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Abstract

We examine very general four-point interactions arising from new
physics and contributing to the Higgs production process e+e− →
HZ. We write all possible forms for these interactions consistent
with Lorentz invariance. We allow the possibility of CP violation.
Contributions to the process from anomalous ZZH and γZH in-
teractions studied earlier arise as a special case of our four-point
amplitude. We consider the decay of Z into a charged lepton
pair and obtain expressions for angular distributions of charged
leptons arising from the interference of the four-point contribu-
tion with the standard-model contribution. We take into account
possible longitudinal or transverse beam polarization likely to be
available at a linear collider. We examine several correlations
which can be used to study the various form factors present in
the e+e−HZ contact interactions. We also obtain the sensitivity
of these correlations in constraining the new-physics interactions
at a linear collider operating at a centre-of-mass energy of 500
GeV with longitudinal or transverse polarization.
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1 Introduction

Despite the dramatic success of the standard model (SM), an essential com-
ponent of SM responsible for generating masses in the theory, viz., the Higgs
mechanism, as yet remains untested. The SM Higgs boson, signalling sym-
metry breaking in SM by means of one scalar doublet of SU(2), is yet to be
discovered. A scalar boson with the properties of the SM Higgs boson is likely
to be discovered at the Large Hadron Collider (LHC). However, there are a
number of scenarios beyond the standard model for spontaneous symmetry
breaking, and ascertaining the mass and other properties of the scalar boson
or bosons is an important task. This task would prove extremely difficult for
LHC. However, scenarios beyond SM, with more than just one Higgs doublet,
as in the case of minimal supersymmetric standard model (MSSM), would be
more amenable to discovery at a linear e+e− collider operating at a centre-
of-mass (cm) energy of 500 GeV. We are at a stage when the International
Linear Collider (ILC), seems poised to become a reality [1].

Scenarios going beyond the SM mechanism of symmetry breaking, and
incorporating new mechanisms of CP violation, have also become a neces-
sity in order to understand baryogenesis which resulted in the present-day
baryon-antibaryon asymmetry in the universe. In a theory with an extended
Higgs sector and new mechanisms of CP violation, the physical Higgs bosons
are not necessarily eigenstates of CP. In such a case, the production of a
physical Higgs can proceed through more than one channel, and the inter-
ference between two channels can give rise to a CP-violating signal in the
production.

Here we consider in a general model-independent way the production
of a Higgs mass eigenstate H through the process e+e− → HZ. This is
an important mechanism for the production of the Higgs, the other impor-
tant mechanisms being e+e− → e+e−H and e+e− → ννH proceeding via
vector-boson fusion. e+e− → HZ is generally assumed to get a contribu-
tion from a diagram with an s-channel exchange of Z. At the lowest or-
der, the ZZH vertex in this diagram would be simply a point-like coupling
(Fig. 1). Interactions beyond SM can modify this point-like vertex by means
of a momentum-dependent form factor, as well as by adding more compli-
cated momentum-dependent forms of anomalous interactions considered in
[2, 3, 4, 5, 6, 7, 8, 9]. The corresponding diagram is shown in Fig. 2, where
the anomalous ZZH vertex is denoted by a blob. There could also be a
diagram with a photon propagator and an anomalous γZH vertex, which
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does not occur in SM at tree level, and which we do not show separately. We
consider here a beyond-SM contribution represented by a four-point coupling
shown in Fig. 3. This is general enough to include the effects of the diagram
in Fig. 2. Such a discussion would be relevant in studying effects of box
diagrams with new particles, or diagrams with t-channel exchange of new
particles, in addition to s-channel diagrams.

We write down the most general form for the four-point coupling con-
sistent with Lorentz invariance. We do not assume CP conservation. We
then obtain angular distributions for a lepton pair from the decay of the Z
calculated from the square of amplitude M1 for the diagram in Fig. 1 with
a point-like ZZH coupling, together with the cross term between M1 and
the amplitude M2 for the diagram in Fig. 3. We neglect the square of M2,
assuming that this new physics contribution is small compared to the dom-
inant contribution |M1|2. We include the possibility that the beams have
polarization, either longitudinal or transverse. While we have restricted the
actual calculation to SM couplings in calculating M1, it should be borne in
mind that in models with more than one Higgs doublet this amplitude would
differ by an overall factor depending on the mixing among the Higgs dou-
blets. Thus our results are trivially applicable to such extensions of SM, by
an appropriate rescaling of the coupling.

In our analysis, we do not assume that the Z is produced on shell. More-
over, since we obtain fully analytical expressions for the distribution of the
final-state leptons arising from the virtual Z using the full Z propagator, we
automatically take into account coherently spin correlations of the Z.

We are thus addressing the question of how well the form factors for
the four-point e+e−HZ coupling can be determined from the observation of
decay-lepton angular distributions in the presence of unpolarized beams or
beams with either longitudinal or transverse polarizations. A similar question
taking into account a new-physics contribution which merely modifies the
form of the ZZH vertex has been addressed before in several works [2, 3, 4,
5, 6, 7, 8, 9, 10]. Those works which do take into account four-point couplings,
do not do so in all generality, but stop at the lowest-dimension operators [5].
See, however, [11], where the contribution of dimension-six operators to the
processes e+e− → Hl+l− and e+e− → Hνν̄ are considered. The approach
we adopt here has been used for the process e+e− → γZ in [12, 13] and for
the process Z → bbγ in [14].

The four-point couplings, in the limit of vanishing electron mass, can be
neatly divided into two types – chirality-conserving (CC) ones and chirality-
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Figure 1: Higgs production diagram with an s-channel exchange of Z with
point-like ZZH coupling.

violating (CV) ones. The CC couplings involve an odd number of Dirac γ
matrices sandwiched between the electron and positron spinors, whereas the
CV ones come from an even number of Dirac γ matrices. Since in practice,
CV couplings are usually proportional to the fermionic mass (in this case the
electron mass), we concentrate on the CC ones (see, however, [15]).

In an earlier work [16], we considered angular distributions of an on-shell
Z in the process e+e− → ZH in the same context of e+e−HZ contact inter-
actions. In that paper we concentrated on CP-odd asymmetries constructed
with the Z polar and azimuthal angles, for both chirality-conserving and
chirality-violating cases. The present work is an extension to the more real-
istic case of a virtual Z decaying into a pair of charged leptons, which are
observed. We also do not restrict ourselves to CP-odd asymmetries, but aim
at the determination of all form factors in the chirality-conserving case us-
ing expectation values of CP-even and CP-odd observables. Charged-lepton
angular distributions have been discussed earlier in [17] for the SM Higgs,
in the context of distinguishing between a scalar and pseudoscalar Higgs in
[2, 7, 8, 10, 18], and in the context of CP-violating Higgs in [3, 4, 5, 6, 7, 9, 10].
However, these papers, with the exception of [5], do not discuss contact in-
teractions which is the topic of our work.

Polarized beams are likely to be available at a linear collider, and several
studies have shown the importance of linear polarization in reducing back-
grounds and improving the sensitivity to new effects [19]. The question of
whether transverse beam polarization, which could be obtained with the use
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Figure 2: Higgs production diagram with an s-channel exchange of Z with
anomalous ZZH coupling.

Figure 3: Higgs production diagram with a four-point coupling.

of spin rotators, would be useful in probing new physics, has been addressed
in recent times in the context of the ILC [12, 15, 19, 20, 21, 22, 23, 24]. In
earlier work, it has been observed that polarization does not give any new in-
formation about the anomalous ZZH couplings when they are assumed real
[7]. However, in case of four-point contact interactions, we find that there are
terms in the differential cross section which are absent unless both electron
and positron beams are transversely polarized. Thus, transverse polariza-
tion, if available at ILC, would be most useful in isolating such terms. This
is particularly significant because these terms are CP violating. Moreover,
some of them are even under naive CPT, and thus would survive even when
no imaginary part is present in the amplitude.

In the next section we write down the possible model-independent four-
point e+e−HZ couplings. In Section 3, we obtain the angular distributions
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arising from the CC couplings in the presence of beam polarization. Section
4 deals with correlations which can be used for separating various form fac-
tors and Section 5 describes the numerical results. Section 6 contains our
conclusions and a discussion.

2 Form factors for the process e
+
e

−
→ HZ

The most general four-point vertex for the process

e−(p1) + e+(p2) → Zα(q) +H(k) (1)

consistent with Lorentz invariance can be written as

Γα
4pt = Γα

CC + Γα
CV, (2)

where the chirality-conserving part Γα
CC containing an odd number of Dirac

γ matrices is

Γα
CC = − 1

M
γα(V1 + γ5A1)+

1

M3
q/(V2 + γ5A2)k

α − i

M3
q/(V3 + γ5A3)(p2 − p1)

α,

(3)
and the chirality violating part containing an even number of Dirac γ matrices
is

Γα
CV =

i

M2
[−(S1 + iγ5P1)k

α − (S2 + iγ5P2)(p2 − p1)
α]

− 1

M4
ǫµναβp2µp1νkβ(S3 + iγ5P3). (4)

In the above expressions, Vi, Ai, Si and Pi are form factors, and are Lorentz-
scalar functions of the Mandelstam variables s and t for the process eq. (1).
For simplicity, we will only consider the case here when the form factors are
constants. M is a parameter with dimensions of mass, put in to render the
form factors dimensionless.

The expressions for the four-point vertices may be thought to arise from
effective Lagrangians

LCC =
1

M
ψ̄Z/(v1 + γ5a1)ψφ

+
1

M3
ψ̄∂/Zα(v2 + γ5a2)ψ∂αφ

+
i

M3

[

∂αψ̄γ
µ(v3 + γ5a3)ψ − ψ̄γµ(v3 + γ5a3)∂αψ

]

φ∂µZ
α, (5)
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and

LCV =
1

M2
ψ̄(s1 + iγ5p1)ψ∂αφZ

α

+
i

M2

[

∂αψ̄(s2 + iγ5p2)ψ − ψ̄(s2 + iγ5p2)∂αψ
]

φZα

+
i

M4
ǫµναβ∂µψ̄(s3 + iγ5p3)∂νψ∂βφZα, (6)

where φ represents the Higgs field. The the coupling constants vi, ai, si

and pi in the Lagrangians have been promoted to form factors in momentum
space when writing the vertex functions Γ.

It may be appropriate to contrast our approach with the usual effective
Lagrangian approach. In the latter approach, it is assumed that SM is an
effective theory which is valid up to a cut-off scale Λ. The new physics occur-
ring above the scale of the cut-off may be parametrized by higher-dimensional
operators, appearing with powers of Λ in the denominator. These when
added to the SM Lagrangian give an effective low-energy Lagrangian where,
depending on the scale of the momenta involved, one includes a range of
higher-dimensional operators up to a certain maximum dimension. Our ef-
fective theory is not a low-energy limit, so that the form factors we use are
functions of momentum not restricted to low powers. Thus, the M we in-
troduce is not a cut-off scale, but an arbitrary parameter, introduced just to
make the form factors dimensionless.

We thus find that there are 6 independent form factors in the chirality
conserving case, and 6 in the chirality violating case. An alternative form
for the Γ above would be using Levi-Civita ǫ tensors whenever a γ5 occurs.
The independent form factors then are then some linear combinations of the
form factors given above. However, the total number of independent form
factors remains the same.

Note that we have not imposed CP conservation in the above. The CP
properties of the various terms appearing in the four-point vertices may be
deduced from the CP properties of the corresponding terms in the effective
Lagrangian. Thus, one can check that the terms corresponding to the cou-
plings v3, a3, s1, p2 and s3 in the effective Lagrangian are CP violating. As a
consequence, the terms corresponding to V3, A3, S1, P2 and S3 are CP violat-
ing, whereas the remaining are CP conserving. This conclusion assumes that
the form factors are constants, since the couplings in the effective Lagrangian
are constants. The conclusion can also be carried over when the form factors
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are arbitrary functions of s and even functions of t−u ≡ √
s|~q| cos θ, where θ

is the angle between ~q and ~p1 (or constants). This is because in momentum
space, s ≡ (p1 + p2)

2 is even under CP, whereas t − u ≡ √
s|~q| cos θ is odd

under C and even under P, and thus odd under CP.

3 Differential cross sections

We now obtain the differential cross section for the process (1) for a virtual
Z followed by its decay into l+l−, viz.,

Z(q) → l+(pl+) + l−(pl−), (7)

from the SM amplitude alone and from the interference between the SM
amplitude and the amplitude arising from the four-point couplings of (3). We
do not consider the CV case here. We ignore terms bilinear in the four-point
couplings, assuming that the new-physics contribution is small. We treat
the two cases of longitudinal and transverse polarizations for the electron
and positron beams separately. We neglect the mass of the charged leptons
l±. Also, we assume that the charged lepton l is different from the electron.
Thus, our considerations are mostly for l ≡ µ, and they would be applicable
for l ≡ τ to the extent that the τ mass can be neglected.

The expression for the amplitude for (1), arising from the SM diagram of
Fig. 1 with a point-like ZZH vertex, is

MSM = − e2

4 sin2 θW cos2 θW

mZ

s−m2
Z

v(p2)γ
α(gV − γ5gA)u(p1), (8)

where the vector and axial-vector couplings of the Z to electrons are given
by

gV = −1 + 4 sin2 θW , gA = −1, (9)

and θW is the weak mixing angle.
Note that though we have used SM couplings for the leading contribution,

it is trivial to modify these by overall factors for cases of other models (like
two-Higgs-doublet models). Our expressions are not, however, applicable for
the case when the Higgs is a pure pseudoscalar in models conserving CP,
since in that case, the SM-like lowest-order couplings are absent.

We have obtained full analytical expressions for the differential cross sec-
tions to linear order in the contact interactions. The Dirac trace calculations
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have been checked using the analytical manipulation program FORM [25].
Since these expressions are obtained in a model-independent context, they
can prove useful for future work comparing different models.

Note that though in eq. (3) we wrote the vertex for the production of a
real Z, when we introduce the decay of the Z, we consider full virtuality of
the Z, and also take into account spin correlations of the Z.

We choose the z axis to be the direction of the e− momentum, and the
xz plane to coincide with the HZ production plane in the case when the
initial beams are unpolarized or longitudinally polarized. The positive x axis
is chosen, in the case of transverse polarization, to be along the direction of
the e− polarization.

3.1 Distributions for longitudinally polarized beams

The cross section for the process e+e− → l−l+H for longitudinal beam po-
larization is given by

σL =
∫

d3pl−

2p0
l−

∫

d3pl+

2p0
l+

(

e

4 sin θW cos θW

)2 1

(q2 −m2
Z)2 + Γ2

Zm
2
Z

(1 − PLPL)

×
[

FL
SM + FL

1 + FL
2 + FL

3

]

. (10)

Here, respectively FL
SM and FL

i (i = 1, 2, 3) represent contributions of the
pure SM amplitude and interference between the SM amplitude and the
amplitudes coming from the couplings Vi, Ai (i = 1, 2, 3). The expressions
for FL

SM and FL
i are as follows. We use the notation q = pl− + pl+, as already

specified, and P = p1 + p2.

FL
SM = 8F 2

[

(g2
V − g2

A)2(p1 · pl−)(p2 · pl+)

+
{

((g2
V + g2

A)2 + 4g2
Ag

2
V ) − 4P eff

L (g2
V + g2

A)gV gA

}

(p1 · pl+)(p2 · pl−)
]

, (11)

FL
1 =

16F

M

[

(g2
V + g2

A)
{

(gV − gAP
eff
L )ReV1 + (gV P

eff
L − gA)ReA1

}

× {(p1 · pl−)(p2 · pl+) + (p1 · pl+)(p2 · pl−)}
+ 2gV gA

{

(gV − gAP
eff
L )ReA1 + (gV P

eff
L − gA)ReV1

}

×{(p1 · pl−)(p2 · pl+) − (p1 · pl+)(p2 · pl−)}
]

, (12)
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FL
2 = − 8F

M3

[

(g2
V + g2

A)
{

(gV − gAP
eff
L )ReV2 + (gV P

eff
L − gA)ReA2

}

×
{

p1 · q
[

(p2 · pl−)P · pl+ + (p2 · pl+)P · pl− − (pl− · pl+)
s

2

]

+ p2 · q
[

(p1 · pl−)P · pl+ + (p1 · pl+)P · pl− − (pl− · pl+)
s

2

]}

− 2gV gA

{

(gV − gAP
eff
L )ImV2 + (gV P

eff
L − gA)ImA2

}

× (p2 − p1) · q ǫαβσρ p
α
1 p

β
2 p

σ
l− p

ρ
l+

+ (g2
V + g2

A)
{

(gA − gV P
eff
L )ImV2 + (gAP

eff
L − gV )ImA2

}

× P · (pl+ − pl−) ǫαβσρ p
α
1 p

β
2 p

σ
l− p

ρ
l+

− 2gV gA

{

(gV − gAP
eff
L )ReA2 + (gV P

eff
L − gA)ReV2

}

×
{

(pl− · pl+)
[(

s

2
− p2 · q

)

p1 · (pl− − pl+) −
(

s

2
− p1 · q

)

p2 · (pl− − pl+)
]

+(P · q − 2pl− · pl+) [(p1 · pl+)(p2 · pl−) − (p1 · pl−)(p2 · pl+)]
}]

, (13)

FL
3 =

8F

M3

[

− (g2
V + g2

A)
{

(gV − gAP
eff
L )ImV3 + (gV P

eff
L − gA)ImA3

}

×
{

(p2 − p1) · pl+ [(p1 · pl−)(p2 · q) + (p1 · q)(p2 · pl−)]

+(p2 − p1) · pl−[(p1 · pl+)(p2 · q) + (p1 · q)(p2 · pl+)]

−s
2
(p2 − p1) · q(pl− · pl+)

}

+2gV gA

{

(gV − gAP
eff
L )ImA3 + (gV P

eff
L − gA)ImV3

}

×
{

(p2 − p1) · q[(p1 · pl+)(p2 · pl−) − (p1 · pl−)(p2 · pl+)]

+
s

2
P · (pl+ − pl−)(pl− · pl+)

}

−2gV gA

{

(gV − gAP
eff
L )ReV3 + (gV P

eff
L − gA)ReA3

}

×P · q ǫαβσρ p1α p2β pl−σ pl+ρ

+(g2
V + g2

A)
{

(gV − gAP
eff
L )ReA3 + (gV P

eff
L − gA)ReV3

}

×(p2 − p1) · (pl− − pl+) ǫαβσρ p1α p2β pl−σ pl+ρ

]

, (14)
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In the above, we have used

F =
mZ

s−m2
Z

(

e

2 sin θW cos θW

)2

, (15)

the longitudinal polarizations PL and PL of the electron and positron, re-
spectively, and the effective polarization

P eff
L =

PL − PL

1 − PLPL

. (16)

3.2 Distributions for transversely polarized beams

For the transverse case, we take the e− polarization to be along the x axis
and that of the e+ to be antiparallel to that of the e−. We define a four-
vector nµ = (0, 1, 0, 0) and write the spin four-vector of the e− and e+ as
nµ and −nµ respectively. As before, the cross section consists of four pieces
coming from the square of the SM amplitude, proportional to FT

SM, and the
interference of the SM amplitude with the three contributions from Vi, Ai

(i = 1, 2, 3), respectively proportional to FT
i . The expression for the cross

section with transverse polarization PT for the e− beam and P T for the e+

beam is

σT =
∫

d3pl−

2p0
l−

∫

d3pl+

2p0
l+

(

e

4 sin θW cos θW

)2 1

(q2 −m2
Z)2 + Γ2

Zm
2
Z

×
[

FT
SM + FT

1 + FT
2 + FT

3

]

. (17)

The expressions for the various FT are:

FT
SM = 4F 2

[

2
{

(g2
V + g2

A)2 − (g4
V − g4

A)PTP T

}

×{(p1 · pl−)(p2 · pl+) + (p1 · pl+)(p2 · pl−)}
+s(g4

V − g4
A)PTP T {2(pl− · n)(pl+ · n) + (pl− · pl+)}

−8g2
V g

2
A {(p1 · pl−)(p2 · pl+) − (p1 · pl+)(p2 · pl−)}

]

, (18)

FT
1 =

8F

M

[

2(g2
V + g2

A)
{

gV ReV1 (1 − PTP T ) − gAReA1 (1 + PTP T )
}

×{(p1 · pl−)(p2 · pl+) + (p1 · pl+)(p2 · pl−)}

11



+s(g2
V + g2

A)(gV ReV1 + gAReA1)PTP T {2(pl− · n)(pl+ · n) + (pl− · pl+)}
−2(g2

V + g2
A)(gV ImA1 + gAImV1)PTP T

{

(pl− · n)pβ
l+ + (pl+ · n)pβ

l−

}

× ǫαβµν n
α pν

1 p
µ
2

+4gV gA(gV ReA1 − gAReV1) {(p1 · pl−)(p2 · pl+)−(p1 · pl+)(p2 · pl−)}
]

,(19)

FT
2 = − 8F

M3

[

(g2
V + g2

A)
{

gV ReV2 (1 − PTP T ) − gAReA2 (1 + PTP T )
}

×{(p1 · q)[(p2 · pl−)(P · pl+) + (p2 · pl+)(P · pl−) − (pl− · pl+) (s/2)]

+ (p2 · q)[(p1 · pl−)(P · pl+) + (p1 · pl+)(P · pl−) − (pl− · pl+) (s/2)]}
−2gV gA

{

(gV ImV2 − gAImA2) − (gV ImV2 + gAImA2)PTP T

}

×(p2 − p1) · q ǫαβσρ p
α
1 p

β
2 p

σ
l− p

ρ
l+

+s (g2
V + g2

A)(gV ReV2 + gAReA2)PTP T (q · n)

{(P · pl+)(pl− · n) + (P · pl−)(pl+ · n)}
+2s gV gA(gV ImV2 + gAImA2)PTP T (q · n) ǫµνσρ P

µnνpσ
l−p

ρ
l+

−(g2
V + g2

A)(gV ImA2 − gAImV2)P · (pl+ − pl−) ǫµνσρ p
µ
1p

ν
2p

σ
l−p

ρ
l+

+2gV gA(gV ReA2 − gAReV2)

{P · q[(p1 · pl−)(p2 · pl+) − (p2 · pl−)(p1 · pl+)]

+(s/2)(pl− · pl+) (p1 − p2) · (pl+ − pl−)}
+(g2

V + g2
A)(gV ImA2 + gAImV2)PTP T

× ǫµνασ p
µ
1 p

ν
2 n

α qσ {P · pl+(pl− · n) + P · pl−(pl+ · n)}
+2gV gA(gV ReA2 + gAReV2)PTP T

[−q · P (p1 · pl+ p2 · pl− − p1 · pl− p2 · pl+)

+s q · n(pl+ · (p1 − p2) pl− · n− pl− · (p1 − p2) pl+ · n)

+(s/2)(pl− · pl−)(pl+ − pl−) · (p1 − p2)]

+(g2
V + g2

A)(gV ImA2 + gAImV2)PTP T{P · pl− p
σ
l+ + P · pl+ p

σ
l−}

×(q · n) ǫµνασ p
µ
1 p

ν
2 n

α
]

, (20)

and

FT
3 =

8F

M3

[

− (g2
V + g2

A)
{

gV ImV3(1 − PTP T ) − gAImA3(1 + PTP T )
}

×{(p2 − p1) · pl+ [(p1 · q)(p2 · pl−) + (p2 · q)(p1 · pl−) − (s/2)(pl− · pl+)]
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+ (p2 − p1) · pl−[(p1 · q)(p2 · pl+) + (p2 · q)(p1 · pl+) − (s/2)(pl− · pl+)]}
−2 gV gA

{

gV ReV3(1 − PTP T ) − gAReA3(1 + PTP T )
}

×(P · q) ǫµνσρ p
µ
1 p

ν
2 p

σ
l− p

ρ
l+

+(g2
V + g2

A) {gAReV3 − gV ReA3} ǫµνρσ p
µ
1 p

ν
2p

σ
l−p

ρ
l+ (p2 − p1) · (pl− − pl+)

−2 gV gA {gV ImA3 − gAImV3} [(s/2) (pl− · pl+)P · (pl− − pl+)

+q · (p2 − p1) {p1 · pl−p2 · pl+ − p1 · pl+p2 · pl−}]
−s (g2

V + g2
A)(gV ImV3 + gAImA3)PTP T

×(q · n){(p2 − p1) · pl+pl− · n+ (p2 − p1) · pl−pl+ · n}
−2s gV gA(gV ReV3 + gAReA3)PTP T (q · n)ǫαβσρ n

α (p2 − p1)
β pσ

l− p
ρ
l+

+(g2
V + g2

A)(gV ReA3 + gAReV3)PTP T ǫµνσρ p
µ
1 p

ν
2 n

σ

×{qρ[(p2 − p1) · pl+pl− · n+ (p2 − p1) · pl−pl+ · n]

+(q · n)[(p2 − p1) · pl− p
ρ
l+ + (p2 − p1) · pl+ p

ρ
l−]}

+2gV gA(gV ImA3 + gAImV3)PTP T

×{[q · (p1 − p2) (p1 · pl− p2 · pl+ − p1 · pl+ p2 · pl−)

−(s/2) pl− · pl+ P · (pl− − pl+)]

+s q · n (P · pl+n · pl− − P · pl−n · pl+)}
]

. (21)

4 Observables

Symbol Observable CP T
O1 (p1 − p2) · q − +
O2 (~pl− × ~pl+)z − −
O3 (p1 − p2) · q (~pl− × ~pl+)z + −
O4 (p1 − p2) · (pl− − pl+) + +
O5 (p1 − p2) · (pl− − pl+) (~pl− × ~pl+)z − −
O6 qx qy qz − −
O7 (q2

x − q2
y) qz − +

O8 (~pl− − ~pl+)x (~pl− − ~pl+)y qz − −
O9 qx qy (~pl− − ~pl+)z + −
O10 P · (pl− − pl+) − +

Table 1: Observables whose expectation values can be used to constrain the
form factors, and their CP and T properties
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After having obtained analytical expressions for the differential cross sec-
tion, we choose observables whose expectation values can be used to constrain
the form factors. We have chosen observables which have well defined CP
properties. Thus, the expectation values of observables which are even un-
der CP get contributions from V1, V2, A1 and A2, with our assumption that
the form factors have only s dependence, and no dependence on t (or that
they are even functions of t − u). On the other hand, expectation values
of observables which are odd under CP get contribution only from V3 and
A3. Moreover, it is important to note the behaviour of the observables un-
der näıve time reversal T. The CPT theorem implies that observables which
are CP even and T even would get contributions from only real parts of the
form factors, as also those which are CP odd and T odd [26]. On the other
hand, observables which are CP even and T odd, or CP odd and T even, are
CPT odd. They therefore require the presence of an absorptive part in the
amplitude, and hence are proportional to the imaginary parts of form factors
[26].

The observables we choose are listed in Table 1, together with their CP
and T properties.

We have evaluated the expectation values of the observables Oi (i =
1, 2, . . . , 10) for unpolarized as well as polarized beams, choosing the e− po-
larization to be 0.8 and e+ polarization to be ±0.6. The relevant phase-space
integrals have been done numerically. In calculating the expectation values,
we use the expressions for the differential cross sections given above to leading
order in the new-physics contact interactions in the formula

〈Oi〉 =
1

σSM

∫

Oi
dσ

d3pl−d3pl+
d3pl−d

3pl+ . (22)

Since the expectation values we concentrate are vanishing in SM, for consis-
tency, we need use only the SM cross section in the denominator in eq. (22).
We assume a cut-off of θ0 in the forward and backward directions on the
azimuthal angles of both leptons. Such a cut-off is an experimental require-
ment, so as to avoid the beam pipe. However, we also explore the possibility
that a suitable choice of θ0 can optimize the sensitivity. We treat both cases
of longitudinal as well as transverse polarization. We take one form factor
to be nonzero at a time. The expectation value of each observable for a
given nonzero form factor is compared with the standard deviation of the
observable in SM. This allows us to determine a limit that nonobservance of
the expectation value can place on the corresponding form factor. Thus, the
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90% CL (confidence level) limit Flim on a form factor F is determined by the
expression

Flim = 1.64

√

〈O2〉/σSM

〈O〉1
√
L

, (23)

where σ is the SM cross section, 〈O〉1 the expectation value of the observable
O for unit value of the form factor, and L is the integrated luminosity.

5 Numerical results
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Figure 4: The cross section in fb for SM as a function of the cut-off angle θ0
for unpolarized beams and for longitudinally polarized beams.

We now present out numerical results for the correlations and the lim-
its that can be obtained from the form factors. We assume a c.m. energy
of 500 GeV for the linear collider, and polarizations ±0.8 and ±0.6 respec-
tively for the electron and positron beams. We have chosen the value of the
arbitrary mass scale M to be 100 GeV. We vary the cut-off θ0.

First of all, we present the SM cross sections in the cases of unpolarized
beams or longitudinal polarized beams in Fig. 4 as a function of the cut-
off angle θ0. In case of transverse beam polarization, the cross section when
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Figure 5: The expectation value of O1 (scaled down by an appropriate factor)
in GeV2 with longitudinally polarized beams for Im V3 = 0.1. The remaining
form factors are zero.

integrated over the azimuthal angle φ reduces to the unpolarized cross section
[27], and hence is not shown separately.

Next, we present expectation values of some of the observables as func-
tions of the cut-off θ0 for the purpose of illustration. The limits obtainable
on the form factors, however, are presented for all observables in tables.

Figs. 5-10 show some sample correlations for unpolarized and longitudi-
nally polarized beams.

Fig. 5 shows the correlation for O1 with unpolarized and longitudinally
polarized beams, when Im V3 = 0.1, and the rest of the form factors are zero.
Fig. 6 is the corresponding figure for Im A3 = 0.1, and the remaining form
factors zero.

Similarly, Figs. 7, 8 give the correlations for O2 for the two cases when
single form factors Re V3 = 0.1 and Re A3 = 0.1 are respectively nonzero.

Finally, Figs. 9 and 10 give the correlations for O10 for the two cases with
Im V3 = 0.1 and Im A3 = 0.1, respectively.

Figs. 11–16 show the expectation values of different observables for the
case of transverse polarization, again, choosing one form factor nonzero at
a time. The particulars of the nonzero form factors used are given in the
respective figure captions.

The correlations are by and large weakly dependent on the cut-off. They
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vary by 10 to 20% over the whole range of θ0.
We do not show the plot of expectation values of O2 because they turn out

to be independent of transverse polarization. Hence the expectation values
can be read off from Figs. 7 and 8. This does not, however, mean that it is
not useful to use transverse polarization in this case. The expectation value
of the square of O2, which has a bearing on the sensitivity according to eq.
(23), turns out to be dependent on the polarization. Thus, as will be seen
below, the limit that can be obtained on Re A3 from a measurement of 〈O2〉
can improve with transverse polarization.

Similarly, the expectation values of O10 are very weakly dependent on
transverse polarization. In Fig. 15, all the three curves corresponding to the
three polarization choices lie almost on top of one another. So only the curve
corresponding to PT = P T = 0 is shown.

The 90% CL limits that may be obtained at the ILC running at
√
s =

500 GeV with an integrated luminosity of 500 fb−1 have been calculated
for various cases using eq. (23). The results are presented in Table 2 for
longitudinal polarization and in Table 3 for transverse polarization.

Table 2 shows that the best limits on all form factors using unpolarized or
longitudinally polarized beams are of the order of about 10−4. Moreover, the

 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80

10
− 

6  〈O
1 

〉

θ0

Correlation for ImA3=0.1

PL= 0.0, P
−

L=  0.0

PL= 0.8, P
−

L=  0.6

PL= 0.8, P
−

L=−0.6

Figure 6: The expectation value of O1 (scaled down by an appropriate fac-
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remaining form factors zero.
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Figure 7: The expectation value of O2 (scaled down by an appropriate fac-
tor) in GeV2 with longitudinally polarized beams with Re V3 = 0.1. The
remaining form factors are zero.
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Figure 8: The expectation value of O2 (scaled down by an appropriate fac-
tor) in GeV2 with longitudinally polarized beams with Re A3 = 0.1. The
remaining form factors are zero.

best limits for any form factor are obtained for a suitable choice of observable
when the electron and positron polarizations are opposite in sign.
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Figure 10: The expectation value of O10 (scaled down by an appropriate
factor) in GeV2 with longitudinally polarized beams with Im A3 = 0.1. The
remaining form factors are zero.

Transverse polarization allows more observables to be constructed be-
cause of an additional azimuthal angle becomes available. Thus, Table 3 has
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more entries than Table 2. The entries which are blank in Table 3 for limits
in the unpolarized case are meant to imply that the corresponding correlation
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Figure 14: The expectation value of O7 (scaled down by an appropriate
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remaining form factors are zero.

is zero. These correlations which are zero in the unpolarized and longitudinal
polarization cases are nonzero with transversely polarized beams. They thus
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give an independent measurement of certain form factors. Again, the orders
of magnitude of the best limits are still around 10−4, with some cases when
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Form Limits for beam polarizations
Symbol Observable Factor PL = 0 PL = +0.8 PL = +0.8

PL = 0 PL = +0.6 PL = −0.6
O1 (p1 − p2) · q Im V3 6.4 × 10−4 2.6 × 10−4 7.2 × 10−5

Im A3 7.7 × 10−5 7.3 × 10−5 6.6 × 10−5

O2 (~pl− × ~pl+)z Re V3 2.2 × 10−3 9.1 × 10−4 2.5 × 10−4

Re A3 2.6 × 10−4 2.5 × 10−4 2.3 × 10−4

O3 (p1 − p2) · q Im V2 5.2 × 10−3 2.1 × 10−3 5.9 × 10−4

× (~pl− × ~pl+)z Im A2 6.2 × 10−4 5.9 × 10−4 5.5 × 10−4

O5 (p1−p2)·(pl−−pl+) Re V3 2.3 × 10−4 2.3 × 10−4 2.1 × 10−4

× (~pl− × ~pl+)z Re A3 2.0 × 10−3 8.2 × 10−4 2.2 × 10−4

O10 P · (pl− − pl+) Im V3 7.3 × 10−4 6.9 × 10−4 6.4 × 10−4

Im A3 6.0 × 10−3 2.5 × 10−3 6.8 × 10−4

Table 2: 90% C.L. limits on the form factors, chosen nonzero one at a time,
from the observables O1, O2 and O3 with unpolarized and longitudinally
polarized beams.

it is possible to go down to about 2 × 10−5.
We now make some detailed observations on our results.
O3 ≡ (p1 − p2) · q(~pl− × ~pl+) gives zero expectation value in the absence

of polarization if only Im V1 and Im A1 are nonzero. This also means that
this correlation is zero for SM. This continues to be true for longitudinal
polarization because, as can been seen explicitly from the expression for the
cross section, the cross section does not depend on Im V1 and Im A1. Hence
it can be used to determine Im V2 and Im A2 with unpolarized beams.

With transverse polarization, the cross section does depend on imaginary
parts of V1, and A1. However, the correlation vanishes when only Im V1 and
Im A1 are nonzero.

O4 ≡ (p1 − p2) · (pl− − pl+), on the other hand, has nonzero expectation
value for Re V1 and Re A1, and hence for SM. It is thus more difficult to
use this correlation to study new physics, though not impossible. We do not
consider this correlation here.

O6, O7, O8 and O9 have zero expectation values with unpolarized beams.
However, good sensitivity is obtained with transversely polarized beams. Of
these, O6 and O7 have zero expectation values even with transverse polariza-
tion, when the combination of couplings corresponds to a CP-violating ZZH
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Form Limits for beam polarizations
Symbol Observable Factor PT = 0 PT = +0.8 PT = +0.8

P T = 0 P T = +0.6 P T = −0.6
O1 (p1 − p2) · q Im V3 6.4 × 10−4 8.9 × 10−4 1.7 × 10−4

Im A3 7.7 × 10−5 1.1 × 10−4 2.0 × 10−5

O2 (~pl− × ~pl+)z Re V3 2.2 × 10−3 3.0 × 10−3 5.7 × 10−4

Re A3 2.6 × 10−4 3.6 × 10−4 6.9 × 10−5

O3 (p1 − p2) · q Im V2 5.2 × 10−3 7.0 × 10−3 1.3 × 10−3

× (~pl− × ~pl+)z Im A2 6.2 × 10−4 8.6 × 10−4 1.6 × 10−4

O5 (p1−p2)·(pl−−pl+) Re V3 2.3 × 10−4 3.4 × 10−4 6.2 × 10−5

× (~pl− × ~pl+)z Re A3 2.0 × 10−3 2.7 × 10−3 5.2 × 10−4

O6 qx qy qz Re V3 3.1 × 10−4 5.7 × 10−5

Re A3 2.6 × 10−3 4.8 × 10−4

O7 (q2
x − q2

y) qz Im V3 2.6 × 10−3 4.8 × 10−4

Im A3 3.1 × 10−4 5.7 × 10−5

O8 (~pl− − ~pl+)x Re V3 2.3 × 10−3 4.3 × 10−4

× (~pl− − ~pl+)y qz Re A3 2.1 × 10−2 3.5 × 10−3

O9 qx qy (~pl− − ~pl+)z Im V2 1.4 × 10−2 2.3 × 10−3

Im A2 1.7 × 10−3 3.1 × 10−4

O10 P · (pl− − pl+) Im V3 7.3 × 10−4 1.0 × 10−3 1.8 × 10−4

Im A3 6.0 × 10−3 8.2 × 10−3 1.6 × 10−3

Table 3: 90% C.L. limits on form factors, chosen nonzero one at a time, from
the observables O1, O2 and O3 with unpolarized and transversely polarized
beams. The cut-off angle θ0 is chosen to be 30◦, except for the case of O8,
for which it is 10◦.

vertex. Thus observation of nonzero expectation value for O6 would signal
unambiguously the presence of four-point eeHZ couplings we consider here.

The correlation O8, which is proportional to 〈El− − El+〉, shows strong
dependence on the cut-off angle θ0, changing sign around 25◦. Consequently,
the sensitivity is low for θ0 = 30◦. We have therefore chosen to evaluate the
limits at θ0 = 10◦ for this case.

We have also varied the Higgs mass up to 350 GeV and calculated all the
above correlations. However, the dependence on Higgs mass is rather weak.
Thus our results hold reasonably well even for larger Higgs masses.
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6 Conclusions and discussion

We have parametrized the amplitude for the process e+e− → HZ by means of
form factors, using only Lorentz invariance, treating separately the chirality-
conserving and chirality-violating cases. We then calculated the differential
cross section for the process e+e− → HZ → Hl+l− in terms of these form
factors for polarized beams for the chirality-conserving case. The motivation
was to determine the extent to which longitudinal and transverse polariza-
tions can help in an independent determination of the various form factors.

In our earlier work [16], where we considered only Z angular distribu-
tions, we found that in the presence of transverse polarization, there is a
CP-odd and T-odd contribution to the angular distribution. The coupling
combinations this term depends on cannot be determined using longitudi-
nally polarized beams. However, by looking at the distributions of charged
leptons arising from the decay of the Z, we can construct CP- and T-odd
correlations even in the absence of transverse polarization.

There do exist transverse-polarization dependent correlations which do
not arise when only V V H type of couplings are considered, as for example
O6 and O7. These correlations, if observed, would be a unique signal of
CP-violating four-point interaction.

It should be emphasized that our results and conclusions are dependent
on the assumption that the form factors are independent of t and u. In
particular, the CP property of a given term in the distribution would change
if the corresponding form factor is an odd function of cos θ. The reason is
that cos θ ≡ q · (p2 − p1)/(|~q|s1/2) is odd under CP.

We have discussed limits on the couplings that would be expected from
a definite configuration of the linear collider. As for the CP-conserving cou-
plings, limits may be obtained even from the existing LEP data, which has
excluded SM Higgs up to mass of about 114 GeV. It should be borne in mind
that the limits on these depend on the choice of M , the arbitrary parameter
of dimension of mass that we introduced.

We have looked at expectation values of observables taking only one form
factor nonvanishing at a time. It must be emphasized that it feasible to
extract information on form factors even when they are allowed to be nonzero
independently of one another by one of two methods: Either one determines
experimentally more than one correlation and solves the linear simultaneous
equations for the form factors or one combines experimental information
obtained with unpolarized and polarized beams to solve for the form factors.
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For details of this straightforward procedure, see [28, 29].
As compared to the earlier study [16] in which only the Z polar and

azimuthal angles were considered as measurable, the use of angular variables
of both leptons already presents certain new observables which give new
information with even unpolarized beams, though longitudinal polarization
can improve the sensitivity. The use of transverse polarization in such a
situation does not present as many advantages as it did when only Z variables
were used in asymmetries. However, if use is made of observables which
involve the momentum of only one lepton at a time, transverse polarizations
would again prove advantageous.

We can compare the sensitivities obtained on including Z decay with the
sensitivities obtained using angular distributions of the Z itself, which were
studied in [16]. There, we had used M = 1000 GeV, whereas here we use
M = 100 GeV. Keeping in mind this difference, we find that it is possible to
reach similar limits using suitable correlations even in the present case. Note
that in [16] what was used was asymmetries, rather than the expectation
values used here.

We have also studied how our results are affected by more realistic cuts,
viz., cuts on the energy of the leptons and on their transverse momentum.
Since we already assume a cut on the lepton polar angles, it is not necessary
to study the effect of the cut on transverse momentum separately from a cut
on the energy. We find that for cuts on the energies of both leptons of 20
(30) GeV all relevant quantities (cross section, correlation and the limits on
the form factors change by about 5% (10%). Thus our conclusions would
remain valid fairly accurately even with experimental cuts.

We assumed that the Higgs can be detected with full efficiency. In prac-
tice, of course, the detection of the Higgs would require putting cuts on the
Higgs decay products, leading to an efficiency factor less than 1. This would
make our limits worse. On the other hand, some of our correlations which
involve only the sum of the momenta of the leptons can also be extended to
the case of hadronic decays of the Z. In that case, the event sample would
be larger, improving the limits.

One should keep in mind the possibility that electroweak radiative cor-
rections, which can be particularly large for transverse polarization [30], can
lead to quantitative changes in the above results.

Nevertheless, we would like to emphasize that our work contains full
analytical expressions for charged-lepton distributions, and can prove a useful
input to a more exhaustive work taking into account, on the one hand, a
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variety of specific models, and on the other hand more precise experimental
constraints and other practical considerations.

Though we have used SM couplings for the leading contribution of Fig.
1, as mentioned earlier, the analysis needs only trivial modification when
applied to a model like MSSM or a multi-Higgs-doublet model, and will be
useful in such extensions of SM. It is likely that such models will give rise
to four-point contributions through box diagrams or loop diagrams with a t-
channel exchange of particles. However, to our knowledge, such calculations
are not available for CP-violating models. The interesting effects we have
discussed would make it useful to carry out such calculations.
Acknowledgment: This work was partly supported by the IFCPAR project
no. 3004-2.
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