Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha

Kenneth D Rose, Valerie Burke DeLeon, Pieter Missiaen, R.S Rana, Ashok Sahni, Lachham Singh and Thierry Smith

Proc. R. Soc. B 2008 275, 1203-1208
doi: 10.1098/rspb.2007.1661

Supplementary data

"Data Supplement"
http://rspb.royalsocietypublishing.org/content/suppl/2009/03/20/275.1639.1203.DC1.html

References

This article cites 23 articles, 3 of which can be accessed free
http://rspb.royalsocietypublishing.org/content/275/1639/1203.full.html#ref-list-1

Article cited in:
http://rspb.royalsocietypublishing.org/content/275/1639/1203.full.html#related-urls

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions
Early Eocene lagomorph (Mammalia) from Western India and the early diversification of Lagomorpha

Kenneth D. Rose¹,*, Valerie Burke DeLeon¹, Pieter Missiaen², R. S. Rana³, Ashok Sahni⁴, Lachham Singh⁵ and Thierry Smith⁵

¹Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
²University of Ghent, 9000 Ghent, Belgium
³H.N.B. Garhwal University, Srinagar 246 175, Uttaranchal, India
⁴Panjab University, Chandigarh 160 014, India
⁵Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium

Received 1 December 2007
Accepted 4 February 2008

Keywords: Lagomorpha; Leporidae; Early Eocene; India; Shanghuang; China

1. INTRODUCTION

Considerable evidence points to Asia as the centre of origin of the mammalian superordinal clade Glires, which includes the extant orders Rodentia and Lagomorpha. Most primitive Glires and their closest relatives were either endemic to Asia or common there during their initial radiations (Beard 1998; Meng & Wyss 2005; Missiaen et al. 2006). The early record of Lagomorpha and its extinct sister group, Mimotonidae (together composing the Duplicidentata), has significantly improved over the last two decades, particularly as a result of fossil discoveries in central and eastern Asia. Although the broad distribution of basal members of some mammalian orders (e.g. Primates, Artiodactyla, Perissodactyla) makes their place of origin ambiguous, the restriction of the oldest duplicidentates to Asia is considered strong evidence that they originated in that part of the world (McKenna 1982). Until now, the oldest known Lagomorpha came from the Late Early or Early Middle Eocene of central Asia (Russell & Zhai 1987; Shevyreva 1995; Averianov & Lopatin 2005; Lopatin & Averianov 2006), and both fossil and molecular evidence suggested that the dichotomy of the order into the extant families Ochotonidae (pikas) and Leporidae (rabbits and hares) did not occur until the Late Eocene (McKenna 1982; Douzery et al. 2003; Asher et al. 2005). Here, we describe lagomorph fossils from India that are older than any previously reported and provide evidence that the two extant families may already have diverged by the Early Eocene, in agreement with one recent molecular study (Springer et al. 2003).

The oldest definitive lagomorphs previously reported come from central Asian strata of Late Early or Early Middle Eocene age (Arunsthan and Irnjinmanhan Land Mammal Ages = Lutetian and possibly the latest Ypresian). They comprise two lagomorph dental taxa and lagomorph tarsals presumably referable to one of them from Andarak II in Kyrgyzstan (Averianov 1991; Shevyreva 1995; Averianov & Lopatin 2005; Lopatin & Averianov 2006), and a new basal lagomorph, Davsonolagus, from the Arshanto Formation of Inner Mongolia known from craniodental fossils and ankle bones (Li et al. 2007). By later in the Middle Eocene, a diversity of lagomorphs is known from China (Tong 1997; Meng et al. 2005). However, lagomorphs are practically unknown in the fossil record of southeast Asia, and none are known from Eocene strata in Pakistan, India, Thailand or Myanmar. Until now, the oldest lagomorphs from the Indian subcontinent dated from the Miocene (Flynn et al. 1997; Barry et al. 2002; Winkler et al. 2007); they consist of a small number of fragmentary Late Miocene leporids (ca 7.0–7.8 Myr ago) and a single Early Miocene ochotonid molar (ca 18 Myr ago).

We report here the oldest known record of Lagomorpha, from the Early Eocene Cambay Shale (Middle Ypresian equivalent) of Gujarat, west-central India. The fossils were found in continental clays at the Vastan lignite mine, northeast of Mumbai. They come from a layer approximately 15 m below the occurrence of the foraminiferal Nummulites burdigalensis burdigalensis, a marker of Shallow Benthic Zone 10 and planktonic zone 6b (Serra-Kiel et al. 1998; Sahni et al. 2006), which are dated at ca 53 Myr ago (Berggren & Aubry 1998;
Luterbacher et al. 2004); consequently, they predate the oldest lagomorphs previously reported by several million years.

2. MATERIAL AND METHODS

The Vastan fossils consist of ankle bones, the calcaneus and talus (figures 1 and 2), which are comparable in size to those of the extant pika *Ochotona*. Also described here are three calcanei and a talus from the Middle Eocene of Shanghuang, China. They are compared to an extant sample including representatives of both living families: eight species in six genera of Leporidae and two species of the single extant genus *Ochotona* (see electronic supplementary material, table 1).

Linear measurements of the fossil tarsals and the extant sample of ochotonids (*n*= 9) and leporids (*n*= 17) are provided in the electronic supplementary material, table 1. Larger specimens were measured with digital calipers under a binocular microscope and smaller specimens with an ocular micrometer fitted to the lens of the binocular microscope. Owing to the disparate size between many leporids and ochotonids, measurements were scaled by the length of each element, yielding relative linear measurements for comparisons among taxa.

Phylogenetic analyses were run using PAUP v. 4.0b10 (Swofford 2002), based on the matrix published by Asher et al. (2005) supplemented with characters from the fossils reported here (electronic supplementary material, table 2). Character definitions are identical to theirs except for character 211 that was returned to the original definition of Meng et al. (2003). The resulting morphological data matrix of 71 taxa and 228 characters is included in the electronic supplementary material, NEXUS file. We used a heuristic search with random addition sequence for 50 replicates. All characters were considered unordered.

Principal components analysis (PCA) was used as a data reduction technique to demonstrate the position of the fossil specimens relative to the range of variation in extant lagomorphs. Specimens with missing data were excluded.

Figure 1. Calcanei of Eocene lagomorphs in (a–d) dorsal and (e–h) lateral views. Garhwal University, Srinagar, India (GU), and Institute of Vertebrate Palaeontology and Palaeoanthropology, Beijing, China (IVPP). (a,e) Left calcaneus, GU/RSR/VAS 711 from Early Eocene Vastan mine, India; (b–d, f–h) right calcanei from Middle Eocene of Shanghuang, China, IVPP 15537, 15538, 15539, respectively. ff, fibular facet; sf, sustentacular facet; PCF, posterior calcaneal facet; cf, cuboid facet; cc, calcaneal canal.

Skeletons of three of the genera, *Romerolagus*, *Brachylagus* and *Nesolagus*, are particularly rare in collections.

Figure 1. Calcanei of Eocene lagomorphs in (a–d) dorsal and (e–h) lateral views. Garhwal University, Srinagar, India (GU), and Institute of Vertebrate Palaeontology and Palaeoanthropology, Beijing, China (IVPP). (a,e) Left calcaneus, GU/RSR/VAS 711 from Early Eocene Vastan mine, India; (b–d, f–h) right calcanei from Middle Eocene of Shanghuang, China, IVPP 15537, 15538, 15539, respectively. ff, fibular facet; sf, sustentacular facet; PCF, posterior calcaneal facet; cf, cuboid facet; cc, calcaneal canal.
Data were evaluated for skewness, kurtosis, sampling adequacy and sphericity. Because the fossil tarsals were not associated in situ, separate analyses were conducted for calcaneus and talus. Non-parametric two-tailed Mann–Whitney U-statistics were used to test for significant differences in univariate shape measurements between the extant samples, and a conservative Bonferroni multiple comparisons adjustment was applied.

3. RESULTS AND DISCUSSION

The Vastan calcaneus and talus (figures 1 and 2) are highly diagnostic at the ordinal level and show derived features characteristic of gracile leporids combined with primitive traits typical of more robust leporids and Ochotona. The Vastan tarsals are anatomically very similar to the previously unreported gracile lagomorph tarsals from Middle Eocene fissures at Shanghuang, China, as well as to the tarsals from Andarak II in Kyrgyzstan (Averianov 1991), whereas they are more slender and more derived than the tarsals of Dawsonolagus from Inner Mongolia (Li et al. 2007).

The calcaneus of lagomorphs is distinctive in retaining a well-developed, wide fibular facet on the calcaneus and a longer, medially facing posterior calcaneal facet (PCF= ectal facet), the distal half of which is aligned with the sustentacular facet. The presence of a fibular facet has sometimes been considered a primitive trait, a polarity possibly supported by its presence in the Early Eocene eurymylid simplicidentate Rhombomylus (Meng et al. 2003) as well as in Palaeolagus Pseudictops (Sulimski 1968) and arctostylopids (Missiaen et al. 2006), both arguably related to Glires. However, absence of calcaneo-fibular contact in other Glires (viz. Rodentia and Mimohtonidae; Meng et al. 2004; Asher et al. 2005; Meng & Wyss 2005) as well as in Anagalidae and Zalambdalestidae (Li & Ting 1985) suggests that contact in lagomorphs is secondarily derived (Szalay 1985; Li et al. 1987). A distal talocalcaneal facet in addition to the sustentacular facet, and a sharply angled medially facing cuboid facet, is also characteristic of lagomorph calcanei.

Figure 3. Majority rule consensus tree of 1820 most parsimonious trees (MPTs) recovered by PAUP v. 4.0b10, rooted using three marsupial taxa as an outgroup. Numbers left of clades show the percentage of MPTs in which the clade occurs when this percentage is lower than 100%. Tree length, 1402 steps; CI, 0.2482; RI, 0.6941. Light grey shading indicates the position of Glires, intermediate grey shading shows Lagomorpha and dark grey shading shows Leporidae. Characters used in the analysis are listed in the electronic supplementary material, table 2.

Middle Eocene fissures at Shanghuang, China, as well as to the tarsals from Andarak II in Kyrgyzstan (Averianov 1991), whereas they are more slender and more derived than the tarsals of Dawsonolagus from Inner Mongolia (Li et al. 2007).
The talus of extant lagomorphs has a deeply grooved, asymmetrical trochlea with the lateral keel longer and higher than the medial and a moderately long to very long neck. The head (navicular facet) is subcylindrical about a higher than the medial and a moderately long to very long asymmetrical trochlea with the lateral keel longer and more cursorial than the well-known leporids *Lepus* and *Sylvilagus* and differs in having relatively shorter and more robust calcanei and tali, a relatively longer and wider fibular facet, a relatively wider and more asymmetrical talar trochlea (lateral keel much longer than medial keel) and a wider and dorsoventrally flatter talar head (electronic supplementary material, table 1 and figures S1–S14).

Additionally, *Ochotona* has a continuous, convex PCF that allows proximodistal translation of the talus on the calcaneus. *Lepus* and *Sylvilagus* have more slender and distally longer calcanei and tali, a nearly symmetrical talar trochlea, a narrow navicular facet on the talar head that tapers dorsally and a specialized PCF separated into distinct proximal and distal faces offset at a sharp angle. The latter morphology prevents proximodistal excursion of the talus while increasing stability of the ankle and promoting crurotalar flexion–extension. These distinctions represent extremes of lagomorph tarsal anatomy but do not always distinguish the two families. Some leporids (e.g. *Nesolagus*) have more robust tarsals proportionally similar to those of ochotonids, and some ochotonids were more cursorial than *Ochotona* (e.g. a leporid-like PCF is present in Neogene *Prolagus*; Dawson 1969); though no known ochotonid evolved such gracile, elongate tarsals as...
in *Syylelagus*. Outgroup comparison (to mimotonids; Meng et al. 2004; Asher et al. 2005) suggests that more robust tarsals lacking distal elongation and a talus with a moderately wide, asymmetrical trochlea are morphotypic for Lagomorpha.

The importance of tarsal and postcranial morphology for the relationships of Glires has been shown before in phylogenetic analyses (Meng et al. 2003; Asher et al. 2005). The addition of the Vastan and Shanghuang tarsal characters to these analyses clearly allies them with lagomorphs, and not with any other group (figure 3). They are distinctively lagomorph like in the morphology and position of all three talocalcaneal articular surfaces, the prominent fibular facet and the strongly oblique distal calcaneal articular surface for the cuboid. Within Lagomorpha, PCAs of scaled calcaneal and talar dimensions place the Vastan and Shanghuang tarsals within or on the periphery of the leporid cluster, distinct from ochotonids (figure 4a,d; see also electronic supplementary material). The Vastan calcaneus resembles that of *Syylelagus* and several other leporids in its gracile, elongate form, but is statistically inseparable from *Ochotona* and the tarsally robust leporid *Neoslagus* in its shorter distal calcaneal length (figure 4b,c; electronic supplementary material, figures S3–S6). The PCF is convex with only the faintest hint of a ridge separating it into proximal and distal parts, in this feature resembling *Ochotona* more than leporids. The fibular facet is slightly narrower than that in extant lagomorphs. The calcaneal canal is very small, the calcaneal groove passes lateral to the head. Also contrary to other lagomorphs, the lateral keel is slightly shorter than the medial keel. Lagomorph tarsals from Andarak II (Averianov 1991) resemble the gracile tarsals from Vastan and Shanghuang.

4. CONCLUSIONS

The fossil tarsals described here illustrate mosaic evolution of specialized tarsal traits in basal lagomorphs. Previous fossil and molecular evidence suggested that the extant lagomorph clades Ochotonidae and Leporidae diverged in the Late Eocene (McKenna 1982; Douzery et al. 2003; Asher et al. 2005); but the Shanghuang fossils show that gracile and robust tarsal adaptations similar to those of both families were present in the Middle Eocene. More significantly, the Early Eocene Vastan tarsals show not only diagnostic lagomorph features but also some gracile adaptations seen today only in leporids. These derived traits evident in the Vastan tarsals imply that functional diversification within Lagomorpha, and possibly the dichotomy between the two families, had already begun by the Early Eocene.

We thank M. R. Dawson for sharing her exceptional knowledge of lagomorphs, generously allowing us to include the Shanghuang lagomorph tarsals in this report, and reviewing earlier versions of the manuscript; A. Sylvester and J. Organ for their discussion of the statistical analyses; L. Gordon and J. Mead (USNM), D. Lunde (AMNH) and J. R. Wible (CM) for access to recent comparative specimens; M. Klingler (CM) for figure 2 and other photographic assistance; two anonymous reviewers whose comments improved the manuscript; A. Folie, K. Kumar, G. McKusick and H. Singh for their assistance with fieldwork; and personnel of the Gujarat Industrial Power Corporation Ltd for facilitating our excavations at Vastan mine. Support for fieldwork and research from the National Geographic Society (grants 6868-00 and 7938-05 to K.D.R. and A.S.), Department of Science and Technology, Government of India (ESS/23/Ves092/2000 to R.S.R.), the Council for Scientific and Industrial Research of India (ES grant 560, 21/EMR-II to A.S.), the Research Foundation Flanders (to P.M.) and the Belgian Federal Science Policy Office (MO/36/011 to T.S.) is gratefully acknowledged.

REFERENCES

