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Abstract

Radiative generation of the solar scale ∆⊙ is discussed in the presence of leptonic CP vio-

lation. We assume that both the solar scale and Ue3 are zero at a high scale and the weak

radiative corrections generate them. It is shown that all leptonic mass matrices satisfying

these requirements lead to a unique prediction ∆⊙ cos 2θ⊙ ≈ 4δτ sin2 θA|mee|2 for the solar

scale in terms of the radiative correction parameter δτ , the physical solar (atmospheric) mix-

ing angles θ⊙(θA) and the Majorana neutrino mass mee probed in neutrinoless double beta

decay. This relation is independent of the mixing matrix and CP-violating phases at the

high scale. The presence of CP-violating phases leads to dilution in the solar mixing angle

defined at the high scale. Because of this, bi-maximal mixing pattern at the high energy

leads to large but non-maximal solar mixing in the low-energy theory. An illustrative model

with this feature is discussed.
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I. INTRODUCTION:

The neutrino masses and mixing pattern implied [1,2] by the neutrino oscillation exper-

iments requires (i) two large mixing angles θ⊙ and θA to explain respectively the results of

the solar and the atmospheric neutrino experiments, (ii) corresponding mass scales ∆⊙ and

∆atm satisfying

∆⊙

∆atm

≈ 3 × 10−2 (1)

and (iii) a third mixing angle which is very small θ3 ≤ 90.

The smallness of θ3 compared to other two large angles and that of ∆⊙

∆atm

are two of the

major puzzles [3] in neutrino physics requiring theoretical explanation. One possibility is

to suppose that some symmetry leads to vanishing of ∆⊙ or θ3 or both and its breaking

is responsible for small values of these parameters. Vanishing of ∆⊙ can be a consequence

of lepton like U(1) or more general non-abelian symmetry such as SU(2)H . The vanishing

of θ3 can also be attributed to some symmetry, e.g., Le − Lµ − Lτ invariance [4] studied

extensively in the literature. One needs to provide a mechanism for symmetry breaking in

order to generate the solar scale. An economical possibility is to suppose that physics at

a high scale leads to vanishing solar scale and the standard weak gauge bosons (and their

superpartners in supersymmetric theory) are responsible for its generation at a low scale

[5,6,7]. This provides a well-defined symmetry breaking pattern which can be deduced [8]

by studying the evolution of the neutrino mass matrix through the renormalization group

(RG) equations [9]. This evolution has been studied very extensively [10] with a different

physical motivation.

Let us suppose that neutrino masses mνi
and the mixing angle θ3 generated by physics

at a high scale (e.g., seesaw mechanism) are given by

mνi
= (m,−m, m′) ; sin θ3 ≡ |(U0)e3| = 0 , (2)

where U0 is the neutrino mixing matrix at the high scale. Clearly, a very large class of

the neutrino and the charged lepton mass matrices can lead to eq.(2). The RG evolution

provides a systematic way to study generation of the solar scale and Ue3 at a low energy in

all these models. It was found in [11] that all models of leptonic mass matrices leading to

eq.(2) give a unique prediction for the solar scale when CP is conserved,

∆⊙ cos 2θ⊙ = 4δτs
2
A|mee|2 + O(δµ, δ

2
τ ) . (3)
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Here, mee is the effective neutrino mass probed in neutrinoless double beta decay (0νββ )

and δτ denotes [8] the size of the radiative correction induced by the Yukawa coupling of the

τ :

δτ ≈ c

(

mτ

4πv

)2

ln
MX

MZ
. (4)

c = 3
2
,− 1

cos2 β
in respective cases of the standard model (SM) and the minimal sypersym-

metric standard model (MSSM).

This equation implies a strong correlation between the solar scale and mee. In particular,

it requires that mee should be close to its present limit if the large mixing angle (LMA)

solution [1] is to be reproduced. CP conservation was assumed in the analysis presented

in [11]. When CP violation is allowed, the vanishing of ∆⊙ at high scale implies that the

first two masses are degenerate in eq.(2) only up to a phase. It is well-known [8,10,12] that

CP violating phases can alter evolution of the neutrino masses in a non-trivial and drastic

manner. It is thus important to include the effects of such phases. We find that the CP

violating phases α, β associated with the neutrino masses influence the predicted value of

the solar mixing angle θ⊙ significantly but in such a way that the basic prediction eq.(3)

obtained in a CP conserving theory remains unaffected. Unlike in eq.(3), the radiatively

generated Ue3 depends on the phases α and β. In the following, we derive these basic results

and discuss their consequences.

II. ASSUMPTIONS AND RESULTS

A complex symmetric neutrino mass matrix can always be diagonalized by a unitary

matrix U . This U can be identified with the MNS [13] matrix when the neutrino mass

matrix is specified in the flavour basis. U is known to be determined by three mixing angles

θi and three phases δ, α, β and can be parameterized as

U = R23(θ2)R13(θ3e
−iδ)R12(θ1)diag.(1, e

iα
2 , e

iβ

2 ) (5)

The phase δ is analogous to the CKM phases and α, β are the phases associated with the

Majorana masses.

We denote the neutrino mass matrix in the flavour basis at a high scale by M0ν and

the corresponding mixing matrix by U0. The U0 is obtained by choosing θ3 = 0 in eq.(5).

Explicitly,
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U0 =





















c1 s1 0

−c2s1 c2c1 s2

s1s2 −c1s2 c2









































1 0 0

0 e
iα
2 0

0 0 e
iβ

2





















. (6)

where c1 = cos θ1, s1 = sin θ1 etc.

The solar scale vanishes if

UT
0 M0νU0 = diag.(m, m, m′) (7)

Several points are to be noted in connection with the above equation.

• One can choose m and m′ real and positive without loss of generality. The non-zero

|m′2 − m2| can be identified with the atmospheric scale ∆atm.

• Given the mass ordering as in eq.(7), (U0)e3 denotes the mixing element probed at

CHOOZ. We assumed it to be zero which amounted to choosing θ3 = 0 in eq.(5). This

then implies that the CKM phase can be assumed zero at a high scale. CP violation

is still present through non-vanishing α and β.

• The neutrino mass matrix M0ν can be determined by inverting eq.(7):

M0ν = U∗
0 diag.(m, m, m′)U †

0 (8)

The matrix U0 is however not unique. Degeneracy of masses in eq.(7) implies that U0

is arbitrary up to an orthogonal transformation O12 by an angle θ′1 in the 12 plane.

Thus U0 and U0O12 imply the same physics. This arbitrariness in U0 amounts to the

following redefinition of the angle θ1 appearing in eq.(6):

|c1| → |c1c
′
1 − s1s

′
1e

iα
2 | ,

|s1| → |c1s
′
1 + s1c

′
1e

iα
2 | , (9)

This freedom implies that the solar angle corresponding to the 12 mixing cannot

be uniquely defined at a high scale. Eq.(9) at the same time does not allow us to

completely rotate away the solar angle unless α = 2nπ. The arbitrariness in defining

the solar angle will be removed by the radiative corrections. We can thus set θ′1 to

zero without loss of generality.
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The matrix M0ν determined by eq.(8) is modified by radiative corrections. The ra-

diatively corrected form of M0ν follows from the relevant RG equations. We assume RG

equations corresponding to the SM or the MSSM. The modified neutrino mass matrix is

given [8] in this case by

M0ν → Mν ≈ IgIt (I U∗
0 diag.(m, m, m3) U

†
0 I ) (10)

where Ig,t are calculable numbers depending on the gauge and top quark Yukawa couplings.

I is a flavour dependent matrix given by

I ≈ diag.(1 + δe, 1 + δµ, 1 + δτ ) .

δe,µ are obtained from eq.(4) by replacing the tau mass by the electron and the muon masses

respectively. The physical neutrino masses and mixing are obtained by diagonalizing the

above matrix. We do this approximately by retaining the contribution of the tau Yukawa

coupling and by working to the lowest order in δτ . The effect of radiative corrections is best

seen by going to the basis in which the neutrino mass matrix M0ν defined at high scale is

diagonal. This is done through a rotation by the original U0 on eq.(10)

M̃ν ≡ UT
0 MνU0

≈ mIgIt





















1 + 2δτs
2
1s

2
2 −2δτ cos α

2
c1s1s

2
2 δτc2s2s1(e

iβ

2 + re
−iβ

2 )

−2δτ cos α
2
c1s1s

2
2 (1 + 2δτc

2
1s

2
2) −δτ c2s2c1(e

−iχ + reiχ)

δτc2s2s1(e
iβ

2 + re−
iβ

2 ) −δτc2s2c1(e
−iχ + reiχ) r(1 + 2δτc

2
2)





















(11)

where r ≡ m′

m
and χ ≡ (α−β)

2
.

Approximate diagonalization of the above matrix is straightforward. We omit the details

of this diagonalization but mention the salient points.

• The structure of the upper 2×2 block in eq.(11) implies that the correction to the solar

mixing angle arising from its diagonalization is not O(δτ ) but O(1) unless α = π. This

is a well-studied phenomenon [8] which is sometimes referred to as radiative instability

of the mixing angle. This feature is related here to the arbitrariness (eq.(9)) in defining

the mixing angle at high scale. Perturbation present in eq.(11) helps in removing this

ambiguity.

The upper 2 × 2 block of eq.(11) is diagonalized by
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U12 =





















c̃1 s̃1 0

−s̃1 c̃1 0

0 0 1





















, (12)

with

tan 2θ̃1 = − cos
α

2
tan 2θ1 , (13)

• The (13) and (23) elements of the matrix UT
12M̃νU12 resulting after rotation through

U12 are O(mδτ ) and the 33 element is approximately m′. The effect of these off-

diagonal elements is to induce additional mixing of the O(ǫ) where ǫ ≈ mδτ
m′−m ≈ 2m2δτ

∆atm

.

This mixing is quite small for physically interesting mass range m ≤ O( eV). Thus a

complete diagonalization of UT
12M̃νU12 is performed by two additional rotations with

mixing angles which are O(ǫ). Explicitly,

UT
23U

T
13U

T
12U

T
0 MνU0U12U13U23 ≈ diag.(mν1, mν2, mν3) . (14)

The U13 is responsible for generation of the CHOOZ angle while U23 provides a small

radiative correction to the atmospheric mixing angle θ2. We neglect correction to θ2

in the following. U13 is given by

U13 =





















c̃3 0 s̃3e
iΨ

0 1 0

−s̃3e
−iΨ 0 c̃3





















, (15)

Eq.(14) gives us the complete mixing matrix which can be approximately written as

U ≈ U0U12U13

≈





















c⊙c̃3e
−iη is⊙e−iη c⊙s̃3e

i(Ψ−η)

icAs⊙c̃3e
i(η+α/2) − sAs̃3e

(iβ/2−ψ) cAc⊙ei(η+α/2) icAs⊙s̃3e
i(ψ+η+α/2) + sAc̃3e

iβ/2

−isAs⊙c̃3e
i(η+α/2) − cAs̃3e

i(β/2−ψ) −sAc⊙ei(η+α/2) −isAs⊙s̃3e
iψ + cAc̃3e

iβ/2





















. (16)

where,
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c⊙eiη = (c1c̃1 − s1s̃1e
−iα

2 ) ,

s⊙eiη = i(c1s̃1 + s1c̃1e
−iα

2 ) ,

sA = s2 + O(δτ ) . (17)

θ3 is radiatively generated and is given by

|Ue3| = |s3| = |s̃3c⊙| = |δτsAcAc⊙s⊙
1 + r

1 − r
cos δ|

≈ |δτ sin 2θA sin 2θ⊙
m2

2∆atm

cos δ| . (18)

where r ≡ m′

m
can be expressed as:

|r| = (1 ± ∆atm

m2
)1/2 ≈ 1 ± ∆atm

2m2
(19)

The positive (negative) sign in the above equation applies to the case m′ > m (m′ < m).

All the phases appearing in eq.(23) are expressible in terms of the original phases α and β.

Explicitly,

sin η =
s1√
2c⊙

sin
α

2
(1 − cos 2θ1

cos 2θ⊙
)1/2 , (20)

βL = π + β − α − 2η , (21)

δ = −βL

2
+ O

(

∆atm

2m2

)2

. (22)

The mixing matrix in eq.(16) assumes the following simple form once non-leading terms

of O(s̃3) are neglected 1:

U ≡ U0U12U13 ≈





















c⊙ s⊙ s3e
−iδ

−cAs⊙ cAc⊙ sA

sAs⊙ −sAc⊙ cA









































1 0 0

0 i 0

0 0 e
iβL
2





















. (23)

It is clear from eqs.(13,17) that the radiative corrections have removed the ambiguity

in the choice of the solar angle by fixing the θ′1 in eq.(9) to θ̃1 given in eq.(13). The same

equation also determines the phase η as given in eq.(20). Interestingly enough, the phase of

1In writing this form, we have made a phase rotation on eq.(16) from the left and right by two

appropriate diagonal phase matrices PL,R. The PL is absorbed in redefining the charged lepton

fields giving us the final eq.(23).
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the second mass state (which was α at the high scale) is now determined to be π in eq.(23).

This corresponds to (almost) equal and opposite neutrino masses at the low scale.

The major physical effects of the radiative corrections are generation of the solar scale,

mixing angle θ3 and the CKM phase δ which was absent at the high scale. The solar scale

follows from the eigenvalues of eq.(11):

mν1 ≈ IgItm(1 + 2δτs
2
As2

⊙) + O(δ2
τ ) ,

mν2 ≈ IgItm(1 + 2δτs
2
Ac2

⊙) + O(δ2
τ ) ,

mν3 ≈ IgItm
′(1 + 2δτ c

2
A) + O(δ2

τ ) . (24)

which lead to

∆⊙ ≡ m2
ν2
− m2

ν1
= 4I2

g I
2
t m

2δτs
2
A cos 2θ⊙ + O(δ2

τ ) . (25)

The Majorana mass mee is obtained using eqs.(23,24):

|mee|2 ≡ |U2
eimνi

|2 ≈ I2
g I

2
t m

2 cos2 2θ⊙ + O(δτ ) , (26)

The initial phases α, β appear in the above equation only implicitly through the solar angle

θ⊙. This is a consequence of the fact that physical neutrinos resulting after the radiative

corrections consist of a pseudo-Dirac pair with (almost) equal and opposite masses.

Eqs.(18,25) are predictions of the scheme. The common mass m IgIt of the degenerate

pair can be identified with the electron neutrino mass mνe
probed through the direct neutrino

mass search, e.g., in tritium beta decay [14]. It is also probed through measurement of the

Majorana mass parameter mee [15]. One can in fact eliminate m from eq.(25) using eq.(26).

This leads to the prediction (3) already mentioned in the introduction. This prediction

involves only low energy measurable parameters and is independent of the CP violating

phase.

III. PHENOMENOLOGICAL CONSEQUENCES

The five observables, namely θ⊙, ∆⊙, |mee|, mνe
= mIgIt and Ue3, are correlated through

eqs.(3,18,25). We now study the consequences of this correlation. δτ is negative in case

of the MSSM. This implies a negative ∆⊙ cos 2θ⊙ and hence only much less preferred dark

region of the solar parameter space. This excludes the LMA and LOW solutions in case

of the MSSM but the SM can easily allow them. These solutions are realized only for the

specific range in |mee|. This is displayed in Fig.(1) where we show contours of the ∆⊙ and the

8



electron neutrino mass mνe
in the tan2 θ⊙-|mee| plane. The values of tan2 θ⊙ are restricted

to the typical range ∼ 0.2 − 0.8 allowed by the LMA or LOW solution. For these values,

one obtains a ∆⊙ in the required range 10−4 − 10−5 eV2 provided mee ∼ 0.1 − 1 eV. This

value is close to the experimental limit [15]. We also show the contours corresponding to

the electron neutrino mass mνe
equal to 0.5 eV and 2.0 eV in the same plot. It is seen that

mνe
is restricted to lie in the range 0.5 − 2 eV in case of the LMA solution.

The predicted values of the |Ue3| are also shown in the figure. |Ue3| is seen to be restricted

to a typical range ∼ 0.001 − 0.02 in the region of the mee − tan2 θ⊙ plane allowed by the

LMA solution.

The results presented above are completely in terms of the low energy variables and

do not need any knowledge of the parameters at the high scale. Let us now comment on

possible choices of the high scale parameter. Eqs.(13,17) are equivalent to the relation

sin2 2θ⊙ = sin2 2θ1 sin2 α

2
, (27)

The initial value of the solar mixing angle θ1 is subject to the arbitrariness noted in eq.(9).

We see that irrespective of this, any choice of θ1 and α must satisfy

(sin2 2θ1, sin
2 α

2
) ≥ sin2 2θ⊙ ∼ (0.6 − 0.9) . (28)

It is seen that the mixing angle is reduced compared to its value at a high scale. This is

phenomenologically interesting. One of the preferred phenomenological schemes corresponds

to bi-maximal mixing [16] which can arise from symmetry considerations. However, the

present solar data do not favour strictly maximal mixing [1]. Eq.(27) shows that one can

start with bi-maximal mixing at a high scale and radiative corrections would lead to the

desired reduction provided the CP-violating phase α is chosen non-zero and different from

π at a high scale. The presence of α also plays another important role. α = π and maximal

solar mixing corresponds to vanishing mee with the consequence that the solar scale arise

only at O(δ2
τ , δµ), see eq.(3). The natural value for the solar scale lies in the vacuum region

in this case [17,18]. An α different from π alters this and allows strictly bi-maximal mixing

and a non-zero mee at a high scale.

The radiative reduction in the solar angle found here is to be contrasted with a similar

analysis presented recently in [19]. This analysis assumed vanishing Ue3 but a non-zero ∆⊙

at the high scale itself. It was then found [19] that radiative corrections tend to increase the

sin2 2θ⊙ compared to its value at the high scale. This does not allow bi-maximal mixing at

the high scale in contrast to what is found here.
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The analysis presented so far holds for all models satisfying eq.(2) at a high scale. While

many possibilities exist, let us give an illustrative example which corresponds to bi-maximal

mixing. This is specified by the following neutrino mass matrix in the flavour basis.

M0ν = R23(θ2)





















a ib 0

ib a 0

0 0 m′e−iβ





















RT
23(θ2) , (29)

The parameters a, b, m′ and θ2 are assumed real.

Define the mixing matrix Ũ0 as:

Ũ0 = e−
iα
4 R23(θ2)





















1√
2

1√
2
e

iα
2 0

− 1√
2

1√
2
e

iα
2 0

0 0 ei
β

2





















. (30)

This matrix diagonalizes eq.(29):

ŨT
0 M0ν Ũ0 = Diag.(m, m, m′)

, with

tan
α

2
= − b

a
,

m2 = (a2 + b2) . (31)

We thus have maximally mixed degenerate neutrinos at a high scale. The maximal θ1 implies

maximal θ̃1 through eq.(13). The solar angle θ⊙ and the low scale CP violating phase follows

respectively from eq.(17) and eq.(20):

tan θ⊙ = cot
α

4
; δ =

π + α − 2β

4

It is seen that α ∼ π leads to large solar mixing. Specifically, b ∼
√

3a leads to θ⊙ ∼
300. The radiatively generated solar scale can naturally fall in the LMA region as already

discussed before in the general context. Eq.(29) in this way leads to the required pattern of

neutrino masses and mixing.

The texture presented here is quite similar to the one studied in ref [17] which assumed

zero a and a real ib. For the reasons already mentioned, this model leads only to the vacuum
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solution after radiative corrections are included. The presence of a and additional phase in

b alters this and allows one to obtain the LMA solution.

It is possible [18] to obtain the above texture in the context of seesaw model by invoking

additional horizontal 2 symmetry. One way [3] of realizing the above texture is to assume a

charged lepton mixing matrix with only µ − τ mixing. This would generate R23 in eq.(29).

The neutrino mass matrix in the weak basis is then given by the block diagonal form ex-

plicitly displayed in eq.(29). An explicit model was presented with these features in [18] in

a CP conserving situation. We do not elaborate on it here since a trivial modification 3 of

this model incorporating CP violation leads to the mass matrix presented in eq.(29).

IV. SUMMARY

The presently available information on neutrino oscillations can be nicely understood if

two of the neutrinos pair up to form a pseudo-Dirac state. This can be obtained from a

degenerate neutrino pair by means of standard radiative corrections. We discussed basic

predictions of this picture including the important effects of the CP-violating phases. The

scheme presented here has testable predictions: The LMA solution requires mee ∼ 0.1−1 eV

close to its present limit, relatively small Ue3 ∼ 0.001 − .01 and observable ∼ 0.5 − 2 eV

neutrino mass in beta decay.

The CP violating phases α and β associated with the Majorana masses do not effect the

basic prediction (3) of the scheme but play an important role in diluting the solar mixing

angle defined at a high scale. This allows bi-maximal mixing at the high scale and large

but non-maximal solar angle at the low scale in accordance with the demand of the current

solar neutrino results.

Acknowledgments Nimai Singh wishes to acknowledge local hospitality at Physical Re-

search Laboratory during initial part of this work.

2SU(2)H symmetry has also been recently used in [20] to generate bimaximal mixing pattern.

3This modification amounts to assuming a non-zero vacuum expectation value (vev) for the CP-

odd field T 2 and vanishing vev for the CP even field T 1 in the notation of [18].
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FIG. 1. Contours of ∆⊙ (dotted), |Ue3| (dashed) and the electron neutrino mass mνe

(solid) as a function of tan2 θ⊙ and mee (in eV). The upper (lower) curves correspond to

∆⊙ = 10−4 (10−5) eV2, |Ue3| = 0.02 (0.01) and the mνe = 2.0 (0.5) eV respectively.
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