bhalla and
Iyengar, 1999; Kuroda et al., 2001). The approach in these
cases is to represent each individual chemical reaction
separately, providing rate constants and parameters for
each reaction along with supplementary information such
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Fig. 1. (a) Block diagram representing the 25 pathway blocks and
their 74 interactions from the primary dataset. Arrows represent dis-
tinct chemical interactions between pathways but do not distinguish
between activation and repression. The number of arrows indicates
the number of reaction sites, not the strength of the interaction. For
example, each of the 5 arrows from PP2A to CaMKII represents
a dephosphorylation of a distinct site or chemical state of CaMKII.
The same set of 5 sites are dephosphorylated by PP1. (b) Conversion
of MAPK reaction diagram into format based on core reactions and
interaction reactions. Pale gray blocks represent reactions where in-
put molecules combine with molecules in the MAPK pathway. The
input molecule (GTP.Ras) is enclosed in a thick dark box. Filled ar-
rows represent inputs from enzymatic reactions. In this model PKC,
PP2A, MKP1 and MKP2 are inputs at various points. The dark open
arrow represents an output reaction, in this case the phosphoryla-
tion of substrates by MAP-Kinase. (c) Expanded representation of
the MAPK diagram and its inputs and outputs in terms of chemi-
cal binding reactions and enzymes. (d) Block-diagram representa-
tion of subset of signaling pathways representing EGF stimulation
of MAPK cascade. (e) Simulation results for continuous EGF (50
nM) stimulation of MAPK using explicit specification of all reac-
tions, and equivalent cascade connected up using the higher-level
specification rules. The two simulations produce identical results.

as data sources. There are several ‘top down’ projects to
handle this sort of complexity at the level of signaling
database projects (Hucka et al., 2000; Hedley et al., 2001)
and simulators (Stiles and Bartol, 2000; Bhalla, 1998;
Schaff et al., 1997; Tomita et al., 1999). In general, these
projects adopt the same reaction-by-reaction description
supplemented with database, simulator and interface
tools. The modular architecture of signaling interactions
reported here reconciles the need for complete chemical
detail with more analytically and conceptually tractable
block diagrams. It is also amenable to an object-oriented
representation suitable for simulators and databases.

METHODS AND IMPLEMENTATION
The approach in this paper is to identify common reaction
motifs that can be used to classify interactions and
provide a higher-level description of complex pathways
while retaining quantitative chemical detail. The level
of description is that of chemical interactions, and the
motifs are therefore common architectural features of
the chemistry. The analysis used a primary dataset of
25 signaling enzymes and pathways that are diverse,
highly interconnected, and ubiquitous. 74 interactions
between these pathways were included in the dataset.
These pathways and their interactions were described in
terms of reaction schemes based on published models
and the literature (Bhalla and Iyengar, 1999; Kuroda et
al., 2001; Brondello et al., 1999). The reactions, and
rate constants are accessible at http://www.ncbs.res.in/
∼bhalla/examples/EGFR example.html. The size of this
dataset is limited by the requirement that it include well-
defined signaling pathway function and interaction, as
well as chemical detail at the level of individual reactions.
As a supplementary dataset, other signaling chemistry
models including the MAPK cascade (Huang and Ferrell,
1996; Levchenko et al., 2000; Kholodenko, 2000), pho-
totransduction (Lamb and Pugh, 1992; Blackwell, 2000),
chemotaxis (Morton-Firth et al., 1999), genetic circuits
(Arkin et al., 1998) were also analysed.

Pathways were initially partitioned in terms of ‘core’
and ‘interaction’ reactions by inspection. The core steps
are reactions that do not involve any molecules outside the
pathway. Interaction steps are those that do. Subsequently
the reaction schemes were set up using computer specifi-
cation of reactions between core and interaction steps to
ensure that all reactions were unambiguously categorized
(Figure 1). Pathways defined in this manner were inter-
connected using only the high-level interaction rules. The
completeness of the high-level specification of pathways
was confirmed by comparing computer-generated reac-
tion schemes with manually specified reaction steps, and
comparing computed outcomes of reactions specified at
the level of individual reactions with reactions specified at
the block level (Figure 1b–e). Computer verification was
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performed using developmental version 8 of Kinetikit, the
kinetics modeling extension to the simulator GENESIS
(Bhalla, 1998). Models, Kinetikit 8, and the GENESIS
simulator are available at the site http://www.ncbs.res.
in/∼bhalla/examples/EGFR example.html. The goal of
this exercise was to test the generality of the above
classification of chemical interactions, and to confirm
that these rules for defining interactions would indeed
completely specify all chemical steps and intermediates.
The implementation and simulation of the model was
therefore intended as a proof of concept and is not the
focus of this paper. A library of pre-existing pathway
models (Bhalla and Iyengar, 1999) was used as the
starting point for the implementation. This library consists
of signaling pathways defined at the level of individual
reactions. These models were converted to the modular
form discussed below where pathways were defined in
terms of core reactions and interaction reactions. The
modeling interface in Kinetikit was extended so that
dragging from an upstream to a downstream pathway
initiated the replication of reactions and interaction
molecules according to the rules discussed below. The
complete set of 74 pathway interactions were then set up
using such drag-and-drop operations. In each case the
generated reactions were found to be equivalent to the
hand-connected reaction-level chemical scheme of the
previous models. This implementation was designed to
accommodate pairwise interactions. A serendipitous out-
come of the implementation exercise was to uncover the
presence of higher-order combinatorial interactions and
suggest the utility of constructing higher-order modules. It
also played the role of a chemical computer-aided design
tool in defining reactions as core reactions and interaction
reactions, a process that was tedious and error-prone when
done manually.

RESULTS
Classification of interactions
Here I describe how the classification of signaling interac-
tions reduces to a single chemical motif. An initial clas-
sification of interactions identified three interaction mo-
tifs between pathways: Messengers, upstream replicating
reactions, and downstream replicating reactions. As de-
scribed below, messengers were identified as a special case
of downstream replicating reactions. Finally, the chemical
architecture of upstream and downstream replicating reac-
tions was seen to be identical although the two cases have
opposite directions of information flow. This reduces all
three interaction motifs to a single general chemical archi-
tecture.

1. Messengers represent the simplest kind of interac-
tion that appears from the above reaction schemes,
where a single chemical species communicates be-
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Fig. 2. Motifs for signaling interactions. (a) Messenger interactions.
The upstream pathway contributes a molecule which is involved in
downstream reactions. (b) Upstream replicating interactions, involv-
ing kinases and phosphatases. A modular representation is shown
on the left, and the reaction details on the right. The downstream
pathway communicates via two molecules, the target and its phos-
phorylated state. The upstream pathway replicates the enzymatic re-
action scheme and distinct enzyme–substrate complexes are formed
for each target. (c) Downstream replicating interactions, illustrating
the more general case of messenger interactions. Several possible
upstream molecules may bind to the downstream target. This leads
to formation of multiple bound forms of the target, each with distinct
rates.

tween two pathways (Figure 2a). Here the upstream
pathway regulates levels of a messenger, which
then participates in non-covalent reactions involv-
ing the downstream pathway. The conventional
second messengers (calcium, cyclic AMP, inositol
trisphosphate, diacylglycerol, etc.) fall into this
category. Several protein molecules and complexes
including Gβγ and calcium-calmodulin interact in
an equivalent way.

2. Upstream replicating reactions are exemplified
by protein kinase and phosphatase reactions (Fig-
ure 2b). Here the upstream pathway enters into
a series of reactions (e.g. the Michaelis–Menten
enzyme scheme) with the target. There is al-
ways at least one reaction intermediate (e.g. the
enzyme–substrate complex) which involves both
the upstream and downstream molecule. There is
also at least one reaction rate that is specific to
each upstream–downstream combination. Thus the
upstream pathway must define a series of reactions
and intermediates that are replicated for every dis-
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tinct downstream target. The downstream pathway,
however, only needs to provide a few molecules
(e.g. the protein and its phosphorylated form) for the
upstream pathway to act upon. There is an economy
of concepts here when one considers opposing pairs
of actions such as kinase and phosphatase, which
are represented as an equivalent interaction but with
opposite direction.

3. Downstream replicating interactions are a mirror
of the second motif, that is, there are replicating
reactions that are situated downstream rather than
upstream (Figure 2c). Examples include ligand–
receptor interactions, the GAP activity of target
molecules downstream of activated GTP-Gα and a
more flexible representation of messengers. In each
of these cases the downstream target may receive
inputs from a variety of upstream sources. In the
case of ligand–receptor interactions, a receptor may
form a number of intermediate states upon binding
of a ligand. Each of these intermediate states and the
kinetics of their formation are unique to the ligand.
Thus the upstream pathway must supply a ligand to
enter into this interaction, whereas the downstream
pathway must define a series of reaction steps and
intermediate states for each ligand. A similar argu-
ment applies for GAP activity of target molecules,
except that in this case the downstream pathway also
effects a transformation of the upstream molecule
by converting GTP-Gα to GDP-Gα.

It is useful to identify messenger interactions as a special
case of downstream replicating interactions. Most messen-
gers have pharmacologically related chemical species (e.g.
Sp-cAMPS for cAMP) which act through similar chem-
istry but with different rates (Figure 2c). Models of exper-
iments involving radiotracers also require replicated reac-
tion steps to keep track of each radioisotope. Each of these
situations involves the messenger molecule generated by
the upstream pathway, and a set of downstream reactions
which must be replicated for each related messenger. Thus
even a single ion messenger such as Ca2+ may need to be
represented in some cases using replicating downstream
reactions.

All the interactions in this dataset fall into one of these
three cases. Each of the three cases can be generalized
as one pathway presenting a number of communicating
molecules, and the other presenting a replicating set of re-
actions involving those molecules. Thus a single organiza-
tional motif underlies all chemical signaling interactions
examined in this dataset.

Higher order interactions
Two classes of reaction in this dataset require further
generalization. The first is the formation of ternary and

higher order complexes. For example, the ligand–receptor-
G-protein complex in principle is a combination of
five distinct molecules: ligand, receptor and the three
G-protein subunits. (Figure 3a, c). Thus the reactions
involving this complex must be replicated for every
possible combination of the ligand, receptor and G-protein
subunits. This situation of combinatorial inputs arises 6
times in a dataset of 25 pathways, and is therefore quite
frequent. The second situation arises when the pathway
has a replicating input giving rise to multiple active states
of an output enzyme, each of which in turn can act on
multiple targets. (Figure 3b). This case occurs 5 times in
25 pathways. Both situations involve replicating chemical
steps arising in a combinatorial manner rather than just
pairwise interactions and can therefore be generalized in
the same way.

This generalized organizational principle is that all sig-
naling interactions consist of one or more communicat-
ing molecules from one set of pathways, and a replicating
set of reactions and molecules from another pathway. The
chemical scheme of this replicating set of reactions is re-
peated for every unique combination of interacting path-
ways. This motif is a straightforward generalization of the
previous one to account for higher-order combinations of
interactions.

Higher order modules
Within this framework, multiple isoforms of enzymes
sharing common inputs and outputs can be grouped into
higher-order modules (Figure 3d). Although the current
dataset includes very few isoforms explicitly, almost
all modules in the dataset are based on enzymes with
multiple isoforms. At least 20 of the 25 pathways would
be candidates for higher-order modules, in some cases
involving over 8 members (e.g. adenylyl cyclase; Pieroni
et al., 1993).

This concept of higher-order modules is also applicable
to the frequent cases where there are multiple sites of
action of a single enzyme (e.g. phosphatase action on the
mitogen activated protein kinase (MAPK) and calcium
calmodulin type II kinase (CaMKII) in Figures 1 and 4).
This situation occurs between 8 pairs of pathways in the
dataset, amounting to 24 interactions out of 74.

Although the formation of higher order modules does
not directly modify the concept of a common general mo-
tif for signaling interactions, it does broaden the concept
of self-contained ‘blocks’ of signaling pathways. Such
blocks are themselves built up from simpler signaling
units but present the same interaction motifs to other
pathways.

A corollary of this architecture of pathways is that the
mechanistic details of any pathway can change without
impinging on the reaction schemes for other pathways.
Such changes can apply both to the core reactions and the
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Fig. 3. Combinatorial interactions. (a) Combinations of receptor, ligand and G-protein in block and reaction diagram forms. Two ligands
and two G-proteins are illustrated. Stripes indicate higher-order combinations. In the expanded reaction scheme on the right, there are four
combinations of ligand and G protein. (b) Combinatorial reactions arising from two inputs activating a kinase, and two substrates. There
are four combinations of ligand and substrate. (c) Partitioning a ligand–receptor–G-protein complex between receptor/ligand reactions and
G-protein interactions. The reactions are tightly coupled. Three sets of molecules must communicate, and both upstream and downstream
molecules must be replicated for each combination of signals. This set of reactions is therefore more suitable for representation as a single
block. (d) A composite module where multiple adenylyl cyclase isoforms share Gs inputs and cAMP outputs. Only the possible inputs and
outputs for this composite module are displayed. (e) Modularity in interactions. A simple enzyme reaction scheme is replaced by a more
complex reaction scheme including product inhibition. The downstream pathway in either case needs only to provide the communicating
molecules S and P, and the details of the reaction are specified by the replicating part of the upstream pathway.

reactions involved in interactions, provided the number of
communicating molecules does not change (Figure 3e).
This permits individual pathway specifications to be
upgraded to incorporate more detail without disturbing
any other part of the signaling network.

Rules for constructing modules
The partitioning of complex signaling networks into
pathways and their interactions is a three-step process:

(1) Identify interactions in the form of messengers,
upstream replicating, or downstream replicating
motifs. This sets up the basic interaction motifs.

(2) Identify instances of higher order interactions. This
determines cases where interactions need to be
treated in a combinatorial manner.

(3) Determine whether closely linked modules can be

encapsulated as higher-order modules. This makes
the granularity of the description somewhat coarser
and simplifies the overall network description.

It is probable that this process could be automated, but
the identification of interactions is a trivial addition to the
labor-intensive process of development of chemically de-
tailed signaling models. Furthermore, the concept of repli-
cating interactions is itself a useful organizing principle
for developing such models since it partitions the problem
into the specification of core reactions and interactions.
It is therefore unclear that such an algorithm would have
practical utility.

It is possible to contrive subdivisions of pathways that
require a dual up–downstream replicating set of reactions,
but these require partitioning of pathways at the point
where reactions are dense (Figure 3c). The classification
adopted in this analysis avoids this situation.
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(CaN). The total activity is the sum of Ca4.CaN and its binding to various Ca-bound states of CaM. (t) Nitric oxide synthase. (u) Protein
phosphatase 2A. (v) Protein phosphatase 1. (w) Soluble guanylyl cyclase. (x) Protein Kinase G.

Interaction statistics
The generality of the above conceptual framework was
empirically supported by using it to represent 74 interac-
tions between 25 pathways (Figures 1 and 4). To the ex-
tent that this list includes types of interactions seen in other

signaling pathways, the current organizational framework
can be applied to additional networks. The 74 interactions
come from 29 output interaction points and lead into 54 in-
puts on the 25 pathways. On average, therefore, each path-
way output connects to 2.5 other pathways. The strength
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of interaction is not necessarily related to the number of
interactions between modules. For example, the single-
connection interaction from EGF to the EGFR represents
a nanomolar-affinity interaction, whereas the multiple ar-
rows from PP1 to CaMKII represent phosphatase action
on multiple states of the enzyme, each with a Km of 5
µM.

16 of the output types are single-molecule or messen-
gers, and the remainder are mostly phosphatases or ki-
nases. 26 of the inputs are single-molecule or messenger
inputs, the remainder are mostly (de)phosphorylations. 6
pathways have combinatorial (greater than pairwise) repli-
cating interactions so this is a significant fraction of the to-
tal. Ras is the only pathway in this dataset with more than
4 distinct inputs, but there is growing evidence that many
other pathways may also be regulated in several ways (e.g.
phospholipase C β is regulated by Gβγ , PIP2 levels and
phosphorylation in addition to Gqα (Singer et al., 1997;
Ryu et al., 1990)).

Applicability of the classification beyond point
mass-action kinetics
The current analysis is based on chemical reaction archi-
tecture rather than details of the kinetics involved. Thus
it can be applied to situations other than point mass-action
kinetics. Stochastic chemical kinetics utilize equivalent re-
action schemes and therefore also fit in this framework
(Gillespie, 1977). Genetic circuits can be represented as
chemical networks, (Arkin et al., 1998) and these pub-
lished networks can also be described in terms of repli-
cating interactions where at any given instant one of the
possible DNA/promoter combinations is stochastically se-
lected. Thus stochastic and genetic networks fit directly
into the framework for signaling interactions as described
in this paper. Spatial and structural aspects of signaling
add further dimensions to the chemistry (Stiles and Bar-
tol, 2000), but this analysis remains applicable to the defi-
nition of the underlying reaction systems.

DISCUSSION
At the conceptual level, this study suggests that all sig-
naling interactions may be described by a single chemical
motif wherein some pathways present a number of com-
municating molecules, and a further pathway includes sets
of reactions and molecules which are replicated for every
combination of the interacting pathways. This generaliza-
tion is an unexpected outcome of a preliminary taxonomic
classification of signaling interactions based on chemical
motifs. Indeed, from the viewpoint of designing databases
and interfaces, these results largely obviate the need for
such a taxonomy. The number of interactions examined in
this study is limited by the need for a complete chemical
specification of interacting pathways, and a rather small
number of examples have been described at this level

of detail. Nevertheless, many of the known classes of
signaling pathways have been represented. The selected
pathways are ubiquitous, and are likely to be substantially
equivalent in many tissues and species. I performed a
further analysis of other published chemical signaling
models including the MAPK cascade (Huang and Ferrell,
1996; Levchenko et al., 2000; Kholodenko, 2000), pho-
totransduction (Lamb and Pugh, 1992; Blackwell, 2000),
chemotaxis (Morton-Firth et al., 1999; Shimizu et al.,
2000), genetic circuits (Arkin et al., 1998). In addition,
several variations on the signaling chemistry within the
current dataset were also considered from a database of
pathways at http://doqcs.ncbs.res.in. Together these data
sources double the number of signaling pathways and
their various implementations available for analysis, to
approximately 50. In all cases inspection of the reac-
tion schemes confirmed the applicability of the above
procedure for classifying interactions.

This study provides an empirical definition of path-
way blocks and interaction arrows that underlie most
contemporary descriptions of signaling networks. The
classification scheme discussed in this paper leads to
finer blocks than commonly used to express signaling
pathways, but tightly coupled sets of molecules such
as receptor–ligand–G-protein complexes are lumped
together. Despite this small difference in granularity, there
is a satisfying degree of overlap between this chemically
defined block diagram and the traditional description. This
overlap is strengthened since higher-order modules are
nearly identical to classical representations of pathways.
A further conceptual point of the paper is the separation
between reactions comprising the core pathway and
interactions respectively. This subdivision distinguishes
between the intrinsic properties of the pathway, and those
that derive their identity from combinations of interacting
pathways.

Comparison with enzyme nomenclature
An existing standard for classifying reactions is the
nomenclature for enzymatic reactions. There are in-
teresting parallels between this nomenclature and the
current analysis of signaling chemistry. To recapitulate, an
enzyme is defined primarily by the reactions it catalyzes
(IUBMB Nomenclature Committee, 1992). A signaling
‘interaction’ is where one pathway presents a number
of communicating molecules, and the other presents a
replicating set of reactions involving those molecules.
The first parallel between the two cases is that an enzyme
is identified by the reactions it catalyzes, and an ‘interac-
tion’ by the chemical steps it is involved in. The second
similarity is that the basis for enzyme nomenclature is
common chemical function, for example, transfer of a
chemical group from one molecule to another. This is
analogous to the notion of upstream replicating reactions,
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since the same chemical operation may be carried out on
many different substrates. The presence of these parallels
is not surprising, since a large subset of interactions are
indeed enzymatic reactions.

Differences between the classifications arise because
enzyme classification focuses on chemistry, whereas
signaling motifs involve information flow as well as
chemistry. Three main differences arise: (1) pathway
interactions need not involve any covalent modifications.
Binding reactions are quite common; (2) enzymatic
reactions are the defining feature of an enzyme, but in
the case of this analysis the interactions are just one
of several features of a pathway. Pathways can include
several interactions and also a set of core reactions;
and (3) a single, specific interaction can represent inter-
conversions involving completely different enzymatic
steps. For example, the interaction between PKC/PP2A
(upstream) and cRaf (downstream) for phosphorylat-
ing/dephosphorylating cRaf involves a phosphorylation
step and ATP for one direction, and a dephosphorylation
step catalyzed by a different enzyme for the reverse. Nev-
ertheless, in terms of this analysis, the interaction has the
same chemical architecture involving the phosphorylated
and unphosphorylated cRaf.

Designing databases of signaling kinetics
This study provides an empirical framework for designing
databases for the chemistry of signaling pathways. Current
databases and XML extensions designed for signaling rep-
resent the chemistry primarily through listings of chemical
steps and rates (Hucka et al., 2000; Hedley et al., 2001).
The CellML specification (Hedley et al., 2001http://www.
Cellml.org) also allows for encapsulation of reactions and
molecules. Interactions between pathways involve the def-
inition of explicit reactions between the pathways. The
current analysis suggests a more structured organization.
First, each pathway specification should include the chem-
ical reaction mechanisms of the core pathway as well as
replicating reactions for the interactions. Further, it should
include rate constants and concentrations for the core re-
actions, and a set of values as defaults for the interactions.
The second part of the database would specify interac-
tion parameters including kinetic constants and the iden-
tity of the interacting pathways. The reaction mechanisms
for interactions would already be defined as part of the
pathway definition. In principle the number of interactions
could scale combinatorially with N pathways. This anal-
ysis, which involves a highly interconnected set of path-
ways, suggests that the actual number is much smaller
and may possibly be more like 3 to 4 N. Indirect sup-
port for this comes from an analysis of the S. cerevisiae
protein–protein interaction network, which suggests that
about 93% of proteins interact with five or fewer other pro-
teins (Jeong et al., 2001).

Object-oriented specification of signaling pathways
There has hitherto been a divide between the block-
diagram representation of signaling interactions, and
simulators and databases that must explicitly represent
each chemical reaction. Through this analysis it becomes
possible to modularize signaling pathways in a manner
reminiscent of object-oriented programming. First, the
chemistry within a pathway does not depend on other
pathways. This means that the details of the implemen-
tation are hidden or encapsulated. Second, interactions
between pathways are conducted through well-defined in-
terfaces consisting of the replicating interactions. Because
the interaction interfaces are consistent for all pathways,
they provide for data abstraction: all pathways can be
regarded as based on the same class. Third, new pathways
can be derived from existing ones to account for isoform
or species specialization, or ‘upgraded’ with improved
data. This corresponds to class derivation and inheritance
of properties of existing pathways. Fourth, composite
pathways can embed existing ones into larger modules.
In object-oriented terms, these are nested classes. These
properties facilitate the management of complex chem-
istry through the use of predefined modules. In particular,
the generalization of all signaling interactions into a
common interface in an object-oriented class means that
any two pathways can be interconnected using the same
high-level operation (such as click-and-drag) that is then
specialized into specific reaction steps according to the
class definition. From the user’s point of view, complex
signaling networks could be set up by connecting pathway
blocks drawn from a database, without compromising the
chemical details.

Three lines of current research are converging to facili-
tate more complete and more accurate descriptions of sig-
naling networks. These are technical and experimental ad-
vances in obtaining mechanistic and kinetic details, devel-
opment of databases of signaling pathways, and develop-
ment of simulators for modeling signaling networks. This
study draws upon the existing body of chemical-level de-
scriptions of signaling pathways to inform design deci-
sions for the development of signaling databases and sim-
ulators. The current analysis reveals a fortuitous symme-
try and uniformity of organization of chemical reactions
in signaling that is well suited to database and simulator
construction and may simplify current designs. Although
the level of this analysis is chemical, it provides an orga-
nizational tool for developing block-diagram descriptions
that may contribute to higher-level analysis of pathways.
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