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Abstract

CP -violating asymmetries due to a possible electric dipole interaction of the top

quark in the production and subsequent decay of top quark-top antiquark pair in

photon-photon collisions are studied. The asymmetries defined can be used to de-

termine the imaginary part of the electric dipole form factors. A γγ collider with

photon beams generated from laser back-scattering off electron beams with an inte-

grated geometric luminosity of 20 fb−1 can put a limit of the order of 10−17 e cm on

the imaginary part of the electric dipole form factor of the top quark if the electron

beams have longitudinal polarization and the laser beams have circular polarization.

PACS Numbers: 11.30.Er, 13.40.Em, 14.65.Ha

1 Introduction

Studying CP violation and looking for its signatures at colliders (present and future) is
important for various reasons. Apart from the fact that any indication of CP violation
outside the K-meson and B-meson systems seen at colliders likely to be operational in the near
future will be a clear indication of physics beyond the standard model (SM), the phenomenon
of CP violation requires to be understood in greater detail. With the expectation and
the eventual discovery of the heavy top quark, [1] there have been many studies on the
electric/weak dipole form factor of the top quark and the CP violation it induces [2]-[7].
This includes work on signatures of CP violation in tt production at e+e− colliders [3]-[6],
as well as at hadron colliders [7].

Since synchrotron radiation makes increasing the energy of a circular collider far beyond
that of LEP2 prohibitive, future colliders operating at higher energies will have to be linear
colliders. In the context of linear colliders, the possibility of photon linear colliders has been
discussed in the literature [8, 9]. The hope is that such a collider will be operational in the
coming decade. In such colliders an intense low-energy laser beam would be backscattered by
a high energy e+/e− beam to give a high-energy photon beam. This photon beam could then
be made to collide with another photon beam or with another lepton beam. In this article we
discuss signals of possible CP violation in the production of a top quark - top antiquark pair
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in a photon-photon collider, by examining asymmetries in angular distribution of leptons
(anti-leptons) that arise in a semi-leptonic decay of the tt pair.

The topic of CP violation in γγ → tt has also elicited interest recently. Anlauf et al. [10]
and Bernreuther et al. [11] have discussed CP violation in a Higgs mediated γγ → tt process
where they study triple-product correlations as well as asymmetries. Choi and Hagiwara
[12], and Baek et al. [13] have studied the effect of the top quark electric dipole form factor
(EDFF) in asymmetries in the top distribution in γγ → tt with linearly polarized photon
beams.

Here we assume a CP -violating electric-dipole interaction of the top quark, but neglect
CP violation in top decay. We consider two asymmetries: the charge asymmetry, which is
the asymmetry in the number of leptons and antileptons produced in the decay of the top
antiquark and the top quark with a CP -conserving angular cut in the forward and backward
directions, and the charge asymmetry combined with the forward-backward asymmetry. In
the absence of a cut-off, charge asymmetry becomes the asymmetry in the production rates
of t and t, which is zero due to charge conservation in the absence of CP violation in top
decay. The effect of longitudinal electron beam polarization together with circular laser beam
polarization on the asymmetries is also studied. With an integrated geometric luminosity
of 20 fb−1 and an initial electron beam energy of a few hundreds of GeV, the limit that
can be placed on the imaginary part of the top quark EDFF is found to be of the order of
10−17 e cm.

The paper is organized as follows. Main features of a photon linear collider will be
discussed in the next section (Section 2). In Section 3 we derive expressions for the CP -
violating asymmetries. The results and conclusion are contained in Section 4.

2 Features of a γγ Collider

In a γγ collider, high-energy photons would be produced by Compton backscattering of
intense low-energy laser beams off high energy electrons [8]. The energy spectrum of a
Compton-scattered photon is given by

1

σc

dσc

dy
= f(x, y)

=
2πα2

σcxm2
e

[

1

1 − y
+ 1 − y − 4r(1 − x) − 2λeλlrx(2r − 1)(2 − y)

]

. (1)

Here

x =
4Ebω0

m2
e

= 15.3
(

Eb

TeV

) (

ω0

eV

)

, (2)

where Eb is the electron beam energy, ω0 is the energy of the laser beam and me is the
electron mass. y is given in terms of the energy of the scattered photon, ω (≤ Eb

x
1+x

) as

y =
ω

Eb
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Figure 1: The figure on the left shows the energy distribution of Compton-scattered photons for

different helicity combinations of the initial electron beam and the laser beam. In the figure on

the right the scattered photon helicity is plotted against the energy of the scattered photon for

different helicity combinations of the laser beam and the initial electron beam. Solid and dotted

lines correspond to 2λeλl = 1 with λe = 1/2 and λe = −1/2 respectively while the dashed line and

the dash-dotted line correspond to 2λeλl = −1 with λe = 1/2 and λe = −1/2, respectively.

and
r =

y

x(1 − y)
≤ 1.

λe and λl are the initial electron and laser-photon helicities respectively. Energy distribution
in terms of the variable y is related to that in terms of ω, for fixed Eb and ω0, by

f(ω) =
1

σc

dσc

dω
=

1

Eb
f(x, y). (3)

The total cross section σc is given by

σc = σnp
c + 2λeλl σ1,

with

σnp
c =

2πα2

xm2
e

[

(

1 − 4

x
− 8

x2

)

log(x+ 1) +
1

2
+

8

x
− 1

2(x+ 1)2

]

and

σ1 =
2πα2

xm2
e

[

(

1 +
2

x

)

log(x+ 1) − 5

2
+

1

1 + x
− 1

2(x+ 1)2

]

.

Here σnp
c is the unpolarized cross section. The energy spectrum f(x, y) plotted against y is

shown in Figure 1.
It is clear from the figure that when λeλl < 0, there are more number of hard photons

than soft photons, while for λeλl > 0 the number of hard photons is less than the number of
soft photons. Also in the case of λeλl < 0 the spectrum peaks at higher energies, resulting
in nearly monochromatic beams.
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Polarized photon beams are more appropriate for CP violation studies. Dependence of
the helicity of the Compton-scattered photon on the energy of the photon is discussed in [8]
and is given by

λγ(ω) =
λl (1 − 2r) (1 − y + 1

1−y
) + 2λe r x [1 + (1 − y) (1 − 2 r)2]

1 − y + 1
1−y

− 4 r (1 − r) − 2λe λl r x (2 r − 1) (2 − y)
. (4)

For 2 λeλl = −1, hard photons will have helicity λ = λe (See Figure 1). As already mentioned
the number of hard photons is much higher than that of the soft ones at 2 λeλl = −1.

Another important aspect of a collider is its luminosity. The luminosity distribution
of a γγ collider depends on different factors like the conversion distance, i.e., the distance
from the scattering point to the interaction point, energy distribution of the beams, etc.
Assuming a Gaussian profile for the electron beam with azimuthal symmetry, the luminosity
distribution of a γγ collider is given in terms of the photon energy distribution by [8]

1

Lee

dLγγ

dω1 dω2
= f1(ω1) f2(ω2) I0

(

d1d2

σ2
1 + σ2

2

)

e
−

d1d2
2(σ2

1
+σ2

2
) . (5)

Here f1(ω1) and f2(ω2) are the energy distributions of the two photon beams (see eqs. (1) and
(3)). I0 is the zeroth order modified Bessel function with di = ziθγi, where zi is the conversion
distance and θγi is the scattering angle of the photon beam, and σi is the half width of the
Gaussian profile. Lee is the geometric luminosity of the original electron-electron collider.
Making a variable change from ω1 and ω2 to η and W , where η = tan−1

(

ω1−ω2

ω1+ω2

)

is the γγ

rapidity and W = 2
√
ω1ω2 is the γγ invariant mass, we get the luminosity distribution as

1

Lee

dLγγ

dW dη
=
W

2
f1

(

Weη

2

)

f2

(

We−η

2

)

I0

(

d1d2

σ2
1 + σ2

2

)

e
−

d1d2
2(σ2

1
+σ2

2
) . (6)

Taking the conversion distance to be zero for simplicity, the expression for the luminosity
distribution becomes

1

Lee

dLγγ

dWdη
=
W

2
f1

(

Weη

2

)

f2

(

We−η

2

)

. (7)

Figure 2 gives the luminosity distribution after rapidity is integrated out. The luminosity
peaks at higher values of invariant mass in case of 2λeλl = −1 and the peak value could be
as high as 90% of Lee, while for 2 λeλl = 1 the spectrum is almost a Gaussian peaking at
low energies.

The expression for the number of events in a particular process γγ → X for the general
case of arbitrary electron and laser-photon polarizations is quite complicated. Considerable
simplification results with the following assumptions: (i) Axial symmetry of the beam (ii)
Only longitudinal polarization of the electron beams (iii) Only circular polarization of the
laser beams (iv) Negligible distance between the conversion points and the interaction points.
In that case, the converted photons have only circular polarizations given by the average
values of the Stokes parameter ξ2. The number of events is then given in terms of the
luminosity distribution (eq. (7)) and the average value of the Stokes parameters ξ2 and ξ2 of
the two photon beams, by [9]

dNγγ→X = dLγγ

(

dσ00 + ξ2ξ2dσ22 + ξ2dσ20 + ξ2dσ02

)

. (8)
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Figure 2: Luminosity distributions are plotted against the γγ invariant mass, W = 2
√

ω1ω2.

The initial electron beam energy, Eb is taken to be 250 GeV and a laser beam of energy 1.24 eV is

assumed. The solid curve is for 2λeλl = −1 while the dotted curve is for 2λeλl = 1. The conversion

distance is assumed to be zero.

Expressions for dσij, which are linear combinations of production density-matrix elements,
and ξ2 and ξ2 are given in the appendix.

For large values of Lee, which are possible to achieve, we expect large tt production in
a γγ collider. In the next section we shall discuss some of the CP -violating effects which
could be tested in these colliders.

3 Charge Asymmetries in γγ → tt

We consider the effective Lagrangian

Leff = LSM + LCP , (9)

where LSM is the usual SM Lagrangian, and

LCP = ie dt ψt σ
µν γ5 ψt Fµν (10)

with

Fµν = ∂µAν − ∂ν Aµ. (11)

dt is the electric dipole form factor and is, in general, complex and momentum dependent.
This modifies the SM ttγ coupling to ieΓµ, where

Γµ =
2

3
γµ + dt σµν γ5 (pt + pt̄)

ν . (12)

CP violation arising due to this electric dipole moment of the top quark could be studied by
using CP -violating asymmetries in the processes involving top-quark coupling with photons.
We consider the process γγ → tt with the subsequent decay of t and t. We neglect CP
violation in the decay of t and t.
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The asymmetries which do not depend on the top quark momentum that we consider
here had been considered by us earlier in the context of an e+e− collider [6]. In simple terms
these asymmetries are (i) the asymmetry in the number of leptons and antileptons produced
as decay products of top antiquark and top quark (the charge asymmetry) and (ii) the sum
of the forward-backward asymmetries of the leptons and antileptons. These asymmetries
being independent of the top-quark momentum are experimentally favourable. The charge
asymmetry is zero in the absence of a cut-off in the polar angle of the lepton (antilepton).
This is because when the cut off is zero the charge asymmetry is just the asymmetry in the
production rates of t and t which is zero from charge conservation assuming that CP is not
violated in t decay.

The two asymmetries are written in terms of differential cross section as follows.

Ach(θ0) =

∫ π−θ0

θ0

dθl

(

dσ+

dθl
− dσ−

dθl

)

∫ π−θ0

θ0

dθl

(

dσ+

dθl

+
dσ−

dθl

) (13)

and

Afb(θ0) =

∫ π
2

θ0

dθl

(

dσ+

dθl

+
dσ−

dθl

)

−
∫ π−θ0

π
2

dθl

(

dσ+

dθl

+
dσ−

dθl

)

∫ π−θ0

θ0

dθl

(

dσ+

dθl
+
dσ−

dθl

) . (14)

In the above equations, dσ+

dθl
and dσ−

dθl
refer respectively to the l+ and l− distributions in the

c.m. frame and θ0 is the cut-off.
Both the asymmetries defined above are even under naive time reversal TN , which changes

the signs of spins and momenta, without interchange of the initial and final states. They are
therefore odd under the combination CPTN . To avoid conflict with the CPT theorem, the
asymmetries can only depend on the imaginary part of dt.

We consider only the semileptonic decay of tt. This means that either of t or t decays
into a b or b and leptons, while the other decays hadronically. We choose this semi-leptonic
mode for two reasons. Firstly, the leptonic decay (into µ or e) is cleaner to trigger on, and
secondly, allowing the other decay to be hadronic gives a larger number of events due to
the larger branching ratio. We work in the narrow-width approximation, where W boson
is produced on-shell. We also consider on-shell production of t and t which allows us to
separate the production and decay parts of the amplitude.

The Feynman diagrams for the process γµ(k1)γν(k2) → t(pt)t(pt) are shown in Figure 3.
We make us of helicity amplitudes. Thus, our approach is different from that of [14],

which uses trace techniques, and which was made use of, for example, in [15] in the case of
e+e− → tt. The production helicity amplitudes are calculated using a method developed by
Vega and Wudka [16]. The helicity amplitudes are given by

M(λγ , λγ, λt, λt) = − 4mt e
2Q2

t√
s(1 − β2

t cos2 θt)
{(λγ + λtβt)

−i dt 2mt

[

2 +
s

4m2
t

βt(βt − λtλγ) sin2 θt

]
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Figure 3: Feynman diagrams for the process γγ → tt˙

+d2
t

sλγ

2

[

4m2
t

s
+ βt(βt − λγλt) sin2 θt

]}

M(λγ , λγ, λt,−λt) = − 4mt e
2Q2

t

(1 − β2
t cos2 θt)

×βt sin θt cos θt

[

λγ i dt −mt d
2
t

]

M(λγ ,−λγ, λt, λt) =
4mt e

2Q2
t√

s(1 − β2
t cos2 θt)

×
[

λt βt + i dt
s

2mt

β2
t − d2

t

s

2
λtβt

]

sin2 θt

M(λγ ,−λγ, λt,−λt) =
2βt e

2Q2
t

(1 − β2
t cos2 θt)

sin θt {(λγλt + cos θt )

−d2
t

s

2

[

4m2
t

s
cos θt + λγλt(1 − β2

t cos2 θt)

]}

. (15)

The notation is that in M(λγ1, λγ2, λt, λt), λγ1, λγ2, λt and λt correspond to the helicities
of the two incoming photons, the top quark and the top antiquark respectively. Qt = 2/3 is
the top charge, θt is the scattering angle in the c.m. frame, and βt is the top-quark velocity.
It should be noted that dt occurring in eq. (15) is in reality a dipole form factor and not the
on-shell dipole moment, because in Figure 3, one top line at each vertex is off-shell. These
expressions agree with those in [13].

To be able to calculate from these amplitudes the differential cross section of the complete
process with initial electron states using eq. (8), we first need to know the combinations of
cross sections dσij for the γγ subprocess. These we write in terms of the production density
matrix elements ρij , expressions for which are given in the appendix. We get the following
expressions.

dσ±

ij

d cos θt dEl d cos θl dφl
=

3α2β

16x2
w

√
s

El

ΓtΓWmW

(

1

1 − β cos θtl
− 4El√

s(1 − β2)

)

×
{[

ρ±ij(++) + ρ±ij(−−)
]

(1 − β cos θtl)

+
[

ρ±ij(++) − ρ±ij(−−)
]

(cos θtl − β)

+2 Re
(

ρ±ij (+−)
)

(1 − β2)
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× sin θt sin θl (cos θt cosφl − sin θt cot θl)

+2 Im
(

ρ±ij (+−)
)

(1 − β2) sin θt sin θl sin φl

}

. (16)

Here θtl is the angle between the top quark and the lepton, and θl and φl are the polar and
azimuthal angles of the lepton in the c.m. frame. We consider only terms at most linear in
dt. All the higher-order terms are neglected assuming that dt is small. The superscript ±
correspond respectively to t and t decaying into leptons.

The cross section is given in terms of dσ±

ij as

dσ± = dσ±

00 + ξ2ξ2dσ
±

22 + ξ2dσ
±

20 + ξ2dσ
±

02. (17)

We now go over to CP -odd asymmetries which can be obtained from the differential
cross section. The charge asymmetry is defined as

Ach =
1

2N

{

∫ dLγγ

dω1dω2
dω1 dω2

∫ 1

−1
d cos θt

×
∫ π−θ0

θ0

dθl

[

dσ−

d cos θt dθl
(θl) −

dσ+

d cos θt dθl
(π − θl)

]}

. (18)

The charge asymmetry combined with the forward-backward asymmetry is defined as

Afb =
1

2N

∫

dLγγ

dω1dω2
dω1 dω2

∫ 1

−1
d cos θt

×
{

∫ π/2

θ0

dθl

[

dσ−

d cos θt dθl
(θl) +

dσ+

d cos θt dθl
(π − θl)

]

−
∫ π−θ0

π/2
dθl

[

dσ−

d cos θt dθl
(θl) +

dσ+

d cos θt dθl
(π − θl)

]}

(19)

N is the total number of events given by integrating dN in eq. (8) with dσij given by eq. (16).
ω1 and ω2 are the energies of the two photon beams.

The expression for the angular distribution given by eq. (16) is in the γγ c.m. frame
whereas the expressions for Ach and Afb above (eqs. (18) and (19)) are in the lab frame. We
will therefore rewrite these latter expressions in the γγ c.m. frame. Changing the variable of
integration to cos θl and noticing that the lab frame is obtained by boosting the c.m. frame
by a velocity βγ = ω1−ω2

ω1+ω2
, we get the lower and the upper limits of integration in the γγ c.m.

frame as

f(θ0) =
cos θcm

0 + βγ

1 + βγ cos θcm
0

and

g(θ0) =
cos(π − θcm

0 ) + βγ

1 + βγ cos(π − θcm
0 )

=
− cos θcm

0 + βγ

1 − βγ cos θcm
0

.
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Making use of the fact that

f(π − θ0) =
− cos θcm

0 + βγ

1 − βγ cos θcm
0

= g(θ0)

and

g(π − θ0) =
cos θcm

0 + βγ

1 + βγ cos θcm
0

= f(θ0),

we get the final expression for Ach as

Ach =
1

2N

{

∫

dLγγ

dω1 dω2

dω1 dω2

∫ 1

−1
d cos θt

×
∫ g(θ0)

f(θ0)
d cos θl

[

dσ−

d cos θt d cos θl
(θl) −

dσ+

d cos θt d cos θl
(θl)

]}

, (20)

where the differential cross section is in the c.m. frame. A similar expression holds for Afb:

Afb =
1

2N

∫ dLγγ

dω1 dω2
dω1 dω2

∫ 1

−1
d cos θt

×
{

∫ βγ

f(θ0)
d cos θl

[

dσ−

d cos θt d cos θl
(θl) +

dσ+

d cos θt d cos θl
(θl)

]

−
∫ g(θ0)

βγ

d cos θl

[

dσ−

d cos θt d cos θl
(θl) +

dσ+

d cos θt d cos θl
(θl)

]}

. (21)

We use the expressions derived above to evaluate the sensitivity of the experimental set-
ups with different luminosities and energies to the top dipole moments. The sensitivity of an
experiment to the measurement of a physical quantity depends on the statistics. The number
of asymmetric events must be greater than the statistical fluctuation by a certain factor for it
to be observed. This factor determines the confidence level (C.L.) of the measurement. For
a system with one degree of freedom the number of asymmetric events NA (= N A, where A
is the asymmetry and N is the total number of events) for a certain value of dipole moment
dt should then be greater than 1.64

√
N for the dipole moment to be observable at the 90%

C.L., where
√
N corresponds to the standard deviation. Using this we can get limits that

can be set on the dipole form factors in case the asymmetry is not observed. The 90% C.L.
on the dipole form factor is therefore given by

δdt =
1.64dt√
NA

=
1.64√
NA

, (22)

where A = A/dt is the value of the asymmetry A for unit dipole moment.
The following section discusses the results we obtain. We have carried out the cos θl

integrals in the above expressions analytically, and the remaining integrals, viz., those over
cos θt, ω1 and ω2, numerically.
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Asymmetries Limits on Im dt

λ1
e λ2

e λ1
l λ2

l N Ach Afb (10−16 e cm) from
|Ach| |Afb|

−.5 −.5 −1 −1 76 −.019 0 2.76
−.5 −.5 1 −1 252 −.025 −.129 1.19 .230
−.5 −.5 1 1 631 −.035 0 .54

.5 −.5 −1 −1 73 −.024 .013 2.31 4.25

.5 −.5 1 −1 32 −.021 −.080 3.89 1.03

.5 −.5 −1 1 163 −.021 .033 1.73 1.12

Unpolarized 194 −.028 0 1.19

Table 1: Asymmetries and corresponding 90% C.L. limits obtained on Im dt for various
combinations of initial beam helicities. The top mass is kept at mt = 174 GeV and an
initial electron beam of energy Eb = 250 GeV and a laser beam of energy ω0 = 1.24 eV are
assumed. The cut-off angle taken is θ0 = 30◦. N is the total number of events. Asymmetries
are for Im dt = 1

2mt
.

4 Results and Conclusion

Charge asymmetry and forward-backward asymmetry combined with charge asymmetry are
calculated for different initial-beam helicities. Also, fixing a particular helicity combination,
asymmetries are obtained at different electron beam energies and for different laser beam
energies. In doing so, the value of x is kept constant. Variation of asymmetries with x,
fixing variables like the helicites and cut-off angle is also studied. Asymmetries are also
studied at different cut-off angles with beam energy and other parameters kept constant.
All the calculations are done assuming a geometrical integrated luminosity of 20 fb−1 for the
electron-electron collider. We also assume the laser energy ω0 to be 1.24 eV. We discuss the
results in the following.

Table 1 displays asymmetries (in all cases we calculate asymmetries for a fixed value of
Im dt = 1/(2mt)) obtained for different helicity combinations for beam energy 250 GeV and
cut-off angle 30◦. The top-quark mass is taken to be 174 GeV. Some important features of
the results in Table 1 may be noted. There is no combined asymmetry when both λ1

e = λe
2

and λ1
l = λ2

l . This is expected as the forward and backward directions cannot be distin-
guished in this case because the two colliding photons are identical. In SM electromagnetic
interactions respect parity and hence the cross section is symmetric under λe

i ↔ −λe
i. Thus

the total number of events, which gets contribution only from SM, remains the same under
this transformation.

As seen from Table 1, the 90% C. L. limits on Im dt are in general of the order of
10−16 e cm. The limit obtained on Im dt in the unpolarized case is 1.19 × 10−16 e cm.
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Asymmetries Limits on Im dt

Eb N Ach Afb (10−16 e cm) from
(GeV) |Ach| |Afb|

250 252 –.025 .129 1.19 .230
500 1441 –.167 .420 .074 .029
750 1210 –.223 .347 .060 .039

1000 996 –.227 .244 .065 .061

Table 2: Variation of limits on Im dt obtained at different beam energies keeping x fixed at
4.75 (by choosing suitable laser beam energy in each case). The top mass used is 174 GeV
and the cut-off angle is taken to be 30◦. Asymmetries are for Im dt = 1

2mt
. Helicities of the

initial electron and laser beams are λ1
e = −.5, λ2

e = −.5, λ1
l = −1 and λ2

l = 1.

Forward-backward combined asymmetry is zero in this case. The best limit obtained is
however an order of magnitude better. Its value is 2.3 × 10−17 e cm and comes from Afb

with initial-beam helicities satisfying λe
1 = λe

2 and λ1
l = −λ2

l . We consider this helicity
combination for further analysis. It may be noted, however, that with unpolarized electron
beams and laser beams we can measure only the charge asymmetry.

Table 2 lists the limits for different electron beam energies. The table shows that the
limits are better around a beam energy of 500 GeV in the case of combined asymmetry and
at around 750 GeV in the case of charge asymmetry. The limit obtained at this value is
almost 20 times better than the limit at 250 GeV in the case of charge asymmetry while in
the case of combined asymmetry it is a factor of almost 8.

The cut-off angle is also varied to study the variation of limits on Im dt. The result is
tabulated in Table 3. As mentioned before, charge asymmetry, which is the total leptonic
charge in the semi-leptonic decay of tt is zero when there is no cut-off. Charge asymmetry
is found to give best limits on the dipole form factors around a cut-off of 60◦ whereas the
combined asymmetry is better at lower cut-offs.

For a fixed beam energy and at a fixed cut-off angle, variation of Im dt limits with x is
studied in Table 4. From the table it is clear that the limits are better at higher x values.
In fact, for x less than about 3, the event rate is quite low, and no significant limit on the
dipole moment may be expected. On the other hand, for x > 4.83, e+e− production due to
the collision of high energy photon beam with laser beam is considerable [8]. This introduces
additional e+e− beam backgrounds as well as degrading the photon spectrum.

To conclude, we find that for an electron beam energy of 250 GeV, and for a suitable
choice of circular polarizations of the laser photons and longitudinal polarizations for the
electron beams, and assuming a geometrical luminosity of 20 fb−1 for the electron beam, it
is possible to obtain limits on the imaginary part of the top EDFF of the order of 10−17 e cm.
An order of magnitude improvement is possible if the beam energy is increased to 500 GeV. In
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Asymmetries Limits on Im dt

θ0 N Ach Afb (10−16 e cm) from
(deg.) |Ach| |Afb|

0 290 .000 .149 .185
10 286 –.003 .146 9.23 .189
20 273 –.012 .140 2.44 .203
30 252 –.025 .128 1.19 .230
40 221 –.041 .113 .774 .277
50 186 –.057 .095 .599 .362
60 144 –.073 .074 .534 .529
70 98 –.086 .050 .551 .937
80 50 –.094 .026 .706 2.595

Table 3: Limits on Im dt of the top quark from the charge asymmetry and the combined
asymmetry for different cut-off angles. Helicities of the initial electron and laser beams
are λ1

e = −.5, λ2
e = −.5 λ1

l = −1 and λ2
l = 1. A top-quark mass of 174 GeV and an

electron beam energy of 250 GeV are used. Laser beam energy is taken to be 1.24 eV, which
corresponds to x = 4.75. Asymmetries are for Im dt = 1

2mt
.

Asymmetries Limits on Im dt

x N Ach Afb (10−16 e cm) from
|Ach| |Afb|

2.60 1.1 –.004 .034 113 12.8
3.20 28.8 –.011 .072 7.85 1.22
4.74 250.8 –.025 .128 1.20 .230

Table 4: Limits on Im dt calculated at different x values for a fixed beam energy Eb = 250
GeV and for a cut-off angle of 30◦. The top mass is taken to be 174 GeV and the helicities
of the initial beams are λe

1 = −.5, λe
2
γ = −.5, λ1

l = −1 and λ2
l = 1.
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that case the sensitivity would be comparable to that obtained in e+e− → tt with
√
s = 500

GeV [3, 5, 6] .
For comparison, we mention the result of Baek et al. [13] (who have extended the work of

[12], and corrected numerical errors therein). They have obtained limits on the real part of
the dipole moments of the top quark from a number asymmetry and with linearly polarized
photons to be of the order of 10−17 e cm for a beam energy of 250 GeV.

The sensitivities discussed above are under ideal experimental conditions, which may
not be met in practice. A more detailed calculation taking into account experimental cuts
and realistic choices of parameters like laser-photon energies, degrees of polarization of the
beams, etc. would be important to carry out. However, the results obtained here would be
indicative of the possibilities in a realistic case.

The asymmetries we discuss only give limits on the imaginary part of the top EDFF. It
would be interesting to study other asymmetries which give limits on the real part of dt in
the presence of circularly polarized photon beams.
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Appendix

A Expressions for dσij and ξ2 for γγ → X

Expressions for dσij and ξ2 for a general process γγ → X, referred to in eq. (8), are given
here in terms of the amplitudes.

dσij are given by

dσ00 =
1

4

∑

λγ ,λ′

γ

|M(λγ , λ
′

γ)|2 dΓ

dσ22 =
1

4

∑

λγ ,λ′

γ

λγλ
′

γ |M(λγ , λ
′

γ)|2 dΓ

(dσ20 + dσ02) =
1

2

∑

λγ

λγ |M(λγ , λγ)|2 dΓ

(dσ20 − dσ02) =
1

2

∑

λγ

λγ |M(λγ ,−λγ)|2 dΓ

Helicities of the particles in the final state are summed over, and not shown. dΓ is the
appropriate phase space factor for the final state X.

The Stokes parameters, ξi are given in general by

ξi =
Φi

Φ0
,
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where j = 0, 1, 2, 3 and Φi is a function depending on the azimuthal angle, φ of the scattered
photon beam when initial electron beam is taken along the z axis:

Φj =
4
∑

n=0

(Cjn cosnφ+ Sjn sinnφ) ,

where Cjn and Sjn are certain real coefficients. The circular polarization of the photon
arising from Compton scattering, after averaging over the azimuthal angle, is

< ξ2 >= C20/C00,

where

C00 =
1

1 − y
+ 1 − y − 4 r (1 − r) − 2 λeλl r x (2r − 1) (2 − y)

C20 = 2 λe r x
[

1 + (1 − y) (2r− 1)2
]

− λl (2r − 1)

(

1

1 − y
+ 1 − y

)

. (23)

A similar expression would hold for the circular polarization < ξ2 > of the photon coming
from the other beam.

B Density Matrix Elements for γγ → t(λt)t(λt)

Expressions for ρ±ij used in eq. (16) are given below.

ρ+
00(λt, λ

′

t) =
1

4

∑

λγ ,λ′

γ ,λ
t

M(λγ , λ
′

γ, λt, λt)M
∗(λγ , λ

′

γ, λ
′

t, λt)

ρ+
22(λt, λ

′

t) =
1

4

∑

λγ ,λ
t

[M(λγ , λγ, λt, λt)M
∗(λγ, λγ, λ

′

t, λt)

− M(λγ ,−λγ , λt, λt)M
∗(λγ,−λγ , λ

′

t, λt)]
(

ρ+
20(λt, λ

′

t) + ρ+
02(λt, λ

′

t)
)

=
1

2

∑

λγ ,λ
t

λγ M(λγ , λγ, λt, λt)M
∗(λγ, λγ, λ

′

t, λt)

(

ρ+
20(λt, λ

′

t) − ρ+
02(λt, λ

′

t)
)

=
1

2

∑

λγ ,λ
t

λγ M(λγ ,−λγ, λt, λt)M
∗(λγ,−λγ, λ

′

t, λt)

ρ−00(λt, λ
′

t) =
1

4

∑

λγ ,λ′

γ ,λt

M(λγ , λ
′

γ, λt, λt)M
∗(λγ , λ

′

γ, λt, λ
′

t)

ρ−22(λt, λ
′

t) =
1

4

∑

λγ ,λt

[M(λγ , λγ, λt, λt)M
∗(λγ, λγ, λt, λ

′

t)

− M(λγ ,−λγ , λt, λt)M
∗(λγ,−λγ , λt, λ

′

t)]
(

ρ−20(λt, λ
′

t) + ρ−02(λt, λ
′

t)
)

=
1

2

∑

λγ ,λt

λγ M(λγ , λγ, λt, λt)M
∗(λγ, λγ, λt, λ

′

t)

(

ρ−20(λt, λ
′

t) − ρ−02(λt, λ
′

t)
)

=
1

2

∑

λγ ,λt

λγ M(λγ ,−λγ, λt, λt)M
∗(λγ,−λγ, λt, λ

′

t)
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Substituting the amplitudes from eq. (15) we get

ρ+
00(±,±) = ρ−00(±,±)

=
1

4
C

{

s

2m2
t

[(

1 − β4
t

)

+ A
]

± Im dtB0

}

ρ±00(+−) = −1

4
C
s3/2 βt

m2
t

Im dt sin θt cos θt

(

(1 − β2
t ) + β2

t sin2 θt

)

ρ+
22(±,±) = ρ−22(±,±)

=
1

4
C

{

s

2m2
t

[(

1 − β4
t

)

−A
]

± Im dtB2

}

ρ±22(+−) = −1

4
C
s3/2 βt

m2
t

Im dt sin θt cos θt

(

(1 − β2
t ) − β2

t sin2 θt

)

ρ±20(λ, λ) =
1

2
C {λ (2 βt ±D) + 8mt Im dt}

ρ±20(+−) = ∓1

2
C
√
s

{

β2
t

mt
sin3 θt

+
sβt

2m2
t

Re dt sin θt

(

(1 − β2
t ) cos θt + β2

t sin2 θt

)

}

ρ±02(λ, λ) =
1

2
C {λ (2 βt ∓D) + 8mt Im dt}

ρ±02(+−) = ±1

2
C
√
s

{

β2
t

mt

sin3 θt

+
sβt

2m2
t

Re dt sin θt

(

(1 − β2
t ) cos θt − β2

t sin2 θt

)

}

where A, Bi, C and D are given by

A = β2
t sin2 θt

[

2 − β2
t sin2 θt

]

B0 =
2 sβt

mt

[(

2 − sin2 θt

) (

1 − β2
t

)

− β2
t sin4 θt

]

B2 =
2 sβt

mt

[(

2 − sin2 θt

) (

1 − β2
t

)

+ β2
t sin4 θt

]

C = 16 π2Q4
t α

2 16m2
t

s (1 − β2
t cos2 θt)2

D =
s β2

t

2m2
t

sin2 θt cos θt.

Qt = 2/3 is the charge of the top quark. Note that we have kept only linear terms in dt

assuming that the value of dipole form factor is small and hence that higher order terms can
be neglected.
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