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In an effort to find a simple and common single-source

precursor route for the group 13 metal nitride semiconductor

nanostructures, the complexes formed by the trichlorides of Al,

Ga and In with urea have been investigated. The complexes,

characterized by X-ray crystallography and other techniques,

yield the nitrides on thermal decomposition. Single crystalline

nanowires of AlN, GaN and InN have been deposited on Si

substrates covered with Au islands by using the complexes as

precursors. The urea complexes yield single crystalline nano-

crystals under solvothermal conditions. The successful synthesis

of the nanowires and nanocrystals of these three important

nitrides by a simple single-precursor route is noteworthy and

the method may indeed be useful in practice.

Nanostructures of Al, Ga and In nitrides have received much

attention because of their unique electrical and optical properties

which are of technological interest.1 The high growth temperature

of AlN and the low decomposition temperature of InN pose

certain difficulties in processing these materials. However,

nanostructures of these group 13 metal nitrides have been prepared

by several methods, the most common one being the reaction of

the metals (M = Al, Ga, In), their oxides or halides with NH3, N2,

azides or nitrides.2,3 Other strategies include the thermal decom-

position of [M(NMe2)3]2 or azido precursors4 and the reaction of

Me3SiNHSiMe3 with MCl3 or metal cupferronates.5 We were

interested in developing a simple, common route to the nano-

structures of AlN, GaN and InN based on a single-source

precursor. Knowing that these nitrides can be prepared by the

reaction of the metals or their compounds with urea in an NH3 or

N2 atmosphere6 and that urea forms complexes with several

metals,7 we have investigated the well-defined complexes formed

by the urea with the trichlorides of Al, Ga and In as precursors,

after characterizing the complexes by X-ray crystallography and

other techniques. Significantly, the decomposition of the urea

complexes under appropriate conditions does indeed yield

nanowires, nanocrystals and other nanostructures possessing the

desired properties.

The trichlorides of Al and Ga form isostructural complexes of

the composition [M(H2NCONH2)6]Cl3 with the P-3c1 space

group{ possessing a structure commonly found in many other

metal–urea complexes7 (see Fig. 1a), with six urea molecules

coordinating the metal. InCl3 on the other hand, forms a complex

of the formula In(H2NCONH2)3Cl3 with the Pa-3 space group{
(Fig. 1b) with three urea molecules and three chlorines around the

metal. The conformation is facial, as in the corresponding Mo

derivative.7d The difference in the nature of the complexes formed

by Al, Ga and In can be understood on the basis of the HSAB

principle of Pearson.10 In all the complexes, N–H…Cl hydrogen

bonds stabilize the structures. Infrared spectra showed the

expected bands assignable to the vibrational modes of the

complexes.11 Thermogravimetric analysis under N2 flow showed

that the Al and Ga complexes yield AlN and GaN around 1000

and 800 uC respectively. The In complex, however, yields a mixture

of InN and In2O3 at ca. 550 uC due to the inadequate proportion

of urea, and exhibits a continuous weight loss above this

temperature due to instability of InN. Taking an additional

quantity of urea with the In–urea complex in the starting mixture,

or carrying out the decomposition of the complex in a NH3

atmosphere yields pure InN.

Decomposition of [M(H2NCONH2)6]Cl3 (M = Al, Ga)

over gold islands deposited on a Si(100) substrate (see Fig. 2a)

under a flow of nitrogen (ca. 200 sccm) gives AlN and GaN

nanowires at 1000 and 800 uC, respectively. Decomposition of

{ Electronic supplementary information (ESI) available: colour version of
Fig. 1. See http://www.rsc.org/suppdata/jm/b5/b502887f/
*cnrrao@jncasr.ac.in

Fig. 1 Structures of (a) [Ga(H2NCONH2)6Cl3] and (b)

In(H2NCONH2)3Cl3.
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In(H2NCONH2)3Cl3 in NH3 (ca. 100 sccm) gave InN nanowires at

550 uC. The yields of the nanowires deposited on the gold islands

were close to 100%. We show scanning electron microscope (SEM)

images of the AlN, GaN and InN nanowires in Fig. 2b–d

respectively. All the nanowires have the hexagonal structure

(Fig. 2e)12 and the nanowire diameter varies in the 20–100 nm

range, with the lengths going up to a few microns. The lattice

fringes in the high resolution transmission electron microscope

(HREM) images in Fig. 2f–h reveal spacings of 2.66, 2.44 and

2.68 Å corresponding to the (100), (101) and (101) planes of

the wurtzite structures of AlN, GaN, and InN respectively. The

photoluminescence (PL) spectrum of the GaN nanowires at room

temperature show band-edge luminescence centered around

370 nm (3.35 eV), consistent with the literature value. The AlN

nanowires show a PL band around 420 nm due to the defect

related states. The InN nanowires show an absorption band

centered at ca. 0.7 eV which is now considered to be the intrinsic

band gap of InN.5b

Refluxing [Ga(H2NCONH2)6]Cl3 in n-trioctylamine ( TOA, bp

365 uC) for ca. 24 h yields GaN nanocrystals. Figs. 3a,b show two

different sets of particles with different sizes. It is gratifying that we

obtain nanocrystals of 2–3 nm diameter, with a narrow size

distribution (see inset in Fig. 3a). The crystallinity of the

nanocrystals is confirmed by X-ray and electron diffraction. The

powder XRD and the DIFFAX13 simulated patterns for the ca.

3 nm size nanocrystals were consistent with the wurtzite structure.

The HREM image in Fig. 3c establishes the single crystalline

nature, the lattice fringes showing a spacing of 2.8 Å due to the

(100) planes of wurtzite GaN. The PL spectrum (Fig. 3d) of the

ca. 3 nm particles shows two emission bands centered at around

380 and 340 nm where as the spectrum (not shown here) of the ca.

15 nm particles shows only the band around 380 nm. The lower

wavelength band is due to quantum confinement as shown

recently.5a Refluxing [Al(H2NCONH2)6]Cl3 in TOA gave nano-

crystals with hexagonal structure. Refluxing In(H2NCONH2)3Cl3
gave hexagonal InN nanocrystals in mixture with a small

proportion of the oxide.

Solvothermal decomposition of the urea-complex precursors in

toluene in an autoclave yields all the nitride nanocrystals in the

375–450 uC range. While the urea-complex of Ga yielded

hexagonal GaN nanocrystals, the complex of Al gave cubic AlN

nanocrystals.14 We could obtain cubic GaN nanocrystals by

decomposing the complex in the presence of excess urea. Cubic

InN nanocrystals were also obtained on decomposition of the

complexes with excess urea. It is noteworthy that we are able to

obtain both hexagonal and cubic phases of these nitrides

depending on the conditions of the decomposition of the com-

plexes. Heating GaCl3 in a large excess of urea gave rise to GaN

onions, nanotubes and other structures. This aspect is under

investigation.

In conclusion, we have demonstrated that urea complexes of

the trichlorides of Al, Ga and In can be used effectively as single-

source precursors to produce nanowires, nanocrystals and other

nanostructures of AlN, GaN and InN.

Fig. 2 (a) Low magnification SEM image of the GaN nanowires

covering Au islands. Magnified SEM images of (b) AlN, (c) GaN, (d) InN;

(e) grazing incidence (1 degree) X-ray diffraction patterns of the nanowires

(asterisk indicates peaks arising due to substrate or gold) and (h) HREM

images of AlN, GaN and InN nanowires (double headed arrow indicates

crystal long axis, and the spacing between two white lines gives the lattice

spacing). Insets in (f), (g) and (h) show low magnication TEM images of

the respective nanowires.

Fig. 3 (a), (b) TEM images of ca. 3 and ca. 15 nm GaN nanocrystals.

Insets at the top show particle size distributions; (c) HREM image of the

nanocrystals; (d) PL spectra of ca. 3 nm size particles at two different

excitation wavelengths (solid curve 260 nm and broken curve 250 nm).
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90u, c = 120.00u, V = 3463.2(3) Å3, Z = 24, T = 293(2)K, m = 1.585 mm21,
13627 reflections measured and 1697 independent reflections, Rint = 0.1667,
R1 = 0.0613 and wR2 = 0.1212 (observed data), R1 = 0.1613 and wR2 =
0.1555 (all data). Lattice parameters of [Al(NH2CONH2)6]Cl3 were
obtained by simulating the powder XRD pattern using the PROSZKI
system of programs for powder diffraction data processing;9 a = b =
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