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ABSTRACT Many cellular signaling events occur in small subcellular volumes and involve low-abundance molecular species.
This context introduces two major differences from mass-action analyses of nondiffusive signaling. First, reactions involving
small numbers of molecules occur in a probabilistic manner which introduces scatter in chemical activities. Second, the
timescale of diffusion of molecules between subcellular compartments and the rest of the cell is comparable to the timescale of
many chemical reactions, altering the dynamics and outcomes of signaling reactions. This study examines both these effects on
information flow through four protein kinase regulatory pathways. The analysis uses Monte Carlo simulations in a subcellular
volume diffusively coupled to a bulk cellular volume. Diffusion constants and the volume of the subcellular compartment are
systematically varied to account for a range of cellular conditions. Each pathway is characterized in terms of the probabilistic
scatter in active kinase levels as a measure of ‘‘noise’’ on the pathway output. Under the conditions reported here, most
signaling outcomes in a volume below one femtoliter are severely degraded. Diffusion and subcellular compartmentalization
influence the signaling chemistry to give a diversity of signaling outcomes. These outcomes may include washout of the signal,
reinforcement of signals, and conversion of steady responses to transients.

INTRODUCTION

Most current analyses of cellular signaling rely on mass-

action kinetics with an implicit assumption that molecular

concentrations are continuous. This leads to deterministic

solutions of systems of differential equations that describe

mass-action kinetics. However, many cellular signaling

events involve small numbers of molecules and should be

analyzed using stochastic calculations (Gillespie, 1977; Rao

et al., 2002). In such situations the outcome of any given

experiment can only be stated in probabilistic terms. Further,

the chemical output fluctuates even at timescales much

greater than the equilibration timescale as calculated

according to mass-action kinetics (Rao et al., 2002).

Several calculations of signaling events have been

performed using stochastic methods. Stochasticity in signal-

ing can both enhance sensitivity (Paulsson et al., 2000) as

well as reduce the sharpness of thresholding responses (Berg

et al., 2000). Many studies on gene expression and regulation

consider stochasticity, which is clearly important given the

small number of participating molecules (Arkin et al., 1998;

Kepler and Elston, 2001; Kierzek et al., 2001; Thattai and

van Oudenaarden, 2001; Elowitz et al., 2002; Ozbudak et al.,

2002). Chemotaxis has been studied in detail using

probabilistic models to account for the switching between

forward motion and tumbling (Morton-Firth et al., 1999).

The influence of stochasticity on circadian rhythms and

oscillators has been examined by several groups (e.g., Gonze

et al., 2002; Vilar et al., 2002). These studies show that there

are a number of ways in which stochasticity affects cellular

computation, primarily in introducing noise and in providing

for probabilistic cellular decisions, but also as a mechanism

employed as part of signaling computation. Clearly,

stochasticity should have an impact onmany cellular signaling

pathways when small cellular volumes and molecular concen-

trations are taken into account.

Spatial aspects of cellular signaling have also been the

subject of investigation by many groups. Many studies have

examined pattern formation through interacting chemical

reactions (Harrison, 1993). The propagation of chemical

waves, especially in calcium signaling, has been simulated

and closely related to experiments (Fink et al., 2000; Strier

et al., 2003). Recent experimental techniques have begun to

open the way for investigation of signaling effects on the

scale of cellular microdomains (Rich et al., 2000) and

dendritic spines (Sabatini and Svoboda, 2000; Goldberg

et al., 2003). The interaction of diffusion with membrane-

localized protein kinase function has been analyzed using

computational methods to suggest that diffusion and spatial

separation can play a major part in controlling phosphory-

lation state (Kholodenko et al., 2000; Kholodenko, 2003).

Diffusion in these small volumes is particularly interesting as

they are also the scale in which stochastic effects become

important.

Only a few studies have attempted to combine both the

stochastic and diffusive effects. The bacterial chemotaxis

system has been the subject of much of this work, examining

both the diffusive properties of the signaling molecules and

the implications of the spatial organization of receptor arrays

(Levin et al., 2002; Shimizu et al., 2003). Resat et al. (2003)

have recently considered epidermal growth factor receptor
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(EGFR) activation in a multicompartmental model. Calcium

diffusion analyses involving stochasticity have also been

performed (e.g., Falcke, 2003). Several studies on synaptic

transmission have utilized Brownian motion diffusion along

with stochastic chemical interactions (Stiles and Bartol,

2000; Franks et al., 2002).

Here we study the combined effects of stochasticity and

diffusion in subcellular regions such as microdomains and

dendritic spines. In this paper four major signaling pathways

are examined as examples of linear pathway signaling in

small diffusively coupled volumes. In the accompanying

article, the behavior of the synaptic signaling network,

involving these and additional pathways, is examined under

similar conditions. The spatial geometry considered is very

simple, consisting only of a protuberance attached to a cell of

typical volume. The protuberance is assumed to be spatially

homogenous. The signaling pathway is modeled identically

in both the compartment and the cell. Three parameters are

varied in this study: volume of the signaling compartment,

the diffusion constant, and the stimulus strength. The

pathways are modeled at a moderate level of chemical

detail, including some aspects of partitioning of molecules

between cytosol and membrane. Rate constants and concen-

trations for the reactions are from biochemical experiments

reported in the literature, and are mostly from neuronal

preparations. The study shows that both stochastic and

diffusive effects strongly limit the kinds of signals that could

usefully be transformed in small subcellular volumes. On

these scales the diffusive time courses are comparable to

reaction rates. This frequently leads to contrasting signaling

outcomes that arise for the same pathway depending on

geometry and diffusion constants. Compartmentalization,

such as membrane anchoring, leads to interesting interac-

tions with diffusive effects.

METHODS

Simulation models were derived closely from those used previously to study

temporal tuning by signaling networks, which in turn are based on

biochemical parameters and molecular concentrations mined from the

biochemical literature, mostly using neuronal tissue sources (Bhalla, 2002a).

Detailed reaction schemes are given for each of the pathways analyzed. Each

of the models has been uploaded to the DOQCS database (Sivakumaran

et al., 2003) as accessions 47, 48, 49, and 58. Demonstration scripts for

replicating the tests are accessible from within the accessions.

Simulations were performed on a 32-CPU Athlon cluster (Atipa Systems,

Lawrence, KS) running GENESIS/kinetikit (Bhalla, 1998, 2002b) on the

Linux operating system. Deterministic computations were performed using

the Exponential Euler method (MacGregor, 1987; Bower and Beeman,

1998). Stochastic calculations were performed using an adaptive stochastic

method (Vasudeva and Bhalla, 2004). Briefly, this method chooses whether

to employ a stochastic or a deterministic calculation of molecule numbers,

for each reaction in the model at each time step. If the propensity for a given

reaction is large and the number of molecules on either side of the reaction is

large, then the reaction is computed using deterministic integration.

Otherwise a stochastic computation is used. The method is less efficient

than the Gillespie (1977) or Gibson-Bruck (2000) methods for small

molecule counts, but its computation times are almost independent of

molecule numbers. Thus it is effective in our simulations where a small

cellular compartment is coupled to a large cell volume. Source code for the

simulator and the Kinetikit interface incorporating all these methods is

available at http://www.ncbs.res.in/;bhalla/kkit/download.html. Demon-

stration simulations, including model parameter files, for generating several

of the figures of this article are available at http://www.ncbs.res.in/;bhalla/

stochpath/index.html.

The adaptive method is an approximate method, and in these simulations

the time steps were chosen to control the numerical error to better than 5%.

However, small (,10%) differences in the distribution of molecular counts

about the mean may arise from the method. The error analysis is detailed in

Vasudeva and Bhalla (2004). In cases where two identical molecules bind to

a target (which occurs in three instances in the CaMKII model) the current

implementation of the method computes forward reaction propensities as

n2 3 pf rather than n3 (n � 1)3 pf. This would introduce an error of 20%

for these reactions for the case of basal Calcium in a volume of 0.1 fl (;5

ions of Ca21); at higher volumes and concentrations the error is smaller.

Compartmentalization of signaling molecules was considered at two

levels. First, the entire signaling circuit was duplicated in two diffusively

coupled compartments. The simplest possible diffusion system was

assumed, where each compartment was internally homogenous and the

only diffusive gradient was between the two compartments. The subcellular

compartment of interest had a volume which was varied in the range 0.1–

1000 fl. This was diffusively coupled to a bulk compartment of 1000 fl to

represent the rest of the cell (Fig. 1 A). Second, based on experimental

information, several molecules were treated as being membrane bound or

cytoskeletally anchored. These molecules did not undergo diffusion and

were chemically coupled only to reactions within the local compartment.

The flux form of the diffusion equation was represented in terms of first-

order reactions between the compartments, and these reactions were also

numerically integrated using the same Exponential Euler or adaptive

stochastic method as the chemical calculations. N is the number of molecules

(#) per unit volume and D is the diffusion constant.

Flux ¼ �D 3 dN=dx; and (1)

ðd#=dtÞ=XA ¼ �D3 dð#=volÞ=dx ¼ �ðD=volÞ3 d#=dx;

(2)

where XA is the cross-sectional area and x is the direction of diffusion. The

rate of transfer of molecule A from compartment 1 to 2, ignoring back-

flux, is:

ðdA1Þ=dt ¼ �ðXA 3 D=vol1Þ 3 A1=dx; (3)

where vol1 is the volume of compartment 1 and vol2 of compartment 2. Here

we approximate the local concentration gradient as the local number of

molecules divided by the separation between the compartments, dx, and get

ðdA1Þ=dt ; � kf 3 A11 kb 3 A2; (4)

where

kf ¼ ðXA 3 D=vol1Þ=dx; (5)

and

kb ¼ ðXA 3 D=vol2Þ=dx; (6)

and A1 and A2 are the respective numbers of molecule A in compartment

1 and 2. This is the same form as the equations solved by the system for

734 Bhalla

Biophysical Journal 87(2) 733–744



deterministic and stochastic chemical reactions. Therefore the diffusion was

implemented simply as a reaction step with the rate constants assigned as in

Eqs. 5 and 6. Using a simple cubic geometry as in Fig. 1 A,

dx ¼ ðvol1Þ1=3 and (7)

XA ¼ ðvol1Þ2=3: (8)

Values for the effective rates used in the simulations are shown in Fig. 1 B.

Molecule counts were scaled linearly from the reference model for a cell

of 1000 femtoliters (10�15). Scaling was done by keeping initial

concentrations fixed as per the cell model, and converting to molecule

counts at the target volume. The diffusion calculations made the assumption

that enzyme-substrate complexes were present very transiently, and did not

account for their diffusion.

Buffering in the deterministic simulations was done by numerically

fixing the concentration of the buffered molecule to the desired level. In the

case of stochastic simulations, this approach could lead to a fractional

number of molecules. This situation was addressed by using a random

number generator on each time step to set the number of buffered molecules

to the nearest integer above or below the target value, with a probability

such that over time the concentration of the molecule averaged to the target

value.

Calcium stimuli were treated specially as the molecule is typically subject

to a high degree of chelation in the cell. Further, calcium can experience

very large concentration gradients with respect to the bulk compartment,

leading to diffusional fluxes which also have a noise term. Thus simple

numerical buffering as described above would not accurately capture the

distribution of calcium ion numbers. To achieve a more accurate distribution

of Ca21 levels, the Ca21 input to the subcellular compartment was treated

as a simple first order reaction at high rate (kf ¼ kb ¼ 100/s) from an

input source which was numerically buffered as described above (Figs. 3 A

and 4 A). Although this approach ignores the complexity of calcium

buffering dynamics, it does produce a more realistic distribution of Ca21

counts in the subcellular compartment as compared to numerical buffering

(Fig. 1 C).

A parameter named ‘‘settle time’’ was computed for each pathway, as an

estimate of the time a downstream pathway would have to sample the

fluctuating concentration to obtain an accurate readout of the pathway.

Taking the stochastic concentration at time t as S(t), and deterministic

concentration as D(t), the settling time was reached when the ab-

solute average deviation from the deterministic run was below a certain

threshold:

FabsðSðSðtÞ � DðtÞÞÞ=ðDðtÞ3ðt � t0ÞÞ, threshold: (9)

Here samples were taken every second. As this measurement is quite noisy,

it was also stipulated that the inequality should hold for 100 consecutive

samples. Further, the entire computation was repeated for a range of stimulus

values and the settling time averaged to improve the estimate of settling

time. The threshold was set to 0.05. When the settling time exceeded the

total time of the simulation (typically 4000 s), the algorithm terminated and

returned this total time.

RESULTS

Four major kinase pathways: protein kinase A (PKA);

protein kinase C (PKC); calcium-calmodulin dependent type

II kinase (CaMKII); and the mitogen activated protein kinase

(MAPK) were considered. In each case simulations were run

for diffusion constants ranging from 0.001 to 10 mm2/s and

subcellular compartments with volumes from 0.1 to 1000 fl.

Subsets of molecules for each model were treated as

nondiffusing based on experimental information about

their association with the membrane. The same diffusion

constants were used for all remaining molecules in a given

run, as specific diffusion data is rarely available for individual

molecular species in specific cellular contexts.

Simulations were also run without diffusion, and also

using deterministic calculations. Dose-response curves

were constructed in response to upstream activators in each

case.

FIGURE 1 Model geometry. (A) Configuration of subcellular compart-

ment in diffusive contact with bulk cytosol. Dimensions are approximately

to scale, but location of compartments with respect to bulk is arbitrary as

each compartment was treated as being in 1-dimensional diffusive contact

with the bulk. (B) Rate constants kf for diffusion from compartment to bulk,

as per Eq. 5. Rates are comparable to chemical reaction rates. (C)

Comparison of Ca21 ion distributions for numerical buffering (randomly

choosing the integer above or below the target concentration) and reaction

buffering as in Fig. 3 A. The numerically buffered run (shaded) appears as

a solid bar because the concentration is recomputed each time step of 0.1 ms,

so it fluctuates between 4 and 5 on a finer timescale than can be resolved in

the graph. Simulation uses compartment volume of 0.1 fl with a resting

[Ca21] ¼ 0.08 mM ¼ 4.8 molecules; and D ¼ 0.1 mm2/s.
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PKA

PKA is part of the classical G-protein coupled receptor

(GPCR) and cyclic adenosine monophosphate (cAMP)

signaling pathway. It exhibits high gain due to multiple

enzymatic amplification stages. The PKA activation pathway

model included GPCR activation, G-protein responses and

adenylyl cyclase (AC) activation, formation of cAMP, and

activation of PKA (Fig. 2 A). The GPCR and AC activation

stages were treated as membrane-bound reactions and did not

diffusively exchange with the bulk compartment. The cAMP,

PDE, and PKA molecules did experience diffusion. Typical

time courses of activation of PKA at a range of diffusion

constants are shown using deterministic calculations in Fig. 2

B. There is a wide range of steady-state PKA activities, due to

diffusive washout of the cAMP and the activated kinase.

When reactions were computed at small volumes (0.1 fl),

and stochasticity was considered, the high gain of the PKA

pathway led to transient large responses reminiscent of single-

channel openings (Fig. 2 C). Each such response was much

larger than the deterministic value. At larger volumes ($1 fl)

the stochasticity led to responses more closely distributed

around the deterministic value (supplementary material).

A series of ligand concentrations was used to generate

dose-response curves for PKA, varying the diffusion con-

stant. Higher diffusion rates lower the pathway response

(Fig. 2 D). The error bars represent standard deviations. A

similar series of dose-responses was performed over a range

of volumes. As expected, these curves closely tracked the

deterministic curve and the standard deviation of the data

points increased with smaller volumes (supplementary data).

To quantify the effect of washout, the steady-state value of

PKA activity was computed for a range of volumes and

diffusion constants (Fig. 2E). In all cases the stimuluswas held

fixed at 0.1 mM ligand concentration. Washout of the PKA

response was severe for a wide range of compartment volumes

and diffusion constants. Experimental estimates of cAMP

levels suggest that the effective diffusion constants in cAMP

signaling microdomains may be very small (Rich et al., 2000).

A critical parameter for information transfer in these small

cellular volumes was to estimate the duration for which

adownstreampathwayshouldsample the signal tomakeagood

estimate of the activity (Fig. 2 F). This was estimated by

considering the time it took for the cumulative average of PKA

activity to settle to within 5% of the deterministic value, as

described in the methods section. The settling time estimate

was averaged for four ligand concentrations in the range of

10 nM–100 nM, that is, above the Khalf for activation of PKA.

The settle time for PKA is determinedmostly by the compartment

volume, and as expected declines sharply at larger volumes.

PKC

PKC is a ubiquitous kinase that is primarily activated by

calcium, but also by arachidonic acid (AA) and

FIGURE 2 PKA responses. Activity of PKA is the concentration of the

free catalytic subunit of the enzyme, labeled ‘‘PKA-active’’ in the reaction

scheme. (A) Reaction scheme. The activation step from the ternary complex

of ligand, receptor and G-protein to activated GTP.Ga is represented as

a lumped step with an implicit exchange of GTP for GDP. Abbreviations: R,

receptor; L, ligand; GDP, guanosine diphosphate; GTP, guanosine tri-

phosphate; Gs, G-protein heterotrimer; Gbg, G-protein bg complex; Ga,

G-protein type s, a subunit; AC, adenylyl cyclase; ATP, adenosine

triphosphate; cAMP, cyclic adenosine monophosphate; R2, dimer of protein

kinase A regulatory subunit; C2, dimer of protein kinase A catalytic subunit,

c1–c4; cAMP with a stoichiometry of 1–4; PDE, phosphodiesterase; and

AMP, adenosine monophosphate. (B) Time course of simulation responses

to a steady input of 0.1 mM ligand, at volume ¼ 10 fl, and a range of

diffusion constants. The 10 mm2/s case undergoes almost complete washout.

(C) Comparison of stochastic and deterministic runs for identical conditions.

Stimulus ¼ 1 nM, volume ¼ 0.1 fl, D ¼ 0.01 mm2/s. (D) Dose-response

curves for PKA with different diffusion constants. volume ¼ 1 fl. Error bars

are standard deviations. (E) Washout as a function of volume and diffusion

constant. Stimulus ¼ 0.1 mM ligand. Maximal activity is obtained only

when volume is large or diffusion constant small. (F) Settling time (defined

in methods) as a function of volume and diffusion constant.
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diacylglycerol (DAG). The kinase translocates to the

membrane upon activation. The PKC model includes

activation by Ca21, AA, and DAG (Fig. 3 A). In this study

activation by Ca and AA were considered, and DAG was

buffered at its baseline level of 11 mM. As described in the

methods, the Ca input was treated as arriving from an

external buffered source exchanging with the compartmental

Ca. In the PKC model the active forms of PKC (PKC-a1 to

PKC-a6) were assumed to be membrane anchored and hence

non-diffusive; and the remaining molecules were diffusive.

Note that this is the reverse of the situation with PKA, where

the input stages were nondiffusive but the output molecules

could diffuse.

The deterministic runs for PKC, like PKA, were mono-

tonically increasing with time (Fig. 3 B). The dependence on
diffusion constant is complex, affecting both the settling time

and the steady-state value of PKC activity. This is due to

a competition between washout effects and recruitment to the

membrane, which is considered in more detail below (Fig. 3

E). As expected, the stochastic runs gave distributions which
bracketed the deterministic responses of PKC (Fig. 3 C). The
degree of scatter appeared to be a function mainly of volume

and final level of PKC activity, and did not depend on

whether the stimulus was primarily Ca21, or whether Ca21

and AA were acting synergistically (supplementary data).

The activation of PKC as a function of calcium stimulus is

shifted to the right at smaller compartmental volumes as

expected due to washout of the intermediates in the pathway

(Fig. 3 D). The standard deviation is not strongly dependent

on activity levels. There is the expected trend of smaller

standard deviation in signaling outputs with increasing

volume (Fig. 3 D, supplementary material). The contribution

of diffusive stochasticity to the total standard deviation for

PKC is quite large, especially at larger volumes.

The PKC model exhibited a transition from diffusive

washout of PKC signaling to diffusive recruitment to the

membrane (Fig. 3 E). At small volumes and rapid diffusive

rates, the washout predominates as the reaction intermediates

are removed from the compartment more rapidly than they

can become membrane-anchored. At intermediate rates of

exchange, the recruitment to the membrane predominates,

and under these conditions the replacement of PKC-cytosolic

from the bulk pool actually increases the total amount of

membrane recruitment. Finally, at very slow exchange rates

(high volumes and low diffusion) the membrane recruitment

dips again, toward its nondiffusive value. The settling time

of the output for the PKC system was faster than for PKA

(Fig. 3F). Responses of volumes of 10fl and above converged

to deterministic levels within 10 s.

CaMKII

The CaMKII signaling pathway is especially important for

synaptic signaling. The kinase is present at very high levels

in the mammalian postsynaptic region, and its activation is

rather complex, involving autophosphorylation and trans-

location from the cytosol to the postsynaptic density upon

autophosphorylation. In this study we modeled its bi-

directional regulation by Ca21, involving calcineurin

(CaN) as well as calcium calmodulin (CaM). We also

modeled its dephosphorylation by protein phosphatase 1

FIGURE 3 PKC responses. (A) Reaction scheme. Activity of PKC is the

sum of the six differently activated states, PKC-a1 through a6, each of which

are treated as membrane-associated. Abbreviations: DAG, diacylglycerol;

and AA, arachidonic acid. DAG is held fixed at 11 mM throughout these

simulations. (B) Time course of simulation responses to an input of 10 mM

Ca21 and 5 mM AA, at volume ¼ 10 fl, and a range of diffusion constants.

(C) Comparison of stochastic and deterministic runs. Stimulus ¼ 1 mM

Ca21, 5 mM AA, volume ¼ 0.1 fl, D ¼ 0.001 mm2/s. (D) Dose-response

curves for PKC with different diffusion constants. Ca is held fixed at 1 mM,

volume¼ 1 fl. Error bars are standard deviations. (E) Washout as a function

of volume and diffusion constant. A strong stimulus of 10 mM Ca21 and

50 mM AA is applied. Note recruitment as well as washout effects and their

dependence on volume and diffusion constant. (F) Settling time (defined in

methods) as a function of volume and diffusion constant.
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(PP1) (Fig. 4 A). These pathways have additional regulatory
inputs from PKA and PKC, but these kinase inputs were held

constant for the purposes of this analysis and only Ca21 was

varied. As with the PKC model, the Ca21 input was given

through an intermediate rapid reaction so that the compart-

mental Ca21 concentration could fluctuate due to stochas-

ticity in the influx process, intrinsic Ca buffers, and diffusion.

Some aspects of CaMKII regulation were included in

separate simulations below. For example, the autonomous

form of CaMKII (CaMKII-thr286*-thr305* in the model)

also undergoes trafficking between the cytosol and the

postsynaptic density (Strack and Colbran, 1998; Bayer and

Schulman, 2001), and there are reports of selective

enrichment of PP1 in the PSD (Strack et al., 1997). In our

calculations, all molecules in the current pathway were

regarded as freely diffusing between the subcellular

compartment and the bulk cell body. We considered two

readouts of CaMKII activity: the directly Ca-stimulated

forms (Tot-CaM-CaMKII) and the Ca-autonomous forms

(Aut-CaMKII). Due to the rapid kinetics and high concen-

trations of CaM and CaMKII, it was numerically very

expensive to simulate large volumes, and we restricted our

analysis to the range 0.1–10 fl.

The time course of activation of aut-CaMKII at different

diffusion rates is illustrated in Fig. 4 B. The 0.001 mm2/s case

exhibits a transient peak in its response. This is due to the

initial formation of signaling products and their subsequent

washout. This was verified using separate test simulations

where Aut-CaMKII was diffusionally restricted to the PSD,

in which case it underwent a buildup (below). A similar

washout is seen at large volumes in further simulations

shown in the supplementary material. The range of steady

values for the remaining curves are interesting, as they reflect

a combination of washout of signaling intermediates and

resupply of the inactive molecules from the bulk solution.

The washout effects are analyzed below.

At synaptic volumes (0.1 fl) the autonomous CaMKII

activity undergoes large, low-frequency fluctuations with

much smaller high-frequency variability superimposed (Fig.

4 C). The large fluctuations are due to the very low steady-

state levels of Ca4.CaM, which are at ;73 nM or ;0.44

molecules in 0.1 fl with the applied stimulus of 1 mM Ca21.

Stochastic increases in the Ca4.CaM levels are strongly

amplified by the autophosphorylation to give rise to the large

fluctuations. At larger volumes the stochastic response is

almost identical to the deterministic one, and the scatter is

also very small (supplementary material). This is expected as

the high concentrations of CaMKII lead to large numbers of

interacting molecules, and converge to the deterministic limit

even at moderate volumes.

FIGURE 4 CaMKII (autonomous) responses. (A) Reaction scheme.

Shaded blocks represent states of CaMKII whose activity is summed to

give the level of autonomous CaMKII (Aut-CaMKII) and total CaM-

activated CaMKII (Tot-CaM-CaMKII), respectively. CaMKII can be

phosphorylated on threonine 286 (Thr-286) and threonine 305 (Thr-305)

in this model. Abbreviations: CaM, calmodulin; CaN, calcineurin; CaN-act,

total activated calcineurin, which is the sum of several sub-states with

different levels of calcium bound to CaM; Ng, neurogranin; PP2A, protein

phosphatase 2A; PP1, protein phosphatase 1; and I1, inhibitor 1. Asterisks

represent phosphorylation. (B) Time course of simulation responses to an

input of 5 mMCa21 at volume¼ 0.1 fl, and a range of diffusion constants. A

transient response is seen at a low diffusion constant of 0.001 mm2/s. (C)

Comparison of stochastic and deterministic runs for identical conditions.

Stimulus ¼ 1 mM Ca21, volume ¼ 0.1 fl, D ¼ 0.001 mm2/s. Note large

fluctuations in stochastic run. (D) Dose-response curves for autonomous

CaMKII with different diffusion constants in a volume of 0.1 fl. Error bars

are standard deviations. Note the complex triphasic response at zero

diffusion. (E) Washout as a function of volume and diffusion constant. Note

recruitment as well as washout effects and their dependence on volume and

diffusion constant. (F) Settling time (defined in methods) as a function of

volume and diffusion constant. Note complex shape of surface, showing

interaction of diffusive and chemical contributions to stochasticity.

738 Bhalla

Biophysical Journal 87(2) 733–744



The next analysis was the dose-response curves at a range

of diffusion constants (Fig. 4 D). Here the responses of

autonomous CaMKII were qualitatively different at different

values of the diffusion constant from 0 to 1 mm2/s, for a fixed

volume of 1 fl. At the zero diffusion limit, the response is

triphasic, in keeping with the expected profile of calcium

dependence. Below 0.5 mM Ca21 there is little response.

There is a dip in activity around 0.5 mMCa21. This is due to

increased activity of CaN, which then increases activity of

PP1 by dephosphorylating the high-affinity form of the PP1

inhibitor I1 (Fig. 4 A). This effect is overtaken, at ;1 mM

Ca21, by the direct stimulation of CaMKII by Ca binding to

CaM. This triphasic response of intermediate activity at low

Ca21, decreased activity at moderate Ca21, and high activity

at high Ca21, is similar to proposed calcium-dependence of

bidirectional synaptic modification. It is intriguing that this

response only occurs at the high-volume/low-diffusion limit,

and is not observed under the small-volume conditions of the

synapse. This issue is considered in the discussion section.

At intermediate diffusion levels of 0.01 mm2/s the Aut-

CaMKII response actually declines at higher Ca21. At high

diffusion rates the kinase exhibits very little calcium

dependence. At this volume of 1 fl the stochastic nose is

small. A complex interdependence of diffusive effects with

the calcium response is also observed if the volume is varied

while keeping diffusion constant fixed, and for small

volumes the Aut-CaMKII responses are somewhat obscured

by biochemical noise (supplementary data).

The dependence of standard deviation on volume and

diffusion is small, and the standard deviation values are

negligible in most cases as expected from the high

concentrations of CaMKII (supplementary data). However,

these curves do not take into account the low stimulus case of

Fig. 4, D and F, where there is a very large variability.

The diffusive interchange of elements of the CaMKII

pathway leads to interesting effects as seen in Fig. 4 E. At all
but the smallest diffusion rates, there is a decline in

autonomous CaMKII activity with increasing volume. In

the case where there is a large 10 fl compartment nearly but

not completely isolated from the bulk cytosol, the system

reverts to the nondiffusive limit and exhibits a larger

response at this Ca level. This is equivalent to the high

portion of the triphasic response in Fig. 4 D.
The settling profile of autonomous CaMKII is also unusual.

There is a very large dependence on diffusion constant. At high

diffusion rates the responses settle almost immediately. At zero

diffusion rates there is the expected dependence of settling

times on volume,where the averagedCaMKII activity at larger

volumes converges very quickly to the deterministic activity.

However, at intermediate diffusion rates there is a rise in

settling time. This is due to the near-washout of low

concentration regulatory molecules, especially Ca4.CaM from

the compartment, leading to a very large variation in

autonomousCaMKII levels. This effect is also seen in Fig. 4C.

Whereas autonomous CaMKII exhibits numerous devia-

tions from deterministic, single-compartment response

profiles, the directly CaM-activated state of CaMKII behaves

in a very predictable manner. There are severe washout

effects at small volumes and high diffusion rates (Fig. 5, A
and D). The stochastic fluctuations about the deterministic

response are relatively high-frequency and in a narrow band

(Fig. 5 B; supplementary material). The dose-response

curves again exhibit the expected washout profile, and high

diffusion rates (Fig. 5 C) and small volumes (supplementary

material) and both have their Ca21 dependence shifted over

to the right. Finally, the convergence of the average of the

response to the deterministic response occurs quickly even at

only 1 fl, and has relatively little diffusion dependence. This

simple behavior is probably due to the relatively high Kd of

calcium dependence of CaM (;1 mM) and simple

stoichiometric reaction sequence of CaMKII, unlike the

FIGURE 5 CaMKII (CaM-activated) responses. (A) Time course of

simulation responses to an input of 5 mM Ca21 at volume ¼ 0.1 fl, and

a range of diffusion constants. (B) Comparison of stochastic and

deterministic runs for stimulus ¼ 1 mM Ca21, volume ¼ 0.1 fl, D ¼
0.001 mm2/s. (C) Dose-response curves for autonomous CaMKII with

different diffusion constants in a volume of 0.1 fl. Error bars are standard

deviations. (E) Washout as a function of volume and diffusion constant. (F)

Settling time (defined in methods) as a function of volume and diffusion

constant.
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much more complicated activation of autonomous CaMKII

(Fig. 4 A).

MAPK

The MAPK cascade is the prototypical high-gain, slow-

acting signaling pathway and has many important cellular

effects. The activated form of MAPK (MAPK* in Fig. 6 A) is
doubly phosphorylated, and its upstream activator kinase

(MEK) is also doubly phosphorylated, thus giving rise to

high apparent order of reaction for the cascade. MAPK is

abundant at the synapse (Ortiz et al., 1995) and thus its low-

volume behavior is likely to be of interest. In this model we

regard the EGFR complexes, the Ras complexes and the

GTP.Ras.cRaf* complex as being membrane-anchored (Fig.

6 A). The remaining molecules are freely diffusing. There are

numerous reports of scaffolding proteins anchoring portions

of the MAPK cascade, and some of the signaling

consequences of scaffolding have been analyzed previously

(Levchenko et al., 2000; Morrison and Davis, 2003). The

epidermal growth factor (EGF) signaling pathway also

undergoes endocytosis, which presents its own interesting

dynamics (Resat et al, 2003). An analysis of scaffolding

effects and endocytosis is outside the scope of this study.

Here we apply EGF at a range of concentrations and monitor

MAPK activity.

The MAPK deterministic and low diffusion response is

a transient (Fig. 6 B), due both to receptor internalization and
negative feedback from the active MAPK to upstream steps

in the pathway (Fig. 6 A). There is a very strong washout

evident at small volumes and high diffusion rates, and the

response falls to nearly zero under these conditions (Fig. 6

B). Basal MAPK activity is low, and the activity of

individual molecules is comparable to the basal deterministic

activity (Fig. 6 C). Consequently fluctuations in the MAPK

response are large compared to the deterministic response.

As was the case with PKA, the high amplification of the

cascade can lead to single-channel like large transient

activity much greater than the deterministic activity of the

kinase (Fig. 6 C).
The stochastic dose-response curves for MAPK could not

be obtained from individual simulation runs because of the

transient nature of the response. Therefore the distribution of

MAPK responses was obtained by taking the peak response

from 30 individual runs under each combination of stimulus,

volume and diffusion constant. The dose-response curves

reflect the high gain and small molecule count of stages in

the cascade. At very low volumes the MAPK response is

large and very noisy, and quite independent of EGF levels

(supplementary material). EGF-dependent responses mani-

fest only at volumes over 100 fl, and are still highly

suppressed by washout. The strong washout is also seen in

Fig. 6 D, where the response is almost completely

suppressed except at diffusion rates of 0.01 mm2/s or lower.

It is only at high volumes and low diffusion rates that a strong

EGF-stimulated response can be elicited from MAPK under

the assumptions of this model.

The standard deviation of the response declines as

expected with increasing volume, but there is a small

FIGURE 6 MAPK responses. (A) Reaction scheme. Abbreviations: EGF,

epidermal growth factor; EGFR, EGF receptor; L.EGFR, EGF bound form

of EGFR; GEF, guanine nucleotide exchange factor; GAP, GTPase

activating protein; MEK, MAPK kinase; MKP-1, MAP kinase phosphatase

type 1; MAPK_tyr*, tyrosine phosphorylated MAPK; and MAPK*, doubly

phosphorylated and active MAPK. Phosphorylation states are indicated by

asterisks. (B) Time course of simulation responses to an input of 100 nM

EGF at volume ¼ 1 fl, and a range of diffusion constants. Washout occurs

for a diffusion constant of 0.1 mm2/s. (C) Comparison of stochastic and

deterministic runs for stimulus ¼ 100 nM EGF, volume ¼ 1 fl, D ¼ 0.001

mm2/s. Note large fluctuations in stochastic run. (D) Dose-response curves

for MAPK with different diffusion constants in a volume of 10 fl. Error bars

are standard deviations. (E) Washout as a function of volume and diffusion

constant. (F) Settling time (defined in methods) as a function of volume and

diffusion constant. Note long setting time for all volumes except 1000 fl.
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increase at large volumes (supplementary material). This is

due to the reduction in washout at large volumes, and the

consequent increase in concentrations of activated MAPK.

The profound effect of washout on the MAPK response is

summarized in Fig. 6 E. The responses of the pathway are

essentially at baseline whenever there is rapid diffusional

coupling with the bulk cytosol. This is not surprising, as the

MAPK pathway has a rather slow response time (Fig. 6 B),
making it more susceptible to washout.

The time required for the averaged MAPK response to

settle to the deterministic value was computed using a slight

variation on the calculation described in the methods. Instead

of averaging over a range of stimulus amplitudes, the settling

time was averaged over 15 independent simulation runs

because the variability was large. Additionally, a threshold

of 0.1 rather than 0.05 was used. As expected, MAPK

responses have to be integrated for rather long periods to

obtain accurate readouts (Fig. 6 F). It is only at volumes

comparable to an entire cell that the settling time is rapid.

This limitation may not be as severe as for the other

pathways, because the MAPK response is already a slow one

and downstream pathways may therefore have evolved to

integrate over long periods. There is relatively little diffusion

dependence of the MAPK settling time.

Compartmentalization and membrane anchoring

The profound influence of washout on the above simulations

suggested that relatively small changes in the membrane

anchoring status of molecules might lead to interesting

changes in the pathway behavior. This was investigated for

hypothetical situations in the PKA and CaMKII pathways

respectively. For the PKA pathway, the behavior of the

GTP.Ga molecule was changed from membrane-anchored

to freely diffusing. This change converted a slowly settling

response (Figs. 7 A and 2 E) to a transient response (Fig. 7

B). The initial rapid buildup of GTP.Ga due to ligand

stimulation washes out and the eventual PKA response is

low.

In the case of the CaMKII pathway, the proposed

subcellular localization of autonomous CaMKII and PP1 to

the PSD was considered (Strack et al., 1997; Bayer and

Schulman, 2001). This change led to a runaway feedback of

autonomous CaMKII for Ca21 inputs above a threshold of

;0.35 mM (Fig. 7 D). In the original model there is very

little difference between the autonomous CaMKII activity

for Ca21 at 0.3 or 0.4 mM. With the localization to the PSD,

the 0.4 mM Ca21 case diverges strongly from the 0.3 mM

case. The effect is due to the substrate saturation of PP1,

which is now restricted to the PSD along with large amounts

of autophosphorylated CaMKII. As PP1 cannot diffuse in

from the bulk, there is a limit to the maximal rate at which

PP1 can dephosphorylate CaMKII and hence remove it from

the PSD. CaMKII, on the other hand, can diffuse freely into

the compartment from the bulk in its dephosphorylated state.

When the Ca21 stimulus is large enough, the balance

between the limited PP1 dephosphorylation and the nearly

unlimited supply of autophosphorylated CaMKII tips, and

there is runaway buildup. This effect is similar to zero-order

hypersensitivity (Goldbeter and Koshland, 1981).

DISCUSSION

This study examines responses of four selected signaling

pathways in small subcellular compartments in diffusive

contact with the rest of the cell. Stochasticity and diffusion

combine to give response properties markedly at variance with

the outcomes of deterministic signaling in well-stirred single

compartments. The major outcome of stochasticity is to

introduce molecular ‘‘noise’’ that obscures signaling espe-

cially at small volumes. Diffusion frequently interacts strongly

with this ‘‘noise’’ term, and could either increase or decrease

the effective molecular noise depending on context. Diffusion

also obscured signaling outcomes at small volumes, often

leading to washout of responses, but in some cases reinforcing

or qualitatively changing the response profiles.

Volume scaling and reliability of signaling

These simulations were performed over a range of simulated

‘‘volumes’’ from 1000 to 0.1 fl, in diffusive contact with

a cell of 1000 fl. The compartment volume range is from

medium-sized cells (10 mm diameter) to large organelles and

FIGURE 7 Membrane anchoring effects. (A) Stochastic and deterministic

responses of PKA to a steady stimulus of 0.1 mM ligand in a volume of 1fl at

D ¼ 0.1 mm2/s, as in Fig. 2 E. (B) Same conditions except that the GTP.Ga

molecule is now diffusive. There is now a transient response. (C) Stochastic

and deterministic responses of autonomous CaMKII in a volume of 1 fl at

D ¼ 0.1 mm2/s, using two stimuli each of 0.3 and 0.4 mM Ca21. (D) Same

conditions except that the autonomous CaMKII and PP1 are now treated as

anchored to the PSD. There is a runaway buildup of autonomous CaMKII in

the 0.4 mM case.
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cellular subcompartments such as synapses (0.1 mm di-

ameter). For reference, an Escherichia coli is ;3 fl in

volume. Our simulations simply scale all molecule numbers

linearly with volume, based on a set of initial concentrations

obtained from the experimental literature (supplementary

material). This is obviously a crude approximation, given

that organelles and cellular compartments almost by

definition have a distinct molecular composition and that

membrane area scales as volume(2/3). Further, our diffusion

constants are the same for all molecules except those that are

membrane-anchored. Nevertheless, it may be valuable to

have a semiquantitative understanding of scaling effects on

signaling, and these simulation results lend themselves to

such an interpretation. Fig. 8 summarizes the qualitative

conclusions about reliability of signaling of different path-

ways as a function of volume. It is clear that for most

signaling pathways, diffusively-coupled mass-action signal-

ing ceases to be computationally reliable at;1 fl and below.

For example, the classical logic of signaling may be

inapplicable to most of the events in the postsynaptic

dendritic spine. This is entirely consistent with the emerging

body of evidence concerning protein scaffolds, cytoskeletal

complexes, and signal channeling, which come into play

precisely at these smaller volumes (reviewed in Smith and

Scott, 2002).

Diffusive modulation of signaling

A second implication of this study is that a combination of

membrane/cytoskeletal targeting and diffusive coupling

between compartments can lead to computationally in-

teresting effects on signaling outcomes. Some related effects

have previously been proposed for kinase-phosphatase

systems (Kholodenko, 2003). Protein targeting is well

known to be important in signaling effects, especially at

the synapse (Meyer and Shen, 2000; Shen et al., 2000). This

study considers diffusive effects in the context of rather

detailed models of signaling cascades with the goal of

understanding such effects in a biologically constrained

setting. We encountered at least four distinct outcomes

depending on a combination of localization of molecules in

space and in the signaling cascade. In each case the small

volume of the signaling system is important because it brings

the diffusion rates into the same range as the chemical rates.

The first, and simplest, outcome is washout of signal. This

occurs for all of the cascades in this study to some degree

(Figs. 2 E, 5 E, and 6 E). In most cases the model assumes

that the activated molecule is diffusible, and the washout

occurs whenever the rate of diffusion exceeds rate of

formation of the molecule.

The second outcome is superficially the converse of

washout: recruitment to the membrane. This occurs for PKC

where the active form is assumed to be membrane anchored.

The effect is more interesting than simple recruitment in this

example, because it competes with a washout effect of earlier

stages in the PKC activation pathway. The net result is a

multiphasic response (Fig. 3 E).
The third outcome is a transient activation of a pathway

(Fig. 7 B). This occurs for a version of the PKA model where

we allow GTP.Ga to diffuse. Whereas this specific reaction

is unphysiological, similar contexts may occur when an

intermediate in an activation cascade is diffusible. Transient

responses are important in biology, and are typically

interpreted as due to an active negative feedback process

such as receptor inactivation or internalization. It is in-

teresting that here it occurs purely due to a biophysical

process of diffusion rather than through additional chemical

steps. As before, the transient response depends on a balance

between diffusive rates and chemical rates that takes effect at

small signaling volumes.

The fourth outcome is a runaway accumulation of

autophosphorylated CaMKII at the postsynaptic density

(Fig. 7 D). The basis for this situation is stimulus-dependent

accumulation, coupled with rate-limited removal of a mole-

cule. For this to occur, it is necessary that the diffusive influx

of the molecule can occur faster than the rate-limiting step of

removal. It is interesting that this behavior is quite close to

some experimentally-based proposals for this signaling

pathway (Meyer and Shen, 2000). However, additional

chemical regulatory steps are clearly required to keep the

response in the physiological range.

FIGURE 8 Summary of stochastic and diffusive effects as a function of

volume. ‘‘Severely degraded’’ indicates that the scatter or distortion in

signaling response is so severe as to render the pathway output un-

informative for downstream signaling. In the case of diffusive responses,

‘‘mixed’’ indicates that the response includes both washout and recruitment

effects.
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This variety of diffusion- and volume-dependent effects

may lead to interesting issues in growing andmotile cells. For

example, over a physiological range of subcellular volumes

and diffusive coupling, the same pathway may switch from

washout to recruitment to isolation. This highlights the

importance of cellular context in understanding signaling

outcome. Overall, the interplay between stochasticity and

diffusion at small volumes sets many constraints on possible

signaling mechanisms due to effects of noise and signal

washout. On the other hand, it also opens up several additional

possible mechanisms for interesting signaling computations

due to the convergence of diffusive and chemical timescales.
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An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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