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Abstract

Neutrino decay in the minimal seesaw model containing three right
handed neutrinos and a complex SU(2) x U(1) singlet Higgs in addi-
tion to the standard model fields is considered. A global horizontal
symmetry U (1) g is imposed, which on spontaneous breaking gives rise
to a Goldstone boson. This symmetry is chosen in a way that makes
a) the contribution of heavy (< MeV) majorana neutrinos to the neu-
trinoless double beta decay amplitude vanish and b) allows the heavy
neutrino to decay to a lighter neutrino and the Goldstone boson. It
is shown that this decay can occur at a rate much faster than in the
original Majoron model even if one does not introduce any additional
Higgs fields as is done in the literature. Possibility of describing the
17 keV neutrino in this minimal seesaw model is investigated. While
most of the cosmological and astrophysical constraints on the 17 keV
neutrino can be satisfied in this model, the laboratory limits coming
from the neutrino oscillations cannot be easily met. An extension
which removes this inadequacy and offers a consistent description of
the 17 keV neutrino is discussed.
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1 Introduction

Apart from playing an important role in cosmology and astrophysics, neu-
trino masses would provide an unambiguous signature of physics beyond the
minimal SU(3) x SU(2) x U(1) model. Various mechanisms for generating
these masses in gauge theories [[l] have been proposed. Among them, the
seesaw mechanism of Gell-Mann, Ramond Slansky and Yanagida (GRSY)
[A] explains their smallness compared to other fermions in a natural way and
has been extensively studied. The presence of (at least) one right-handed
neutrino with a large (Majorana) mass M is an essential ingredient in the
GRSY mechanism. This large mass M suppresses the masses of ordinary
left-handed neutrios which are typically given by

my, ~m? /M, (1)

1=1,2,3 being the generation indices and m; is the Dirac mass connecting the
left- and the right-handed neutrinos of the ith generation. M is related to
the breaking of GUT or left-right symmetry in many models, but, in general,
it could assume any value from O(GeV) to Mpjguer in a phenomenologically
consistent manner. m,; could be linked to masses of the charge—% quarks u;
or to those of the charged leptons e;. One interesting aspect of the GRSY
mechanism is that there exists a range of natural values of parameters m;
and M for which the neutrino masses are in the observable range and near
their experimental limits. For example, if M is identified [JJwith the weak
scale (= 100 GeV) and m; with the charged lepton masses, then m,, ~ 2.5
eV, m,, ~ 100 keV, and m,, ~ 30 MeV. Likewise, if m; are identified with
the masses of u;, then one could have observable mass at least for v,, even
for a large M, e.g., M ~ 107 GeV and m, ~ 100 GeV implies m,. ~1 MeV.

Seesaw models which predict m,,, and m,,_ in the above range have to
satisfy two important constraints. The first comes from neutrinoless double
beta decay (Ov(3) which requires the effective mass m.ys for v, to be less
than a few electron volts. A heavy neutrino mixing with v, could contribute
significantly to this effective mass, e.g., a neutrino with 1 MeV mass con-
tributes >O(eV) to mey; if its mixing 3 with v, is > 1073, One must avoid
large contribution to Ov33 coming in this way from heavy masses. The sec-
ond constraint comes from the neutrino contribution to the energy density
of the universe [fl]. In terms of masses, this requires the sum of the masses of
the normal neutrinos to be <100 eV. Hence v, and v, have either to decay or
to annihilate in the early universe if their masses are large compared to this
limit. Both decay as well as annihilation could occur if the theory contains



a massless Goldstone boson, viz., the Majoron. Such a Goldstone boson can
be naturally incorporated [ in the seesaw model by introducing a complex
SU(2) x U(1) singlet Higgs field whose vacuum expectation value sets the
scale M and breaks lepton number spontaneously, generating the Majoron.
A minimal model of this type is however shown [§] to be inadequate for gen-
erating fast decay of the heavy neutrino. A typical decay rate for the process
vy, — v+ J is shown [d] to be
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The life time implied by the above equation exceeds the age of the universe
for light (m,, =~10keV) neutrino v, and relatively large (>TeV) M. The
life time can be lowered by lowering the value of M, but it is possible to
construct models where the decay v, — 1 + J occurs at a much faster rate
than given by eq.(2). Models proposed [, §] in the literature achieve this by
enlarging the Higgs content. They typically require adding more than one
singlet to the minimal seesaw model.

One of the motivations of the present works is to look critically at the
minimal model with only one singlet Higgs and three right-handed neutrinos
added to the standard model. We shall show that if one does not insist on
the conservation of total lepton number then it is indeed possible to obtain
in this minimal model a heavy neutrino decay rate much faster than given in
eq.(2). The Majoron in this scenario gets related to a spontaneously broken
horizontal symmetry acting on leptons. It is possible to choose this symmetry
in such a way that the contribution of the heavy neutrinos to Ov(33 cancels
naturally. Thus within this minimal model one could accommodate heavy
neutrinos without conflicting with any of the known constraints.

The second aim of the paper is to see if the heavy neutrino in this
minimal model can be identified with the reported [d] 17 keV neutrino. Like
any other heavy neutrino, the 17 keV neutrino has to satisfy [[[(] constraints
imposed by cosmology (relic densiy and nucleosynthesis), astrophysics (the
supernova SN1987a) and the laboratory experiments (0v33 and oscillations).
The desire to satisfy these constraints has given rise to ingenious but fairly
involved [L1] models for the 17 keV neutrino. We shall show that the minimal
model considered here can meet most of the stringent constraints. We shall
give an explicit example where this happens. We however find that the
mixing angles predicted in this example do not agree with the laboratory
limits on them coming from neutrino oscillations if the mixing of the 17
keV neutrino with v, is indeed as large as ~ 1%. One could avoid this



easily by adding an SU(2) triplet of Higgs field to the minimal seesaw model.
The resulting model provides a much more economical and yet successful
description of the 17 keV neutrino than most of the proposed [ schemes.

In the next section, we discuss the minimal seesaw model and show
that it is possible to obtain a decay rate higher than given by eq.(2) for a
heavy neutrino in this model. The third section contains a specific example
which has fast decay rate and suppressed neutrinoless double beta decay.
The fourth section summarizes the constraints on the 17 keV neutrino. In
the fifth section we provide a model for the 17 keV neutrino. The last section
summarizes our results.

2 Heavy Neutrino Decay

We consider in this section an SU(2) x U(1) x U(1)y model containing three
right-handed neutrinos and a complex SU(2) x U(1) singlet scalar field n in
addition to the standard fields. The right-handed neutrinos are needed to
obtain seesaw masses while 7 as well as a global symmetry U(1)y is required
to obtain Majoron in the manner suggested [[] by CMP. We shall refer to
this model as the minimal seesaw model (MSM). U(1)y was identified with
the total lepton nuber in reference [{]. As was shown [(] later, this leads
to eq.(2) and hence to a slower rate for the decay of heavy neutrino to a
lighter neutrino and Majoron. This decay rate can be increased [[ if U(1)y
distinguishes between generations. Explicit models where this happens [,
were discussed but this involved adding more than one singlet scalar field.

As we discuss now, this is unnecessary and one could obtain a fast decay in
the framework of the MSM.

If we do not insist on the conservation of total lepton number then the
most general Yukawa interaction invariant under SU(2) x U(1) x U(1)y is
given as follows:
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#° is a neutral member of the doublet and v} v} are weak eigenstate neu-
trino fields. m,M,,, M,- and Mp are matrices in generation space. The entries
in m are typically of the order of the charged-lepton or the up-quark masses
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while those in M,,,M,- and Mp are assumed to be much larger. Because of
the simultaneous presence of 1 and 1* in eq.(3), Ly cannot conserve total
lepton number. Once lepton number conservation is not insisted upon, there
is no reason to forbid the bare mass term Mp which has also been included
in the above equation. All the terms in eq.(3) are however required to be
invariant under a global U(1)y corresponding to some linear combination of
the individual lepton numbers of each generation.

Eq.(3) gives the following mass term for the neutrinos

Li— — v
_‘Cmasszi(yi, V}{)M(y;g)‘l‘HC, (4)
where
0 m
M= < mT ) : (5)
and

M = M, + M, + M. (6)

for simplicity, we shall assume CP conservation and take all masses and
vacuum expectation values real. Moreover, we shall work in the seesaw limit,
M > m, M ,m being typical values of the entries in m and M respectively.
Diagonalization of M proceeds in the well-known [ way in this limit. First,
we block diagonalize M, i.e.,

r [ —mM'm? 0 m®
UMU™ = < 0 M+ sM~m"m + sm"mM >+O<M2 ’
(7)
where,
1= 1,7 —
o= (1 T, ) ow ®)
2

and p = mM~'. —mM~'m” defines the effective mass matrix mey for the
light neutrinos in the seesaw limit. Let O be 3 x 3 matrix which diagonalizes

Meff
Ome;;O" = diag.(Eym,, Eam,, E3mu,). 9)

my, (i=1,2,3) are positive masses for three light neutrinos. &; are signature
factors which depend upon the structure of the matrix m.ss. They can be
removed by a redefinition of the phases of the neutrino fields, i.e.,

POm.; ;O PT = diag.(m,,, m,,, m,;), (10)

with .
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The relation between the weak eigenstates v}, and the light mass eigen-
states follows from eq.(10),

I/gL = [OTP*]UI/]'L + ... (12)
I/ﬁ% = —[M_lmTOTP]Z'jI/jL + ... (13)
The terms involving ... contain fields describing the heavy Majorana neu-

trinos with masses ~ O(M ). We are primarily interested in the light fields

1ZA

The vacuum expectation value of 1 breaks the U(1)y symmetry spon-
taneously giving rise to a Majoron J. The latter is related to n by

J= V2Imy. (14)

The couplings of the light neutrinos to the Majoron arise through cou-
plings of the right-handed fields vg to 1. Using eq.(3),

(3 I /
— = ——VE(M, — M, )vpJ + H.c. 15
J 2\/5 < n N R( n n ) R ( )
In terms of the mass eigenstates v; of the light neutrino fields, eq.(12,13), we
have .
1 i
—Ly=—— e S8y ¢ 4 He. 16
J 2\/§ < n >g] LY35L ( )
where,
Jij = [OmJOT]ij> (17)

with the Majoron coupling matrix m; defined as
my =mM (M, — M,y )M 'm". (18)

In terms of the Majorona fields v; = v;;, + v;1.¢, we have for any pair 7, j(i >
Ik

Gij _ .
—L; = ———T71:J if ;+& =0
! V2<n> "7 St
Gij _ .
= +———7vJ if &+ & =22, 19
NPT &+ (19)

The couplings g;; of neutrinos to Majoron are generically of O(;Z—z)
However, in specific cases, the matrix ¢g could be diagonal and the neutrino
decay amplitude may be suppressed. This happens, for example, if U(1)y is



identified with the total lepton number [f]. Mp is zero and only one of M,
and M, is allowed to be present in eq.(3). As a result, the Majoron coupling
matrix m; coincides with m.s¢ and g is diagonal. The off-diagonal Majoron
couplings arise [p] at O(ﬁ—i
is enormously suppressed as in eq.(2)

) in this case and the decay rate for v; — v; + J

In general, the off-diagonal couplings of neutrinos to Majoron arise if
any two of the Mp, M, and M, are nonzero. The matrix m; is different
from meyy in this case. As long as the m; does not commute with mesy, the
coupling matrix ¢ contains off-diagonal entries at O(]\"}[—Z) leading to a fast
decay rate for v; — v; + J. In this situation, one could have heavy neutrinos
without any conflict with cosmology. We shall present a model where this
happens in the next section.

3 A Specific Model

Following the analysis presented in the earlier section, we now present an
explicit model. We shall make a specific choice of U(1)y which not only
leads to a fast decay for the heavy neutrino but also implies vanishing of the
neutrinoless double beta decay amplitude in a natural manner. As already
discussed, a fast decay rate can result if U(1)g allows at least two of the
three possible mass terms M,,,M,- and Mp. This can be done by an appro-
priate choice of U(1)g. The requirement of a vanishing neutrinoless double
beta decay amplitude also constrains the choice of U(1)y. As discussed by
Wolfenstein [[J] the neutrinoless double beta decay amplitude is proportional
to the 11 element of the light (< O(MeV)) neutrino mass matrix in the basis
which makes the charged lepton mass matix diagonal. U(1)y must be chosen
to ensure this.

We assume that the ordinary doublet field ¢ is neutral under U(1)g.
The Majoron does not have tree-level couplings to fields other than those of
neutrinos in this case. As a result, the scale of the U(1)y breaking is not
required to be very high as in some models [[J] with a non-trivial ¢. We
shall also require U(1)y to be vectorial and assume that no two generations
transform identically under U(1)y. These requirements simplify the task of
making the neutrinoless double beta decay amplitude vanish. With these
requirements imposed, the charged lepton mass matrix as well as the Dirac
mass term m in the neutrino mass matrix automatically become diagonal.



The neutrinoless double beta decay amplitude then vanishes if the 11 element
of mesr = —mM~'m” and hence of M~ is zero. In the absence of any non-
abelian symmetry which relates various Yukawa couplings, (M~1);; can be
zero only if Mz as well as Msy and/or M3z vanish. We shall try to be most
general and allow the maximum number of entries in M~! to be nonzero.
Then, a little consideration shows that only two choices are possible for
U(1)g. These correspond to L, —3L, — L, and L. —3L. — L,. We explicitly
discuss the former choice. Analogous considerations are valid for the latter.
With this choice for U(1)y, M,, M, and Mp defined in eq.(3) are given by

0 M; 0
M,=1| M, 0 0 (20)
0 0 M
Ms; 0 O
M, = 0 00 (21)
0 00
0 0 M,
Mg = 0 0 O (22)
My 0 O

If we parametrize the elements of the diagonal matrix m by m; then it follows
using eq.(6) that

0 X O
mesp=-mMmT = X Y Z (23)
0o Z W
with
mi1me
X = - 24
L 24)
m; 2
Y = M12M2(M2M3—MO) (25)
m2m3MO
Z = 26
N (26)
2
m3
= —— 2
T 27)

mess can be diagonalized by an orthogonal matrix. The zero entries
in mesy imply two independent relations among three mixing angles and
masses. We shall extract these relations under the physically relevant (see
next section) assumption of all the mixing angles being small. In this case,



O can be parametrized by

1—5(a®+ 37 a 3
O~ —a 1—3(a®+19%) v (28)
—0 —7 1-3(8°+7°)

This choice of O as well as eq.(9) lead to the following relations corresponding
to (megp)11 and (mesr)13 being zero respectively:

§imy, (1 — o® — ﬁz) + €2m1/2a2 + §3mugﬁ2 ~0 (29)

glmmﬁ - 7a€2mvz - €3ml/3/6 ~ 0. (30)

Neglecting contribution of m,, in the above equations, we obtain

Oé2 ~ €3m1/3

? - §2m1/2
V_O‘ ~ _£3ml/3
5 §ammyn
Eq.(31) requires 5—;’ to be negative. Choosing &3 = —1, & = & = 1, the

13
elements of m.ss can be expressed in terms of masses and mixing angles:

(31)

(32)

X = —amy, — pBym,, +am,,

Y = o’my,, —*my, +m,,(1—a® —~?)

Z =~ afmy, +y(my, +m,,)

W = v*my, + 3*m,, —m,, (1 — 3> —~2). (33)

l

Eq. (33) allows us to fix the Majoron couplings completely in terms of mixing
angles and masses. With M,, M,. and Mp explicitly given by egs.(20-22),
the couplings ¢12 and g3 responsible for the decay of 15 3 to 11 and a Majoron
can be worked out from eq.(17). These are given by

G2 = —2aY —avZ —pBZ
—2am,,
g1z & —aZ+2a7Y + fyZ
Bm,, (34)
where we have used eqgs.(31-32) and retained only the leading contributions

assuming all the mixing angles to be of similar magnitudes. We shall neglect
the contribution of m,,. The rates for the decay of v 5 are given by

(913)2 (mV3 + mV1)2(m12/ B m12/ )
F J g 3 1
(vs = v +J) 327 (M, )3 <n>?
T 32m<n >2
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(912)2 (mV2 + mV1)2(m2 - m2 )
I J) = Y2 "
(vy — 11+ J) 327 (my, )? <5 >?
a? m?
~ 8_Wi< » 2>2. (36)

Analogous result also holds for the decay rate of the v3 going to v5. The con-
siderations based on the relic density of neutrinos imply stringent constraints
on the lifetime of neutrinos. This is discussed in [ff] as a function of the heavy
neutrino mass. Typically, for a neutrino with mass around 1 MeV, one has
7 < 10? sec. Considerations based on the structure formation in the universe
imply more stringent bound [I4] on 7. If the neutrino lifetime is very long
then the decay products of the heavy neutrinos could make the universe ra-
diation dominated after the recombination epoch. If this happens, then the
density perturbations at the time of recombination cannot grow adequately
preventing the formation of structures. Requiring that the life time is short
enough for the universe to remain matter dominated till the present epoch

[[3] one gests

<1. 3 My -2
7 <1.7x%x10 sec(1 MeV) (37)
We can use eqs(35,37) to derive the bound on the Majorana mass scale < n >
B, My,
< (1. 107GeV) (5)(—2-)/?
<n>< (15 x10°GeV)(7)(557) (38)

Thus a fairly large value is allowed for the scale of the singlet vacuum expec-
tation value. The situation here is to be contrasted with the original singlet
Majoron model. In this model the decay rate is typically given by eq.(2) and
the cosmological limit requires

p

<n><(15x 102G6V)(—1)1/2(%)3/4 (39)
. €

Before we close this section,we would like to point out that the struc-
ture similar to eq.(23) for the neutrino mass matrix was obtained by Valle
[B]. He however did not include both the terms 7 and 7* in the Yukawa
couplings but had two different Higgs scalars to obtain essentially the same
structure. This extension is not necessary and one could stay with the min-
imal structure. His main motivation was to understand the 17 keV neutrino
using the structure(23). This is not possible as we shall discuss in the next
section, unless one does a delicate fine tuning of the parameters.
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4 17 keV neutrino: Constraints

The existence of a 17 keV neutrino v47 mixing significantly with v, was first
reported in 1985. Subsequent experiments failed to observe it. Last year,
there were further evidences for and against the existence of vq; . This
has generated a considerable theoretical interest and various constraints to
be satisfied in any model incorporating v17 have been worked out in detail
[[J]. The severe constraints mainly come from a) the near absence of the
neutrinoless double beta decay, b) the observed neutrino signals from the
supernova SN1987a, c) the bound on the relic density of the universe and d)
nucleosynthesis. The need for satisfying all these constraints simultaneously
has given rise to models [LI] for v17 which invoke new physics. As we now
discuss, the minimal model considered above can in fact meet all the above
mentioned requirements. The detailed prediction on mixing angles made in
the model however disagrees with the known limits coming from the neutrino
oscillation experiments.

One way to incorporate the absence of neutrinoless double beta decay
amplitude is to make 17 a Dirac particle. The right-handed component of
this Dirac v17 can either be sterile or it could be one of the known antineutri-
nos. In the former case, the observed length of the neutrino pulse from the
supernova SN1987a puts strong constraints [Ld] on the neutrino mass. This
case is marginally allowed, the latest [[7] limit being around 25 keV.

The alternative in which 147 is a Dirac particle with a non-sterile right-
handed component can be realized by imposing [[§] an unbroken L.—L,,+ L,
symmetry. The supernova does not imply any restriction in this case. This
scenario is however constrained by cosmological arguments. The 147 remains
stable in the minimal model with L. — L, + L, symmetry. The relic density
of 117 in this model can exceed the cosmological limit unless annihilation
of 117 into Majorons occurs very rapidly. But if this annihilation is strong
enough, the Majoron stays in equilibrium till the nucleosynthesis era [[J].
This again conflicts with the known bound [[l] on the contribution of the
additional spieces to nucleosynthesis.

In the light of the above arguments, we are forced to consider a majo-
rana vy7 if we wish to understand it within the conventional seesaw frame-
work. The MSM has not been seriously considered as a model for 147 in the
literature because of difficulty in satisfying the constraint coming from the
neutrinoless double decay and because of the expected [[] slow rate for the
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decay of neutrino. The example presented in the earlier section shows that
this is not the case. This example in fact satisfies all the above constraints.
By virtue of being a non-sterile Majorana particle, there is no constraint on
vy7 from the supernova. Fast decay avoids conflict with cosmology. Neu-
trinoless double beta decay amplitude nearly vanish in this model and the
Majoron does not stay in thermal equilibrium at the nucleosynthesis era if
the scale M exceeds [[d] about few GeV. Despite this, the model cannot
describe v17 in a consistent manner as we now show.

With all three neutrinos nondegenarate and two quite heavy, the neu-
trino oscillation experiments require all the three mixing angles to be small.
Adopting the parametrization of Caldwell and Langacker [[L{] , the limits on
three mixing angles coming from the oscillation experiments are given [[L(]
by

la] <.029 from v, <> v, oscillation
8] <0.18 from v, v, oscillation

ly] <.032 from v, < v, oscillation (40)

Only § can be as large as reported for the 17 keV neutrino. Hence, the v
has to be identified with v.. The absence of the neutrinoless double beta
decay also constraints the masses and mixings. This is already evident in
eq.(31) and implies

o? ~ G2 (41)
My,

With 8 ~ 0.1, m,, =~ 17keV and m,, corresponding to the experimental

limit on v, mass, we have
la] > 0.025 (42)

Thus one has both the upper and lower limit on a. The model of section 3
contains a nontrivial relation among the mixing angles. Combining eq.(31)

and (32), this is given by
a

6

The limits expresssed in eq.(40) and (42) are seen to be grossly incompatible
with each other if 3 is around 0.1. As a result the model fails to describe the
observed vq7.

v~ 3] (43)

We had used the L, — 3L, — L, symmetry in arriving at the model of
section 3. There exists equivalant model with the symmetry L. —3L,—L,. In
this model, instead of the 13 element the 12 element of the effective neutrino
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mass matrix is zero. As a consequence, the relation (43) gets replaced by
s
|~ =] (44)
e

Unfortunately, this relation is also inconsistent with eq.(40) in view of the
upper bound on «. Thus the other choice of symmetry also does not provide
a viable model for vy7. As already mentioned, these are the only choices of
U(1)m which lead to the absence of neutrinoless double beta decay amplitude
in rather natural manner. Hence, the MSM of the type described in the earlier
section cannot be used to describe 7. This conclusion can be evaded if one
fine tunes the parameters [[] of the model.

The bounds on mixing angles expressed by eq.(40) are derived assuming
all the neutrinos to be non-degenarate. In case of two of the neutrinos being
almost degenarate, the mixing between them is not required to be small. In
the present case, if v, and v, are degenerate the problematic bound on || no
longer holds. The mass matrix in eq.(23) does not admit this solution unless
one fine tunes the parameters. Specifically, one needs to assume Y and W
in eq.(23) to be much smaller than the off-diagonal elements. m.s; then
displays an approximate L. — L, + L, symmetry and one gets a Dirac v7.
Moreover, unlike the model with a triplet Majoron [1§], the heavy neutrino
does have off-diagonal couplings to the Majoron even in the limit of W and
Y becoming zero. Unfortunately, it is not possible to choose a U(1)y which
automatically ensures vanishing of W and Y. Therefore these elements have
to be fine tuned. The required fine tuning is quite delicate [IJ]. In the event
of large v the v, disappearance [P0 experiments constrain the |m2, —m2,
to be < 0.23 (eV)% If W and Y are < X, Z then |m,, — m,,| ® Y + W,
Thus the ratio, |¥£%| is required to be < 107, In the absence of such fine

Z
tuning among the parameters, one needs to enlarge the model of section 3 to

accommodate the v;7. This we do in the next section.

5 17 keV neutrino: A model

The basic difficulty in describing vy7 within the scheme is the relation (43)
which is a consequence of (m.yrr)13 being zero. We can easily extend the
MSM to avoid this. The extension amounts to adding an SU(2) x U(1) triplet
carrying hypercharge —2 and transforming trivially under U(1)y. When the
neutral member of the triplet acquires a vev, the following 6 x 6 maass matrix

13



results for the neutrinos

om m
M:<mT M)’ (45)

where the matrices m and M remain the same as in section (3). dm is now
given by

0 0 ¢t

om=|0 0 0 |. (46)

t 00
t refers to the contribution coming from the triplet, which is assumed to be
<0 (%2) One could block-diagonalize the M in the seesaw limit with the
same U as in eq.(8).

v [ Mers O
UMU* = < 0o M ) , (47)
where
Meff = om — mM'm”
0 X ¢
= XY Z |. (48)
t Z W

This meyss differs from eq.(23) only by the (13) entry. The former can be
diagonalized by an orthogonal matrix O as in eq.(9) and elements of m.y;
can be related to mixing angles and masses. In addition to eq.(33), we now
have

t = Bmu, + muy,) — aymy,. (49)
The vanishing of ¢ in the earlier model led to the problematic relation (43).
This is now avoided. The mixing angle and masses now satisfy only one

relation corresponding to the vanishing of neutrinoless double beta decay
amplitude.

The triplet field is neutral under U(1)y. As a result, the Majoron is
still given in terms of Imn. Hence the Majoron couplings g;; are still given
by the basic expression (eq.(17)) derived in section 2. The couplings g;2 and
g13 are then given as follows

g2 ~ yt—2aY —ayZ —aft— 7
—2amy, (50)

Q

Q

1
913 (11— 5(042 +9° +20%) —aZ +2a0Y — B2 + B2

B, (51)

Q
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Using the upper limit on « as given in in eq.(40) and § ~ 0.1, we get the
following decay rates

(913)2 (mvs + mlﬂ)z(ng - mi)
327 (my,)3 <n>?

? 3 (105GeV \?
1.5 x 10-sec) [ - ( T, )
(15> 107 sec™) (0.1) 10keV <n>

(912)2 (mu2 + ml/1>2(m12/ - m12/ )
Dy =11+ J) = o (m, )P p— 2 1

2 3 (10°GeV >
~ (5.4 x 10 3sec™ < a ) ( v, ) 52
(54> 107 sec )\ 553) \Tookerv) \ =7 (52)

(s = +J) =

Q

Analogous result holds for the decay of v3 to v; and the Majoron. We have
chosen m,,, to be 10 keV and a typical value of 100 keV for the muon neu-
trino mass allowed by the constraint, eq.(31), coming from the vanishing of
neutrinoless double beta decay amplitude. The scale < n > is arbitrary but
as follows from the above equation both the neutrinos can decay very fast
for a large range in this scale.

6 Summary

We have considered in this paper, a possibility of describing heavy neutrinos
in a phenomenologically consistent manner within the MSM. This is made
possible by imposing a global U(1)y which is chosen in a way that simul-
taneously ensures the absence of neutrinoless double beta decay amplitude
and also leads to a fast decay rate for the heavy neutrinos. It is widely be-
lieved that decay of a heavy neutrino to a lighter neutrino and Majoron is
suppressed in the MSM with only one singlet of Higgs field. We have shown
this not to be the case.

The MSM comes very close to providing the description of the recently
reported 17 keV neutrino. All the astrophysical and cosmological constraints
as well the requirement of the vanishing neutrinoless double beta decay am-
plitude are met in the model. As shown in section (3), the relation among
mixing angles predicted in the model do not however seem to be satisfied
in case of the 17 keV neutrino. This can be easily avoided in an extension,
which also includes an SU(2) triplet Higgs field. The major shortcoming of
the model is its inability to solve the solar neutrino problem and to describe
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17 keV neutrino at the same time. The mass difference between the neutri-
nos in this case are much larger than required for solving the solar neutrino
problem either through the Mikhyev Smirnov Wolfenstein [2]]] mechanism
or through the magnetic moment [27] of the neutrino. This would certainly
require going beyond the conventional seesaw mechanism.
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