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Abstract

Certain CP-odd momentum correlations in the production and subsequent

decay of τ pairs in e
+
e
− collisions are enhanced significantly when the e

+

and e
− beams are longitudinally polarized. These may be used to probe the

real and imaginary parts of d
γ
τ , the electric dipole moment of the τ . Closed-

form expressions for these “vector correlations” and the standard deviation of

the operators defining them due to standard model interactions are presented

for the two-body final states of τ decays. If 42% average polarization of each

beam is achieved, as proposed for the tau-charm factories, with equal integrated

luminosities for each sign of polarization and a total yield of 2 ·107
τ

+
τ
− pairs,

it is possible to attain sensitivities for |δRedγ
τ | of 8 · 10−19, 1 · 10−19, 1 · 10−19

e

cm respectively and for |δImd
γ
τ | of 4 ·10−14, 6 ·10−15, 5 ·10−16

e cm respectively

at the three operating center-of-mass energies of 3.67, 4.25 and 10.58 GeV.

These bounds emerge when the effects of a posible weak dipole form factor d
Z
τ

are negligible as is the case when it is of the same order of magnitude as d
γ
τ .

Furthermore, in such a polarization experiment where different polarizations

are possible, a model-independent disentangling of their individual effects is

possible, and a technique to achieve this is described. A strong longitudinal

polarization physics programme at the tau-charm factory appears warranted.

http://arXiv.org/abs/hep-ph/9411399v1
http://arXiv.org/abs/hep-ph/9411399


I. Introduction

Leptonic CP violation would signal interactions not described in the framework

of the standard model since it arises there only at the multi-loop level and is way

below any measurable level [1]. The presence of a non-zero and large electric dipole

moment (edm) of any elementary particle is a signature of CP-violating interactions

[2]. Whereas the edm of the electron is constrained to be <
∼ 10−26 e cm and that of

the muon is <
∼ 10−19 e cm [3], the constraint on the edm of the τ lepton [4] is less

stringent, viz., <
∼ 5 · 10−17 e cm [3]. Thus an important experimental challenge is

to measure the τ electric dipole moment far more accurately than at present. The

analogous coupling of the τ to the Z boson, the weak dipole form factor (wdff), is

better constrained from LEP data be <
∼ 3.7 · 10−17 e cm at the Z resonance [4]. It

has recently been proposed [5] that the availability of large polarization at SLC might

improve this measurement some more. The purpose of this note is to demonstrate that

the availability of large polarization will go a long way in improving the measurement

of the τ edm. Further, the discussion presented here may also be easily extended

to other physiucal situations which include the measurement of CP-violating form

factors in W+W− or tt̄ production.

The approach proposed consists measuring CP-odd correlations [6,7] amongst

the momenta of the final state particles in the reaction e+e− → τ+τ− → X+ν̄τX
−ντ .

In particular, one may construct scalar, vector and tensor correlations [8] from the

momenta q+ and q− of the decay products of the τ+ and τ−. One such tensor has

been used to constrain the real part of the τ wdff from LEP data [9] where the Z

contribution dominates the cross-section. Indeed, other tensor correlations have been

found to be sensitive to the imaginary part of the wdff as well [10] and may be used at

LEP to constrain it in the event of the absence of a significant non-zero measurement
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of such correlations. In [5] it has been shown that the presence of large longitudinal

polarization renders certain simple vector correlations sensitive to the real as well as

to the imaginary parts of the wdff at the Z factory SLC.

Here we investigate the sensitivity of these correlations to the real and imag-

inary parts of the edm when the production of τ+τ− is no longer dominated by Z

exchange and instead by photon exchange as is typically the case when
√

s ≪ mz. In

particular, we will present much of our numerical results for the proposed tau-charm

factories (τcF) [11] where there exists an ample opportunity to have substantial po-

larization of the e+ and e− beams [12]. The prospects for the measurement of the

edm at the tau-charm factory with unpolarized beams has already been considered

[10] by measuring tensor correlations amongst the momenta of final state particles in

the τ decays. Algebraically our approach proves simpler since the vector correlations

(more correctly their scalar product with the e+ beam direction) we consider can be

expressed in closed form and the standard deviation of the operators defining the

correlations due to the standard model interactions can also be so expressed for the

two-body final states of the τ decays. In practice the expressions of Ref.[5] valid at the

Z peak are now generalized to include the pure γ∗ as well as the γ∗−Z∗ interference

terms, using in addition to SM, the CP-violating terms in the effective Hamiltonian

for the reaction

e+e− → γ∗, Z∗ → τ+τ− → BAντντ (1)

given in Ref.[10]. (Note that the expressions obtained here are also valid at much

larger center of mass energies where contributions from γ∗ and Z∗ are significant,

and can also be easily modified for W+W− and tt̄ production [13] where it may be

possible to probe CP violation). For comparable magnitudes of the edm and wdff, at

the τcF energies, the CP-odd correlations obtain their most significant contribution
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from the edm [14].

The CP-odd momentum correlations we consider here are associated with the

c.m. momenta p of e+, qB of B and qA of A, where the B and A arise in the

decays τ+ → B + ντ and τ− → A + ντ , and where A, B run over π, ρ, A1, etc.

In the case when A and B are different, one has to consider also the decays with

A and B interchanged, so as to construct correlations which are explicitly CP-odd.

The calculations include two-body decay modes of the τ in general and is applied

specifically to the case of τ → π + ντ and τ → ρ + ντ due to the fact that these

modes possess a good resolving power of the τ polarization, parametrized in terms of

the constant α which takes the value 1 for the π channel (with branching fraction of

about 11%) and 0.46 for the ρ channel [9] (with branching fraction of about 22%). It

may be noted that with these final states the substantive fraction of the channels that

are sensitive to such correlations are accounted for; three-body leptonic final states

must also be included; they are characterized by a somewhat smaller α = −0.33

(with branching fraction of about 35%). Thus with the channels studied here, one

more or less reaches the limits of discovery in such experiments. (It would also be

possible to apply this to the decay τ → A1 + ν; αA1
is however too small to be of

any experimental relevance.) Further, we also present closed-form expressions for the

variance of the correlations considered due to standard model interactions. These,

because of finite statistics, provide a measure of the CP-invariant background to the

determination of the CP-odd contributions to the correlations. In case of a negative

result, the limit on the CP-violating interactions is obtained using the value of the

variance and the size of the data sample.

It must be noted that correlations which are CP violating in the absence of

initial beam polarization are not strictly CP odd for arbitrary e+ and e− polarizations,
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since the initial state is then not necessarily CP even. We argue, however, that this

is true to a high degree of accuracy in the case at hand. Besides, for our numerical

results, we restrict ourselves to the case where the e+ and e− polarizations are equal

and opposite, thus making up a CP-even initial state.

We follow a slightly different notation notation from Bernreuther et al. [10]

and use the symbols Bi and Bj to denote the intermediate vector bosons, the photon

and the Z. In the mean as well as in the variances and in the cross-sections the

contributions would eventually have to be summed over i, j. Our main result is that

the contribution to certain CP-odd correlations, which are relatively small in the

absence of polarization, since they come with a factor rij = (V i
e Aj

e + V j
e Ai

e)/(V i
e V j

e +

Ai
eA

j
e) and get enhanced in the presence of polarization, now being proportional to

(rij − P ), with the corresponding contribution to the cross-section being multiplied

by (1− rijP ). Here V i
e , Ai

e are the vector and axial vector couplings of e− to Bi, and

P is the effective polarization defined by

P =
Pe − Pe

1 − PePe
,

where Pe (Pe) is the polarization of the electron (positron) and is positive for right-

circular polarization for each particle in our convention.

The correlations which have this property are those which have an odd number

of factors of the e+ c.m. momentum p, since this would need P and C violation at the

electron vertex. Furthermore, we suggest a procedure for obtaining these correlations

from the difference in the event distributions for a certain polarization P and the sign-

flipped polarization −P . With this procedure, the correlations are further enhanced,

leading to increased sensitivity. The inclusion of the ρ channel leads to a considerable

improvement in the sensitivity that can be reached in the measurement of Im dτ while

improving the measurement of Re dτ less spectacularly.
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More specifically, we have considered the observables O1 ≡ 1
2
[p̂ · (qB × qA)

+ p̂ · (qA × qB)] and O2 ≡ 1
2
[p̂ · (qA + qB) + p̂ · (qA + qB)] (the caret denoting a

unit vector) and obtained analytic expressions for their mean values and standard

deviations in the presence of longitudinal polarization. O2, being CPT-odd, measures

Im di
τ , whereas O1 measures Re di

τ . Inclusion of other exclusive τ decay modes (not

studied here) would improve the sensitivity further.

As a result, we find it possible to define 1 s.d. sensitivities | δRedγ
τ | and

| δImdγ
τ | from the two-body decay modes when we make the reasonable assumption

that the edm and wdff are of comparable magnitudes. To facilitate comparison with

Ref.[10] we assume center of mass energies of 3.67, 4.25 and 10.58 GeV.

In order to answer what makes our correlations viable, we now discuss what

prospects exist for longitudinal polarization at the τcF [15]. One proposal [12] is that

the e+ and e− beams be polarized in separate rings to achieve an average degree of

polarization of each beam as large as 42% before being injected in tho the main ring.

(It is also important to note that this would not lead to a large loss in luminosity, in

contrast to the situation at linear colliders where the large polarization is accompa-

nied by modest luminosities as, for instance, in the case of SLC). This proposal also

envisages all four possiblities in the combinations of the polarizations. In particlular,

as an effective polarization P can be as large as 0.71 and of either sign in the e+e−

collisions at the τcF. We show that with equal integrated luminosities with either

sign,
∫ L(P )dt =

∫ L(−P )dt and a total yield Nτ+τ− of 2 · 107 τ+τ− pairs, we can

probe the real part of the edm of the τ to the remarkable 1 s.d. precision of ∼ 10−19 e

cm. The imaginary part however is not probed to such a spectacular degree. We

finally describe a technique whereby the reasonable assumption of the comparability

of magnitudes of the edm and wdff can be avoided in such a polarization experiment.
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These considerations enable us to build a very strong case for introducing longitudinal

polarization at the τcF [16, 17].

II. Notation and Formalism

Although much of this section has already been described in our previous

papers [5] we will repeat it for the sake of completeness and to make the generalization

to the inclusion of γ and Z (we drop the asterisk in what follows since no confusion

is bound to arise) more transparent.

The process we consider is

e−(p−) + e+(p+) → τ−(k−) + τ+(k+), (2)

with the subsequent decays

τ−(k−) → A(qA) + ντ , τ+(k+) → B(qB) + ντ , (3)

together with decays corresponding to A and B interchanged in (2).

Under CP, the various three-momenta transform as

p− ↔ −p+, k− ↔ −k+, qA,B ↔ −qA,B. (4)

We choose for our analysis the two CP-odd observables O1 ≡ 1
2
[p̂ · (qB × qA)

+ p̂ · (qA × qB)] and O2 ≡ 1
2
[p̂ · (qA + qB) + p̂ · (qA + qB)], which have an odd num-

ber of factors of p̂, the unit vector along p+. As mentioned before, they are expected

to get enhanced in the presence of polarization.

Though these observables are CP odd, their observation with polarized e+

and e− beams is not necessarily an indication of CP violation, unless the e+ and e−
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longitudinal polarizations are equal and opposite, so that the initial state is described

by a CP-even density matrix. The case when only the e− is polarized, has already

been discussed [5]. Though our expressions for correlations will be valid for arbitrary

polarizations, our results will be only for equal and opposite electron and positron

polarizations, so that the correlations are strictly CP odd.

Of O1 and O2, O1 is even under the combined CPT transformation, and O2

is CPT-odd. A CPT-odd observable can only have a non-zero value in the presence

of an absorptive part of the amplitude. It is therefore expected that 〈O2〉 will be

proportional to the imaginary part of the dipole form factors Im di
τ , since final-state

interaction, which could give rise to an absorptive part, is negligible in the weak τ

decays. Since 〈O1〉 and mean values of other CPT-even quantities will be proportional

to Re di
τ , phase information on di

τ can only be obtained if 〈O2〉 (or some other CPT-

odd quantity) is also measured.

We assume SM couplings for all particles except τ , for which an additional

edm and wdff interaction is assumed, viz.,

LCPV = − i

2
dZ

τ τσµνγ5τ (∂µZν − ∂νZµ) −
i

2
dγ

τ τσµνγ5τ (∂µAν − ∂νAµ) , (5)

Using (5), we now proceed to calculate 〈O1〉 and 〈O2〉 in the presence of an effective

longitudinal polarization P .

We can anticipate the effect of P in general for the process (1). We can write

the matrix element squared for the process in the leading order in perturbation theory,

neglecting the electron mass, as

|M |2 =
∑

i,j

Lij
µν(e)L

ijµν∗(τ)
1

s − M2
i

1

s − M2
j

, (6)

where the summation is over the gauge bosons (γ, Z, . . .) exchanged in the s channel,
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and Lij
µν(e, τ) represent the tensors arising at the e and τ vertices:

Lij
µν = V i

µV j∗
ν . (7)

For the electron vertex, with only the SM vector and axial-vector couplings,

V i
µ(e) = v(p+, s+)γµ

(

V i
e − γ5A

i
e

)

u(p−, s−), (8)

We have the definitions

V γ
e/τ = −e, Aγ

e/τ = 0; (9)

V Z
e/τ = (−1

2
+ 2 sin2 θW )

e

2 sin θw cos θw

, AZ
e/τ = (−1

2
)

e

2 sin θw cos θw

. (10)

It is easy to check, by putting in helicity projection operators, that

Lij
µν(e) =

{[

(1 − PePe)
(

V i
e V j

e + Ai
eA

j
e

)

− (Pe − Pe)
(

V i
e Aj

e + Ai
eV

j
e

)]

Tr(p/−γµp/+γν)

+
[

(Pe − Pe)
(

V i
e V j

e + Ai
eA

j
e

)

− (1 − PePe)
(

V i
e Aj

e + Ai
eV

j
e

)]

Tr (γ5p/−γµp/+γν)
}

(11)

in the limit of vanishing electron mass, where Pe (Pe) is the degree of the e− (e+)

longitudinal polarization. Eq.(11) gives a simple way of incorporating the effect of

the longitudinal polarization.

V i
e V j

e + Ai
eA

j
e → V i

e V j
e + Ai

eA
j
e − P (Ai

eV
j
e + Aj

eV
i
e ) ,

(Ai
eV

j
e + Aj

eV
i
e ) → (Ai

eV
j
e + Aj

eV
i
e ) − P (V i

e V j
e + Ai

eA
j
e) ,

(12)

where P is as defined earlier.

To calculate correlations of O1 and O2, we need the differential cross section

for (1) followed by (2) arising from SM γ and Z couplings of e and τ , together

dipole couplings of τ arising from eq.(4). The calculation may be conveniently done,

following ref.[10], in steps, by first determining the production matrix χ for τ+τ− in
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spin space, and then taking its trace with the decay matrices D± for τ± decays into

single charged particle in addition to the invisible neutrino.

The differential cross section for (1) is given by

dσ

dΩkdΩ∗
−dΩ∗

+dE∗
−dE∗

+

=
k

8πs

1

(4π)3
χββ′,αα′D−

α′αD+
β′β, (13)

where dΩk is the solid angle element for k+ in the overall c.m. frame, k = |k+|, and

dΩ∗
± are the solid angle elements for q∗

B,A
, the B and A momenta in the τ± rest frame.

The D matrices are given by

D+ = δ (E∗
B − E0B) [1 − αBσ+ · q̂∗

B]

D− = δ (E∗
A − E0A) [1 + αAσ− · q̂∗

A] , (14)

where σ± are the Pauli matrices corresponding to the τ± spin, E∗
± are the charged

particle energies in the τ± rest frame, and

E0A,B =
1

2
mτ (1 + pA,B); pA,B = m2

A,B/m2
τ . (15)

The expressions for χ arising from SM as well as the CP-violating form factor

couplings of τ are rather long, and we refer the reader to ref.[10] for these expressions

in the absence of polarization. It is straightforward to incorporate polarization using

(12).

III. Results

Using eqns. (13)-(15) above, as well as the expression for the τ+τ− production

matrix χ from [10], we can obtain expressions for 〈O1〉 and 〈O2〉 by writing O1 and

O2 in terms of the τ rest frame variables and performing the integrals over them ana-

lytically. The expressions for the correlations 〈O1〉 and 〈O2〉 obtained are, neglecting

9



∑

i,j di
τd

j
τ ,

〈O1〉 = − 1
36xσ

∑

i,j Kijs
3/2m2

τ (1 − x2)
(

rij−P

1−rijP

)

[(Ai
τRe dj

τ + Aj
τRe di

τ )αAαB(1 − pA)(1 − pB)−

3
2
(V i

τ Re dj
τ + V j

τ Re di
τ )[αA(1 − pA)(1 + pB) + αB(1 − pB)(1 + pA)], (16)

and

〈O2〉 = 1
3σ

∑

i,j Kijs
3/2mτ

(

rij−P

1−rijP

)

1
4
(Ai

τ Im dj
τ + Aj

τ Im di
τ)(1 − x2)(αA(1 − pA) + αB(1 − pB)), (17)

where x = 2mτ/
√

s and σ, which is the cross-section apart from a normalization

factor, is given by:

σ =
∑

i,j

Kijs[V
i
τ V j

τ (1 +
x2

2
) + Ai

τA
j
τ (1 − x2)], (18)

and

Kij =
s(V i

e V j
e + Ai

eA
j
e)(1 − rijP )

(s − M2
i )(s − M2

j )
. (19)

Here we neglect the width of the Z since we work now at
√

s << mZ . However

at the Z peak we neglect γ and treat the system in the narrow-width approximation.

We have also obtained analytic expressions for the variance 〈O2〉−〈O〉2 ≈ 〈O2〉

in each case, arising from the CP-invariant SM part of the interaction:

〈O2
1〉 = 1

720x2σ

∑

i,j Kijsm
4
τ

(

(1 − pA)2(1 − pB)2

[V i
τ V j

τ (6 + 8x2 + x4) + Ai
τA

j
τ (6 − 2x2 − 4x4)]

+(1 − x2) ([(1 + pA)2(1 − pB)2 + (1 + pB)2(1 − pA)2]

[3V i
τ V j

τ (3 + 2x2) + 9Ai
τA

j
τ (1 − x2)]
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+4αAαB(1 − p2
B)(1 − p2

A)(1 − x2)[V i
τ V j

τ − Ai
τA

j
τ ])

−6(1 − pA)(1 − pB)(V i
τ Aj

τ + V j
τ Ai

τ )(1 − x2)(1 − x2

6
)

[αA(1 + pA)(1 − pB) + αB(1 + pB)(1 − pA)]
)

, (20)

〈O2
2〉 = 1

360x2σ

∑

i,j Kijsm
2
τ

[(

3[(1 − pA)2 + (1 − pB)2][V i
τ V j

τ (4 + 7x2 + 4x4) + Ai
τA

j
τ2(1 − x2)(2 + 3x2)]

−2αAαB(1 − pA)(1 − pB)[V i
τ V j

τ (4 + 7x2 + 4x4) + Ai
τA

j
τ4(1 − x2)2]

)

+6
(

6(1 − x2)(pA − pB)2[V i
τ V j

τ (1 + x2

4
) + Ai

τA
j
τ (1 − x2)]

−(V i
τ Aj

τ + V j
τ Ai

τ )(1 − x2)(4 + x2)(pA − pB)[αA(1 − pA) − αB(1 − pB)]
)]

. (21)

The results for the significant two-body decay channels are presented in the

tables. In Tables 1-6 we have presented, for three typical values of
√

s at which the

τcF is expect to run, the values of cAB for O1 and O2 respectively, defined as the

correlation for a value of Re dγ
τ or Im dγ

τ (as the case may be) equal to e/
√

s, for some

values of P chosen to correspond to average beam polarizations of 0, 35%, 42% and

100%. We have also presented the value of
√

〈O2
a〉, (a = 1, 2). This 1 s.d. limit is

the value of dγ
τ which gives a mean value of Oa equal to the s.d.

√

〈O2
a〉/NAB in each

case:

c
1(2)
AB δRe(Im)dγ

τ =
e√
s

1√
NAB

√

〈O2
1(2)〉. (22)

Here NAB is the number of events in the channel AB (or AB), and is given by

NAB = Nτ+τ−B(τ− → Aντ )B(τ+ → Bντ ), (23)

where we take Nτ+τ−(P ) = 107.

These limits can be improved by looking at correlations of the same observ-

ables, but in a sample obtained by counting the difference between the number of
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events for a certain polarization, and for the corresponding sign-flipped polarization.

If the partial cross section for the process for a polarization P is given by

dσ(P ) =
∑

i,j

{(Xij + rijYij) − P (rijXij + Yij)} , (24)

we can define a polarization asymmetrized distribution

|dσ(P ) − dσ(−P )| = 2|P
∑

i,j

(rijXij + Yij)|. (25)

We can then compute the mean and standard deviation for the correlations over this

distribution and these are tabulated in Tables 7-9. The correlations get contributions

from the ±2P
∑

Yij term in eq.(25) as compared to the
∑

rijYij and is therefore

enhanced, since |rij| < 1. However the sensitivities are now computed for smaller

event samples whose size is given by |P ∑

i,j rijNij| where
∑

i,j Nij stands for the

total number of τ+τ− pairs including both polarizations P and −P . The standard

deviations are only slightly affected. The net result is an increase in the sensitivity.

For the different values of
√

s we tabulate the associated quantity,
|
∑

i,j
rijNij |

∑

i,j
Nij

, the

effective polarization asymmetry in Table 10. Indeed, the improvement in sensitivity

is seen to be by an order of magnitude.

We can combine the sensitivities from the different τ channels in inverse

quadrature, to get the improved numbers for |δRedγ
τ | of 8 · 10−19, 1 · 10−19, 1 · 10−19

e cm respectively and for |δImdγ
τ | of 4 · 10−14, 6 · 10−15, 5 · 10−16 e cm respectively at

the three center of mass energies of 3.67, 4.25 and 10.58 GeV.

Thus far and for the purposes of Tables 1-9, we have made the altogether rea-

sonable assumption that the contribution of the wdff is negligible which is justified so

long as the edm and wdff are of comparable magnitude. However, no such assumption

is really necessary in polarization experiments such as these where the ability to run
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the experiment at different polarizations allows one to disentangle their individual

contributions to the correlations considered here. Indeed, it has been pointed out

in the context of CP violation in the tt̄ system that varying the polarization allows

a model independent determination of the separate contributions of the edm and

wdff to the correlations of the type considered here [13]. The principle is that at

a given polarization, a certain linear combination of the two form factors alone can

be measured. Performing the experiment at two different polarizations enables us to

disentangle the two form factors. Similarly, the 1 s.d. limits also can only be placed

on such a linear combination. Indeed, such 1 s.d. limits would be defined by straight

lines given by equations such as

δRedγ
τ/a + δRedZ

τ /b = ±1 (26)

for the limits arising from O1 and by

δImdγ
τ/c + δImdZ

τ /d = ±1 (27)

for the limits arising from O2 where the numbers a, b, c and d can be explicitly com-

puted for a given P and N . This is also presented for the polarization asymmetrized

distribution for which we have set P = 1 (with the understanding that this would

have to be scaled by
√

P if P is the polarization realized in a certain experiment). In

particular, a (c) is the sensitivity of the real (imaginary) part of the edm in inverse

quadrature when the real (imaginary) part of the wdff is set to zero and b (d) is the

sensitivity of the real (imaginary) part of the wdff in inverse quadrature when the real

(imaginary) part of the edm is set to zero. We tabulate these quantities for the three

different c.m. energies and for different polarizations for the parent distributions in

Table 11 and for the asymmetrized distributions in Table 12. Note that one can read

from the columns for a and c in Table 12 the bounds cited in the abstract and in
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the preceding paragraph (scaled by
√

0.71). These implicitly assumes that the mag-

nitudes of the edm and wdff are comparable and therefore the latter may be ignored

for such considerations.

We now discuss how the results of Table 11 may be used in order to essentially

define regions in the Re (Im) dγ
τ– dZ

τ planes due to finite statistics, say at the 1 s. d.

level. By performing the experiment at two values of P , say P1 and P2, one obtains

two sets of straight lines defined above. The vertices of the interesection of these

4 lines defines the parallellogram in each of these planes which cannot be ruled out

due to the finite statistics. The best results may be obtained by taking the largest

value of polarization realizable Pmax and taking P1 = −P2 = Pmax. In Table 13

we tabulate for the three different values of Pmax two pairs (A, B) for the Real and

(C, D) for the Imaginary planes, which give the coordinates of two vertices in the Real

and Imaginary dγ
τ– dZ

τ planes respectively with (−A,−B) and (−C,−D) giving the

remaining pairs. Thus the availability of polarization and of either sign provides for

a model independent scheme for constraining regions of the parameter space spanned

by the CP-violating form factors. It must be noted that the price to be paid for such

a model-independent bound on each of the form factors is large. In particular, from

Table 13, the most stringent such bound on the magnitude of Re(Im)dγ
τ is only the

larger of the |A|(|C|).

IV. Conclusions

We have presented closed-form expressions for the correlations of O1 and O2

parametrized by the real and imaginary parts of the edm and wdff and for their

standard deviations due to standard model interactions. We have tabulated for unit

values of these parameters (in units of e/
√

s) the values of the correlation and standard

14



deviations for a variety of energies at whichthe τCF is expected to operate and have

computed the 1 s.d. sensitivities for a modest sample of 107 τ+τ− pairs. A polarization

asymmetry we define is a useful tool to improve this sensitivity. We have described

a technique to implement a model independent analysis by varying the polarization

which does not require us to neglect the contributions of a possible wdff that is justified

when the edm and wdff are of comparable magnitudes. For e+ and e− longitudinal

beam polarizations of 42% achievable at the τcF the sensitivities can be as excellent

as (few)·10−19e cm for the real part and (few)·10−16e cm for the imaginary part. We

demonstrate that the absence of an axial vector coupling of the electron to the photon

is not necessarily a detriment to the use of polarization in probing CP violation. An

improvement by at least an order of magnitude over the sensitivity for the real part

of the edm in the unpolarized case (Table 2 of ref. [10]) is noted.
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Table Captions

1. (a) cAB, standard deviation and |δRe dγ
τ | computed for 107 τ+τ− pairs for ππ

channel and
√

s = 3.67 GeV for operator O1 for different P .

(b) Same as above for πρ channel.

(c) Same as above for ρρ channel.

2. (a) cAB, standard deviation and |δIm dγ
τ | computed for 107 τ+τ− pairs for ππ

channel and
√

s = 3.67 GeV for operator O2 for different P .

(b) Same as above for πρ channel.

(c) Same as above for ρρ channel.

3. Same as (1) for
√

s = 4.25 GeV.

4. Same as (2) for
√

s = 4.25 GeV.

5. Same as (1) for
√

s = 10.58 GeV.

6. Same as (2) for
√

s = 10.58 GeV.

7. (a) cAB, standard deviation and |δRe dγ
τ | computed for

∫ L(P )dt =
∫ L(−P )dt and

∑

i,j Nij = 2 · 107 τ+τ− pairs from O1 for ππ, πρ and ρρ channels for
√

s = 3.67 GeV

from polarization asymmetrized distribution.

(b) cAB, standard deviation and |δIm dγ
τ | computed for

∫ L(P )dt =
∫ L(−P )dt and

∑

i,j Nij = 2 · 107 τ+τ− pairs from O2 for ππ, πρ and ρρ channels for
√

s = 3.67 GeV

from polarization asymmetrized distribution.

8. Same as (7) for
√

s = 4.25 GeV.

9. Same as (7) for
√

s = 10.58 GeV.
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10. The effective polarization asymmetry |∑i,j Nijrij|/
(

∑

i,j Nij

)

for
√

s = 3.67, 4.25

and 10.58 GeV.

11. (a) The quantities a, b, c and d in e cm defining the lines of sensitivity for

different polarization with Nτ+τ− = 107 for
√

s = 3.67 GeV.

(b) As above for
√

s = 4.25 GeV.

(c) As above for
√

s = 10.58 GeV.

12. The quantities a, b, c and d for the asymmetrized distributions with P = 1,
∫ L(P )dt =

∫ L(−P )dt and
∑

ij Nij = 2 · 107 for the three different center of mass

energies.

13. (a) A and B, and C and D, defining the parallelograms in the Redγ
τ – RedZ

τ and

Imdγ
τ – ImdZ

τ planes respectively for various values of Pmax for a, b, c and d of Table

11 as described in the text at
√

s = 3.67 GeV.

(b) As above for
√

s = 4.25 GeV.

(c) As above for
√

s = 10.58 GeV.
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P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −3.12 × 10−6 0.399 1.88 × 10−12

−0.62 −1.36 × 10−2 0.399 4.32 × 10−16

+0.62 1.35 × 10−2 0.399 4.32 × 10−16

−0.71 −1.55 × 10−2 0.399 3.77 × 10−16

+0.71 1.55 × 10−2 0.399 3.77 × 10−16

−1.00 −2.19 × 10−2 0.399 2.68 × 10−16

+1.00 2.19 × 10−2 0.399 2.68 × 10−16

(a)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −7.72 × 10−7 0.336 4.64 × 10−12

−0.62 −1.05 × 10−2 0.336 3.39 × 10−16

+0.62 1.05 × 10−2 0.336 3.39 × 10−16

−0.71 −1.21 × 10−2 0.336 2.96 × 10−16

+0.71 1.21 × 10−2 0.336 2.96 × 10−16

−1.00 −1.70 × 10−2 0.336 2.10 × 10−16

+1.00 1.70 × 10−2 0.336 2.10 × 10−16

(b)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −1.39 × 10−7 0.282 1.57 × 10−11

−0.62 −6.02 × 10−3 0.282 3.63 × 10−16

+0.62 6.02 × 10−3 0.282 3.63 × 10−16

−0.71 −6.89 × 10−3 0.282 3.17 × 10−16

+0.71 6.89 × 10−3 0.282 3.17 × 10−16

−1.00 −9.70 × 10−3 0.282 2.25 × 10−16

+1.00 9.70 × 10−3 0.282 2.25 × 10−16

(c)

Table 1
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P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 1.36 × 10−5 0.596 6.44 × 10−13

−0.62 1.42 × 10−5 0.596 6.14 × 10−13

+0.62 1.29 × 10−5 0.596 6.78 × 10−13

−0.71 1.43 × 10−5 0.596 6.10 × 10−13

+0.71 1.28 × 10−5 0.596 6.83 × 10−13

−1.00 1.46 × 10−5 0.596 5.97 × 10−13

+1.00 1.25 × 10−5 0.596 7.01 × 10−13

(a)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 9.33 × 10−6 0.615 7.02 × 10−13

−0.62 9.79 × 10−6 0.615 6.69 × 10−13

+0.62 8.86 × 10−6 0.615 7.39 × 10−13

−0.71 9.86 × 10−6 0.615 6.64 × 10−13

+0.71 8.88 × 10−6 0.615 7.44 × 10−13

−1.00 1.01 × 10−5 0.615 6.50 × 10−13

+1.00 8.58 × 10−6 0.615 7.63 × 10−13

(b)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 5.10 × 10−6 0.575 8.72 × 10−13

−0.62 5.35 × 10−6 0.575 8.31 × 10−13

+0.62 4.85 × 10−6 0.575 9.18 × 10−13

−0.71 5.39 × 10−6 0.575 8.25 × 10−13

+0.71 4.81 × 10−6 0.575 9.25 × 10−13

−1.00 5.51 × 10−6 0.575 8.08 × 10−13

+1.00 4.69 × 10−6 0.575 9.48 × 10−13

(c)

Table 2
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P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −2.67 × 10−5 0.543 2.58 × 10−13

−0.62 −8.64 × 10−2 0.543 7.96 × 10−17

+0.62 8.63 × 10−2 0.543 7.97 × 10−17

−0.71 −9.89 × 10−2 0.543 6.95 × 10−17

+0.71 9.88 × 10−2 0.543 6.96 × 10−17

−1.00 −1.39 × 10−1 0.543 4.94 × 10−17

+1.00 1.39 × 10−1 0.543 4.94 × 10−17

(a)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −6.59 × 10−6 0.488 6.80 × 10−13

−0.62 −6.72 × 10−2 0.488 6.68 × 10−17

+0.62 6.72 × 10−2 0.488 6.68 × 10−17

−0.71 −7.69 × 10−2 0.488 5.83 × 10−17

+0.71 7.69 × 10−2 0.488 5.83 × 10−17

−1.00 −1.08 × 10−1 0.488 4.14 × 10−17

+1.00 1.08 × 10−1 0.488 4.14 × 10−17

(b)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −1.19 × 10−6 0.432 2.43 × 10−12

−0.62 −3.83 × 10−2 0.432 7.53 × 10−17

+0.62 3.83 × 10−2 0.432 7.53 × 10−17

−0.71 −4.39 × 10−2 0.432 6.57 × 10−17

+0.71 4.39 × 10−2 0.432 6.57 × 10−17

−1.00 −6.18 × 10−2 0.432 4.67 × 10−17

+1.00 6.18 × 10−2 0.432 4.67 × 10−17

(c)

Table 3
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P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 1.00 × 10−4 0.632 8.00 × 10−14

−0.62 1.05 × 10−4 0.632 7.62 × 10−14

+0.62 9.51 × 10−5 0.632 8.41 × 10−14

−0.71 1.06 × 10−4 0.632 7.57 × 10−14

+0.71 9.44 × 10−5 0.632 8.48 × 10−14

−1.00 1.08 × 10−4 0.632 7.40 × 10−14

+1.00 9.20 × 10−5 0.632 8.69 × 10−14

(a)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 6.89 × 10−5 0.655 8.74 × 10−14

−0.62 7.23 × 10−5 0.655 8.33 × 10−14

+0.62 6.54 × 10−5 0.655 9.20 × 10−14

−0.71 7.28 × 10−5 0.655 8.27 × 10−14

+0.71 6.49 × 10−5 0.655 9.27 × 10−14

−1.00 7.44 × 10−5 0.655 8.09 × 10−14

+1.00 6.33 × 10−5 0.655 9.50 × 10−14

(b)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 3.76 × 10−5 0.610 1.08 × 10−13

−0.62 3.95 × 10−5 0.610 1.03 × 10−13

+0.62 3.58 × 10−5 0.610 1.14 × 10−13

−0.71 3.98 × 10−5 0.610 1.02 × 10−13

+0.71 3.55 × 10−5 0.610 1.15 × 10−13

−1.00 4.06 × 10−5 0.610 1.00 × 10−13

+1.00 3.46 × 10−5 0.610 1.18 × 10−13

(c)

Table 4
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P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −1.58 × 10−5 1.78 5.71 × 10−15

−0.62 −8.19 × 10−1 1.78 1.10 × 10−17

+0.62 8.15 × 10−1 1.78 1.11 × 10−17

−0.71 −9.37 × 10−1 1.78 9.65 × 10−18

+0.71 9.33 × 10−1 1.78 9.67 × 10−18

−1.00 −1.32 1.78 6.86 × 10−18

+1.00 1.31 1.78 6.86 × 10−18

(a)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −3.91 × 10−4 1.66 1.57 × 10−14

−0.62 −6.36 × 10−1 1.66 9.63 × 10−18

+0.62 6.35 × 10−1 1.66 9.64 × 10−18

−0.71 −7.29 × 10−1 1.66 8.41 × 10−18

+0.71 7.27 × 10−1 1.66 8.42 × 10−18

−1.00 −1.03 1.66 5.98 × 10−18

+1.00 1.02 1.66 5.98 × 10−18

(b)

P cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

0.00 −7.03 × 10−5 1.51 5.76 × 10−14

−0.62 −3.63 × 10−1 1.51 1.12 × 10−17

+0.62 3.62 × 10−1 1.51 1.12 × 10−17

−0.71 −4.15 × 10−1 1.51 9.77 × 10−18

+0.71 4.15 × 10−1 1.51 9.77 × 10−18

−1.00 −5.85 × 10−1 1.51 6.93 × 10−18

+1.00 5.85 × 10−1 1.51 6.94 × 10−18

(c)

Table 5
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P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 2.83 × 10−3 1.19 2.53 × 10−15

−0.62 2.50 × 10−3 1.19 2.41 × 10−15

+0.62 2.26 × 10−3 1.19 2.67 × 10−15

−0.71 2.52 × 10−3 1.19 2.40 × 10−15

+0.71 2.25 × 10−3 1.19 2.69 × 10−15

−1.00 2.58 × 10−3 1.19 2.34 × 10−15

+1.00 2.19 × 10−3 1.19 2.75 × 10−15

(a)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 1.64 × 10−3 1.26 2.83 × 10−15

−0.62 1.72 × 10−3 1.26 2.69 × 10−15

+0.62 1.56 × 10−3 1.26 2.98 × 10−15

−0.71 1.73 × 10−3 1.26 2.67 × 10−15

+0.71 1.55 × 10−3 1.26 3.00 × 10−15

−1.00 1.77 × 10−3 1.26 2.62 × 10−15

+1.00 1.51 × 10−3 1.26 3.08 × 10−15

(b)

P cAB GeV
√

〈O2
2〉 GeV |δ Im dγ

τ | e cm

0.00 8.96 × 10−4 1.15 3.43 × 10−15

−0.62 9.41 × 10−4 1.15 3.26 × 10−15

+0.62 8.51 × 10−4 1.15 3.61 × 10−15

−0.71 9.48 × 10−4 1.15 3.24 × 10−15

+0.71 8.45 × 10−4 1.15 3.64 × 10−15

−1.00 9.69 × 10−4 1.15 3.17 × 10−15

+1.00 8.24 × 10−4 1.15 3.73 × 10−15

(c)

Table 6
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cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

ππ 2.39 × 102 0.292 1.32 × 10−18

πρ 1.86 × 102 0.267 1.13 × 10−18

ρρ 1.06 × 102 0.240 1.29 × 10−18

(a)

cAB GeV
√

〈O2
2〉 GeV2 |δ Im dγ

τ | e cm

ππ 1.18 × 10−2 0.596 5.45 × 10−14

πρ 8.15 × 10−3 0.615 5.94 × 10−14

ρρ 4.45 × 10−3 0.575 7.38 × 10−14

(b)

Table 7

cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

ππ 1.13 × 103 0.529 3.77 × 10−19

πρ 8.82 × 102 0.289 1.90 × 10−19

ρρ 5.03 × 102 0.127 1.08 × 10−19

(a)

cAB GeV
√

〈O2
2〉 GeV2 |δ Im dγ

τ | e cm

ππ 6.52 × 10−2 0.632 7.83 × 10−15

πρ 4.47 × 10−2 0.657 8.59 × 10−15

ρρ 2.45 × 10−2 0.610 1.06 × 10−14

(b)

Table 8
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cAB GeV2
√

〈O2
1〉 GeV2 |δ Re dγ

τ | e cm

ππ 1.72 × 103 3.46 2.61 × 10−19

πρ 1.34 × 103 2.38 1.68 × 10−19

ρρ 7.62 × 102 1.48 1.33 × 10−19

(a)

cAB GeV
√

〈O2
2〉 GeV2 |δ Im dγ

τ | e cm

ππ 2.49 × 10−1 1.19 6.20 × 10−16

πρ 1.71 × 10−1 1.28 7.03 × 10−16

ρρ 9.35 × 10−2 1.15 8.39 × 10−16

(b)

Table 9

√
s GeV |∑ Nijrij |/

∑

Nij

3.67 9.2 × 10−5

4.25 1.2 × 10−4

10.58 7.7 × 10−4

Table 10
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P a b c d
0.00 1.73 × 10−12 1.38 × 10−13 4.17 × 10−13 2.70 × 10−9

−0.62 2.15 × 10−16 1.32 × 10−13 3.97 × 10−13 5.52 × 10−10

+0.62 2.15 × 10−16 1.45 × 10−13 4.39 × 10−13 9.32 × 10−10

−0.71 1.88 × 10−16 1.31 × 10−13 3.95 × 10−13 4.94 × 10−10

+0.71 1.88 × 10−16 1.47 × 10−13 4.42 × 10−13 7.80 × 10−10

−1.00 1.33 × 10−16 1.28 × 10−13 3.86 × 10−13 3.71 × 10−10

+1.00 1.33 × 10−16 1.50 × 10−13 4.53 × 10−13 5.11 × 10−10

(a)

P a b c d
0.00 2.39 × 10−13 2.03 × 10−14 5.18 × 10−14 2.50 × 10−10

−0.62 4.23 × 10−17 1.93 × 10−14 4.93 × 10−14 5.11 × 10−11

+0.62 4.23 × 10−17 2.13 × 10−14 5.45 × 10−14 8.63 × 10−11

−0.71 3.69 × 10−17 1.92 × 10−14 4.90 × 10−14 4.58 × 10−10

+0.71 3.70 × 10−17 2.15 × 10−14 5.49 × 10−14 7.22 × 10−10

−1.00 2.62 × 10−17 1.88 × 10−14 4.80 × 10−14 3.43 × 10−11

+1.00 2.62 × 10−17 2.21 × 10−14 5.63 × 10−14 4.73 × 10−11

(b)

P a b c d
0.00 5.34 × 10−15 4.66 × 10−16 1.65 × 10−15 1.27 × 10−12

−0.62 6.09 × 10−18 4.44 × 10−16 1.57 × 10−15 2.60 × 10−13

+0.62 6.09 × 10−18 4.91 × 10−16 1.74 × 10−15 4.40 × 10−13

−0.71 5.32 × 10−18 4.41 × 10−16 1.56 × 10−15 2.33 × 10−13

+0.71 5.32 × 10−18 4.94 × 10−16 1.75 × 10−15 3.68 × 10−13

−1.00 3.78 × 10−18 4.31 × 10−16 1.53 × 10−15 1.75 × 10−13

+1.00 3.78 × 10−18 5.07 × 10−16 1.80 × 10−15 2.41 × 10−13

(c)

Table 11
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√
s GeV a b c d
3.67 7.14 × 10−19 9.29 × 10−15 3.52 × 10−14 2.91 × 10−12

4.25 9.11 × 10−20 8.79 × 10−16 5.07 × 10−15 3.13 × 10−13

10.58 9.68 × 10−20 1.49 × 10−16 4.06 × 10−16 3.99 × 10−15

Table 12

Pmax A B C D
0.62 −4.34 × 10−15 2.79 × 10−12 5.17 × 10−13 −1.66 × 10−10

2.16 × 10−16 −4.55 × 10−16 −2.02 × 10−12 3.35 × 10−9

0.71 −3.31 × 10−15 2.44 × 10−12 5.58 × 10−13 −2.06 × 10−10

1.88 × 10−16 −3.25 × 10−16 −2.50 × 10−12 3.62 × 10−9

1.00 −1.66 × 10−15 1.73 × 10−12 8.40 × 10−13 −4.36 × 10−10

1.33 × 10−16 −1.94 × 10−16 −5.28 × 10−12 5.44 × 10−9

(a)

Pmax A B C D
0.62 −8.54 × 10−16 4.10 × 10−13 6.42 × 10−14 −1.54 × 10−11

4.25 × 10−17 −6.78 × 10−17 −2.50 × 10−13 3.10 × 10−10

0.71 −6.51 × 10−16 3.58 × 10−13 6.94 × 10−14 −1.91 × 10−11

3.70 × 10−17 −4.83 × 10−17 −3.10 × 10−13 3.35 × 10−10

1.00 −3.28 × 10−16 2.54 × 10−13 1.04 × 10−13 −4.04 × 10−11

2.63 × 10−17 −3.38 × 10−17 −6.56 × 10−13 5.04 × 10−10

(b)

Pmax A B C D
0.62 −1.24 × 10−16 9.50 × 10−15 2.05 × 10−15 −7.91 × 10−14

6.17 × 10−18 −5.61 × 10−18 −7.99 × 10−15 1.58 × 10−12

0.71 −9.43 × 10−17 8.26 × 10−15 2.22 × 10−15 −9.79 × 10−14

5.36 × 10−18 −3.57 × 10−18 −9.89 × 10−15 1.71 × 10−12

1.00 −4.72 × 10−17 5.83 × 10−15 3.34 × 10−15 −2.07 × 10−13

3.78 × 10−18 −3.86 × 10−19 −2.09 × 10−14 2.56 × 10−12

(c)

Table 13

30


