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Abstract

In the presence of an electric dipole coupling of tt to a photon, and an analo-
gous “weak” dipole coupling to the Z, CP violation in the process e+e− → tt
leads to the polarization of the top and anti-top. This polarization can be
analyzed by studying the energy and angular distributions of a decay charged
lepton (anti-lepton) when the top (anti-top) decays leptonically. We have ob-
tained analytic expressions for these distributions when either t or t decays
leptonically. We study two types of simple CP -violating angular asymme-
tries which do not need the full reconstruction of the t or t. These together
can help to determine the electric and weak dipole form factors indepen-
dently. We have also shown how the use of longitudinal beam polarization
can help to do this with only one asymmetry measurement, and to improve
the sensitivity.
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1 Introduction

Experiments at the Tevatron have seen evidence for the top qark with mass
in the range of about 170-200 GeV [1]. Future runs of the experiment will be
able to determine the mass more precisely and also determine other properties
of the top quark. tt pairs will be produced more copiously at proposed
e+e− linear colliders operating above threshold. It would then be possible to
investigate these properties further.

While the standard model (SM) predicts CP violation outside the K-, D-
and B-meson systems to be unobservably small, in some extensions of SM,
CP violation might be considerably enhanced, especially in the presence of
a heavy top quark. In particular, CP -violating electric dipole form factor of
the top quark, and the analogous CP -violating “weak” dipole form factor in
the tt coupling to Z, could be enhanced. These CP -violating form factors
could be determined in a model-independent way at high energy e+e− linear
colliders, where e+e− → tt would proceed through virtual γ and Z exchange.

Since a heavy top quark (mt ≥ 120 GeV) is expected to decay before it
hadronizes [2], it has been suggested [3] that top polarization asymmetry in
e+e− → tt can be used to determine the CP -violating dipole form factors,
since polarization information would be retained in the decay product distri-
bution. Experiments have been proposed in which the CP -violating dipole
couplings could be measured in decay momentum correlations [4, 5, 6] or
asymmetries [7, 8], even with beam polarization [5, 8]. These suggestions on
the measurement of asymmetries have concentrated on experiments requiring
the reconstruction of the top-quark momentum (with the exception of lepton
energy asymmetry [3, 7, 8]). In this note we look at very simple lepton an-
gular asymmetries which do not require the experimental determination of
the t or t momentum. Being single-lepton asymmetries, they do not require
both t and t to decay leptonically. Since either t or t is also allowed to decay
hadronically, there is a gain in statistics.

Our results are based on fully analytical calculation of single lepton dis-
tributions in the production and subsequent decay of tt. We present fully
differential distribution as well as the distribution in the polar angle of the
lepton with respect to the beam direction in the centre-of-mass (cm) frame.
These distributions in the absence of CP -violating dipole couplings were
obtained earlier by Arens and Sehgal [9], using the technique of Kawasaki,
Shirafuji and Tsai [10]. We have included CP -violating effects in tt produc-
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tion, and obtained the distributions using the equivalent helicity-amplitude
technique. Our results agree with the results of [9] in the limit of vanishing
dipole moments.

We have also included the effect of electron longitudinal polarization,
likely to be easily available at linear colliders. In an earlier paper [8], we had
shown how polarization helps to put independent limits on electric and weak
dipole couplings, while providing greater sensitivity in the case of asymme-
tries. We also demonstrate these advantages for the present case, strength-
ening the case for polarization studies.

The rest of the paper is organized as follows. In Sec. II, we describe the
calculation of the decay-lepton angular distribution from a decaying t or t
in e+e− → tt. In Sec. III we describe CP -violating asymmetries and obtain
expressions for them. Numerical results are presented in Sec. IV, and Sec. V
contains our conclusions. The Appendix contains certain expressions which
are too lengthy to be put in the main text.

2 Calculation of lepton angular distributions

We describe in this Section the calculation of l+ (l−) distribution in e+e− →
tt and the subsequent decay t → bl+νl (t → bl−νl). We adopt the narrow-
width approximation for t and t, as well as for W± produced in t, t decay.

We assume the top quark couplings to γ and Z to be given by the vertex
factor ieΓj

µ, where

Γj
µ = cj

v γµ + cj
a γµ γ5 +

cj
d

2 mt

iγ5 (pt − pt)µ, j = γ, Z, (1)

with

cγ
v =

2

3
, cγ

a = 0,

cZ
d =

(

1

4
− 2

3
xw

)

√

xw (1 − xw)
, (2)

cZ
a = − 1

4
√

xw (1 − xw)
,
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and xw = sin2θw, θw being the weak mixing angle. We have assumed in (1)
that the only addition to the SM couplings cγ,Z

v,a are the CP -violating electric
and weak dipole form factors, ecγ

d/mt and ecZ
d /mt, which are assumed small.

Use has also been made of the Dirac equation in rewriting the usual dipole
coupling σµν(pt + pt)

νγ5 as iγ5(pt − pt)µ, dropping small corrections to the
vector and axial-vector couplings. We assume that there is no CP violation
in t, t decay [11].

The helicity amplitudes for e+e− → γ∗, Z∗ → tt in the cm frame, includ-
ing cγ,Z

d couplings, have been given in [7] (see also Kane et al., ref. [3]), so we
do not repeat them here. The non-vanishing helicity amplitudes, respectively
M and M , for

t → bW+, W+ → l+νl

and
t → bW−, W− → l−νl

in the respective rest frames of t, t, are given below (we assume standard
model couplings and neglect all masses except mt, the top mass):

M+−+− = 8g2∆W (q) cos
θl+

2

[

cos
θνl

2
sin

θb

2
e−iφb − sin

θνl

2
cos

θb

2
e−iφν

l

]

eiφ
l+ ,

(3)

M−−+− = 8g2∆W (q) sin
θl+

2

[

cos
θνl

2
sin

θb

2
e−iφb − sin

θνl

2
cos

θb

2
e−iφν

l

]

, (4)

M++−+ = 8g2∆W (q) cos
θl−

2

[

cos
θνl

2
sin

θb

2
eiφν

l − sin
θνl

2
cos

θb

2
eiφ

b

]

, (5)

M−+−+ = 8g2∆W (q) sin
θl−

2

[

cos
θνl

2
sin

θb

2
eiφν

l − sin
θνl

2
cos

θb

2
eiφ

b

]

e−iφ
l− ,

(6)

where

∆W (q) =
1

q2 − m2
W + iΓW mW

(7)

is the W propagator, q being the total e+e− momentum. The subscripts ±
refer to signs of the helicities, the order of the helicities being t, b, l+, νl (t,
b, l−, νl). The various θ’s are polar angles of the particles and antiparticles
labelled by the suffixes with respect to a z axis in the direction in which
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the top momentum is boosted to go to the cm frame. φ’s are the azimuthal
angles with respect to an x axis chosen in the plane containing the e− and t
directions.

Combining the production and decay amplitudes in the narrow-width
approximation for t, t, W+, W−, and using appropriate Lorentz boosts to
calculate everything in the e+e− cm frame, we get the l+ and l− distributions
for the case of e−, e+ with polarization Pe, Pe to be:

dσ±

d cos θtdEld cos θldφl

=
3α4β

16x2
w

√
s

El

ΓtΓWmW

(

1

1 − β cos θtl

− 4El√
s(1 − β2)

)

×
{(

A0 + A1 cos θt + A2 cos2 θt

)

(1 − β cos θtl)

+
(

B±

0 + B1 cos θt + B±

2 cos2 θt

)

(cos θtl − β)

+
(

C±

0 + C±

1 cos θt

)

(1 − β2) sin θt sin θl(cos θt cos φl − sin θt cot θl)

+
(

D±

0 + D±

1 cos θt

)

(1 − β2) sin θt sin θl sin φl

}

. (8)

The quantities Ai, Bi, Ci and Di occurring in the above equation are functions
of the masses, s, the degrees of e and e polarization (Pe and Pe), and the
coupling constants. They are listed in the Appendix.

In eq. (8), σ+ and σ− refer respectively to l+ and l− distributions, with
the same notation for the kinematic variables of particles and antiparticles.
Thus, θt, is the polar angle of t (or t ), and El, θl, φl are the energy, polar
angle and azimuthal angle of l+ (or l−). All the angles are now in the cm
frame, with the z axis chosen along the e− momentum, and the x axis chosen
in the plane containing the e− and t directions. θtl is the angle between
the t and l+ directions (or t and l− directions). β is the t (or t) velocity:

β =
√

1 − 4m2
t /s, and γ = 1/

√
1 − β2.

Since we are mainly interested in θl distributions here, we first integrate
over El between limits

m2
W

m2
t

√
s

4

1 − β2

1 − β cos θtl

< El <

√
s

4

1 − β2

1 − β cos θtl

,

then over φ from 0 to 2π, and finally over cos θt from −1 to +1. After some
lengthy algebra, we get the final result as

dσ±

d cos θl

=
3πα2

32s
BtBt

{

4A0 − 2A1

(

1 − β2

β2
log

1 + β

1 − β
− 2

β

)

cos θl

5



+2A2

(

1 − β2

β3
log

1 + β

1 − β
(1 − 3 cos2 θl)

− 2

β2
(1 − 3 cos2 θl − β2 + 2β2 cos2 θl)

)

+2B1

1 − β2

β2

(

1

β
log

1 − β

1 − β
− 2

)

cos θl

+B±

2

1

β3

(

β2 − 2

β
log

1 + β

1 − β
+ 6

)

(1 − 3 cos2 θl)

+2C±

0

1 − β2

β2

(

1

β
log

1 + β

1 − β
− 2

)

cos θl

−C±

1

1

β3

(

3(1 − β2)

β
log

1 + β

1 − β
− 2(3 − 2β2)

)

(1 − 3 cos2 θl)

}

,

(9)

where Bt and Bt are respectively the branching ratios of t and t into the final
states being considered.

We have compared our expression for the angular distribution with the
one in [9] in the limit of vanishing dipole moments and vanishing beam po-
larization, and found agreement.

3 CP -violating angular asymmetries

We define two independent CP -violating asymmetries, which depend on dif-
ferent linear combinations of Imcγ

d and ImcZ
d . (It is not possible to de-

fine CP -odd quantities which determine Recγ,Z
d using single-lepton distri-

butions, as can be seen from the expression for the CP -odd combination
dσ+

d cos θl

(θl)− dσ−

d cos θl

(π− θl)). One is simply the total lepton-charge asymmetry,
with a cut-off of θ0 on the forward and backward directions:

Ach(θ0) =

∫ π−θ0

θ0

dθl

(

dσ+

dθl

− dσ−

dθl

)

∫ π−θ0

θ0

dθl

(

dσ+

dθl

+
dσ−

dθl

) . (10)

The other is the leptonic forward-backward asymmetry combined with charge
asymmetry, again with the angles within θ0 of the forward and backward
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directions excluded:

Afb(θ0) =

∫ π

2

θ0

dθl

(

dσ+

dθl

− dσ−

dθl

)

−
∫ π−θ0

π

2

dθl

(

dσ+

dθl

− dσ−

dθl

)

∫ π−θ0

θ0

dθl

(

dσ+

dθl

+
dσ−

dθl

) . (11)

These asymmetries are a measure of CP violation in the unpolarized
case and in the case when polarization is present, but Pe = −Pe. When Pe 6=
−Pe, the initial state is not invariant under CP , and therefore CP -invariant
interactions can contribute to the asymmetries. However, to the leading order
in α, these CP -invariant contributions vanish in the limit me = 0. Order-
α collinear helicity-flip photon emission can give a CP -even contribution.
However, this background can be suppressed by a suitable cut on the visible
energy.

The expressions for Ach(θ0) and Afb(θ0) may be derived from eq. (9)
making use of the expressions in the Appendix, and are given below.

Ach(θ0) =
1

2σ(θ0)

3πα2

4s
BtBt 2 cos θ0 sin2 θ0

(

(1 − β2) log
1 + β

1 − β
− 2β

)

×
(

Imcγ
d

{[

2cγ
v + (rL + rR)cZ

v

]

(1 − PePe) + (rL − rR)cZ
v (Pe − Pe)

}

+ImcZ
d

{[

(rL + rR)cγ
v + (r2

L + r2

R)cZ
v

]

(1 − PePe) + [(rL − rR)cγ
v

+(r2

L − r2

R)cZ
v

]

(Pe − Pe)
})

; (12)

Afb(θ0) =
1

2σ(θ0)

3πα2

2s
BtBt cos2 θ0

(

(1 − β2) log
1 + β

1 − β
− 2β

)

cZ
a

×{Imcγ
d [(rL − rR)(1 − PePe) + (rL + rR)(Pe − Pe)]

+ImcZ
d

[

(r2

L − r2

R)(1 − PePe) + (r2

L + r2

R)(Pe − Pe)
]}

. (13)

Here σ(θ0) is the cross section for l+ or l− production with a cut-off θ0, and
is given by

σ(θ0) =
3πα2

8s
BtBt 2 cos θ0

({

(1 − β2) log
1 + β

1 − β
sin2 θ0

+2β
[

1 + (1 − 2

3
β2) cos2 θ0

]}

7



×
{[

2cγ
v
2 + 2cγ

vc
Z
v (rL + rR) + cZ

v

2
(r2

L + r2

R)
]

(1 − PePe)

+cZ
v

[

(rL − rR)cγ
v + (r2

L − r2

R)cZ
v

]

(Pe − Pe)
}

+

{

(1 − β2) log
1 + β

1 − β
sin2 θ0 + 2β

[

2β2 − 1 + (1 − 2

3
β2) cos2 θ0

]

}

× cZ
a

2
{

(r2

L + r2

R)(1 − PePe) + (r2

L − r2

R)(Pe − Pe)
}

− 2(1 − β2)

×
(

log
1 + β

1 − β
− 2

)

sin2 θ0c
Z
a

{[

(rL + rR)cγ
v + (r2

L + r2

R)cZ
v

]

× (1 − PePe) +
[

(rL − rR)cγ
v + (r2

L − r2

R)cZ
v

]

(Pe − Pe)
})

. (14)

We note the curious fact that Ach(θ0) vanishes for θ0 = 0. This implies
that the CP -violating charge asymmetry does not exist unless a cut-off is
imposed on the lepton production angle. Afb(θ0), however, is nonzero for
θ0 = 0.

It is also possible to obtain a variety of CP -odd correlations using the
analytic form (9). However, we restrict ourselves here to an analysis of the
consequences of Ach and Afb, without and with beam polarization.

4 Numerical Results

In this section we describe the numerical results for the calculation of 90%
confidence level (CL) limits that could be put on Imcγ,Z

d using the asymme-
tries described in the previous sections, as well as the CP -odd part of the
angular distribution in eq. (9).

We look at only semileptonic final states. That is to say, when t decays
leptonically, we assume t decays hadronically, and vice versa. We sum over
the electron and muon decay channels. Thus, BtBt is taken to be 2/3× 2/9.
The number of events for various relevant θ0 and for beam polarizations
Pe = 0, ±0.5 are listed in Table 1.

In each case we have derived simultaneous 90% CL limits on Imcγ
d and

ImcZ
d that could be put in an experiment at a future linear colider with√

s = 500 GeV and an integrated luminosity of 10 fb−1. We do this by
equating the asymmetry (Ach or Afb) to 2.15/

√
N , where N is the total

number of expected events. In the unpolarized case, each of Ach and Afb

gives a band of allowed values in the Imcγ
d−ImcZ

d plane. If both Ach and Afb
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are looked for in an experiment, the intersection region of the corresponding
bands determines the best 90% CL limits which can be put simultaneously
on Imcγ

d and ImcZ
d . These best results are obtained for θ0 = 35◦ and are

shown in Fig. 1(a) and Fig. 1(b), for two values of the top mass, mt = 174
GeV, and mt = 200 GeV respectively.

We see from Fig. 1 that the 90% CL limits that could be put on Imcγ
d

and ImcZ
d simultaneously are, respectively, 2.4 and 17, for mt = 174 GeV.

The same limits are 4.0 and 28 for mt = 200 GeV.
In the case where the e− beam is longitudinally polarized, we have as-

sumed the degree of polarization Pe = ±0.5, and determined 90% CL limits
which can be achieved. In this case, the use of Pe = +0.5 and Pe = −0.5 is
sufficient to constrain Imcγ

d and ImcZ
d simultaneously even though only one

asymmetry (either Ach or Afb) is determined. The 90% CL bands corre-
sponding to Pe = ±0.5 are shown in Figs. 2 and 3, for Ach with θ0 = 60◦,
and for Afb with θ0 = 10◦, respectively. Again, these values of θ0 are chosen
to maximize the sensitivity [12].

It can be seen from these figures that the simultaneous limits expected
to be obtained on Imcγ

d and ImcZ
d are, respectively, about 0.45 and 1.5 for

mt = 174 GeV from both the types of asymmetries. These limits are about
0.78 and 2.5 for mt = 200 GeV. We see thus that the use of polarization
leads to an improvement of by a factor of about 5 in the sensitivity to the
measurement of Imcγ

d , and by a factor of at least 10 in the case of ImcZ
d .

Moreover, with polarization, either of Afb and Ach, with a suitably chosen
cut-off, suffices to get the same improvement in sensitivity.

Apart from simultaneous limits on Imcγ,Z
d , we have also found out the

sensitivities of one of Imcγ,Z
d , assuming the other to be zero, using the CP -

odd combination of angular distributions dσ+

d cos θ
(θl)− dσ−

d cos θ
(π−θl) coming from

eq. (19). We assume that the data is collected over bins in θl, and add the
90% CL limits obtained from individual bins in inverse quadrature. We find
that the best individual limits are respectively 0.12 and 0.28 for Imcγ

d and
ImcZ

d , both in the case of Pe = −0.5, for mt = 174 GeV. The corresponding
limits for mt = 200 GeV are 0.18 and 0.43. As expected, these limits are
better than simultaneous ones. Even here, there is an improvement due to
polarization, but it is not as dramatic as in the case of simultaneous limits.

Our limits on Imcγ,Z
d are summarized in Table 2.
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5 Conclusions

We have calculated analytically the single-lepton angular distribution in the
production and subsequent decay of tt in the presence of electric and weak
dipole form factors of the top quark. We have included effects of longitudinal
beam polarization. We have then obtained expressions for certain simple CP -
violating angular asymmetries, specially chosen so that they do not require
the reconstruction of the t or t directions or energies. We have analyzed these
asymmetries to obtain simultaneous 90% CL limits on the imaginary parts
of the electric and weak dipole couplings which would be possible at future
linear e+e− collider operating at

√
s = 500 GeV and with a luminosity of 10

fb−1. Figs. 1-3 show the allowed regions in the Imcγ
d–ImcZ

d plane at the 90%
CL. Table 2 summarizes the 90% CL limits on Imcγ,Z

d in various cases.
Our general conclusion is that the sensitivity to the measurement of dipole

couplings is improved considerably if the electron beam is polarized, a situ-
ation which might easily obtain at linear colliders. Another general obser-
vation is that the sensitivity is better for a lower top mass than a higher
one.

If we compare these results for sensitivities with those obtained in [8],
where we studied asymmetries requiring the top momentum determination,
we find that while the sensitivities with the asymmetries studied here are
worse by a factor of about 3 in the unpolarized case, the limits in the polar-
ized case are higher by a factor of about 2 as compared to the those in [8]. It is
likely that since in the experiments suggested here, only the lepton momenta
need be measured, improvement in experimental accuracy can easily com-
pensate for these factors. A detailed simulation of experimental conditions
is needed to reach a definite conclusion on the exact overall sensitivities.

We have also compared our results with those of [6], where CP-odd mo-
mentum correlations are studied in the presence of e− polarization. With
comparable parameters, the sensitivities we obtain are comparable to those
obtained in [6]. In some cases our sensitivities are slightly worse because we
require either t or t to decay leptonically, leading to a reduced event rate.
However, the better experimental efficiencies in lepton momentum measure-
ment may again compensate for this loss.

As mentioned earlier, since we consider only the electron beam to be po-
larized, the asymmetries considered here can have backgrounds from order-α
collinear initial-state photon emission, which, in principle, have to be cal-
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culated and subtracted. However, in case of correlations, it was found in
[13] that the background contribution can be neglected for the luminosity we
assume here. This is likely to be the case in the asymmetries we consider
here.

The theoretical predictions for cγ,Z
d are at the level of 10−2 − 10−3, as for

example, in the Higgs-exchange and supersymmetric models of CP violation
[4, 7, 14]. Hence the measurements suggested here cannot exclude these
modes at the 90% C.L. However, as simultaneous model-independent limits
on both cZ

d and cγ
d, the ones obtainable from the experiments we suggest, are

an improvement over those obtainable from measurements in unpolarized
experiments.

Increase in polarization beyond ±0.5 can increase the asymmetries in
some cases we consider. Also, a change in the e+ e− cm energy also has an
effect on the asymmetries. However, we have tried to give here only the
salient features of the outcome of a possible experiment in the presence of
longitudinal beam polarization.

Inclusion of experimental detection efficiencies may change our results
somewhat. However, the main thrust of our conclusions, that longitudinal
beam polarization improves the sensitivity, would still be valid.
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Appendix

The expressions for Ai, Bi, Ci and Di occurring in equation (8) are listed
below.

A0 =
{

2(2 − β2)
[

2cγ
v
2 + 2(rL + rR)cγ

vc
Z
v + (r2

L + r2

R)cZ
v

2
]

+2β2(r2

L + r2

R)cZ
a

2
}

(1 − PePe)

+
{

2(2 − β2)
[

2(rL − rR)cγ
vc

Z
v + (r2

L − r2

R)cZ
v

2
]

+2β2(r2

L − r2

R)cZ
a

2
}

(Pe − Pe),

A1 = −8βcZ
a

{[

(rL − rR)cγ
v + (r2

L − r2

R)cZ
v

]

(1 − PePe)

+
[

(rL + rR)cγ
v + (r2

L + r2

R)cZ
v

]

(Pe − Pe)
}

,

A2 = 2β2
{[

2cγ
v
2 + 2(rL + rR)cγ

vc
Z
v + (r2

L + r2

R)
(

cZ
v

2
+ cZ

a

2
)]

(1 − PePe)

+
[

2(rL − rR)cγ
vc

Z
v + (r2

L − r2

R)
(

cZ
v

2
+ cZ

v

2
)]

(Pe − Pe)
}

,

B±

0 = 4β
{(

cγ
v + rLcZ

v

) (

rLcZ
a ∓ Imcγ

d ∓ rLImcZ
d

)

(1 − Pe)(1 + Pe)

+
(

cγ
v + rRcZ

v

) (

rRcZ
a ∓ Imcγ

d ∓ rRImcZ
d

)

(1 + Pe)(1 − Pe)
}

,

B1 = −4
{[

(cγ
v + rLcZ

v )2 + β2r2

LcZ
a

2
]

(1 − Pe)(1 + Pe)

−
[

(cγ
v + rRcZ

v )2 + β2r2

RcZ
a

2
]

(1 + Pe)(1 − Pe)
}

,

B±

2 = 4β
{(

cγ
v + rLcZ

v

) (

rLcZ
a ± Imcγ

d ± rLImcZ
d

)

(1 − Pe)(1 + Pe)

+
(

cγ
v + rRcZ

v

) (

rRcZ
a ± Imcγ

d ± rRImcZ
d

)

(1 + Pe)(1 − Pe)
}

,

C±

0 = 4
{[

(cγ
v + rLcZ

v )2 ± β2γ2cZ
a

(

Imcγ
drL + ImcZ

d r2

L

)]

(1 − Pe)(1 + Pe)

−
[

(cγ
v + rRcZ

v )2 ± β2γ2cZ
a

(

Imcγ
drR + ImcZ

d r2

R

)]

(1 + Pe)(1 − Pe)
}

,

C±

1 = −4β
{(

cγ
v + rLcZ

v

) (

rLcZ
a ± γ2Imcγ

d ± rLγ2ImcZ
d

)

(1 − Pe)(1 + Pe)

+
(

cγ
v + rRcZ

v

) (

rRcZ
a ± γ2Imcγ

d ± rRγ2ImcZ
d

)

(1 + Pe)(1 − Pe)
}

,

D±

0 = ∓4βγ2
{(

cγ
v + rLcZ

v

) (

Recγ
d + rLRecZ

d

)

(1 − Pe)(1 + Pe)
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−
(

cγ
v + rRcZ

v

) (

Recγ
d + rRRecZ

d

)

(1 + Pe)(1 − Pe)
}

,

D±

1 = ±4β2cZ
a

{

rL

(

Recγ
d + rLRecZ

d

)

(1 − Pe)(1 + Pe)

+rR

(

Recγ
d + rRRecZ

d

)

(1 + Pe)(1 − Pe)
}

.
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Figure Captions

Fig. 1. Bands showing simultaneous 90% CL limits on Im cγ
d and Im cZ

d

using Afb and Ach with unpolarized electron beam at cm energy 500 GeV
and cut-off angle 35◦. Mass of the top quark is taken to be (a) 174 GeV and
(b) 200 GeV.

Fig. 2. Bands showing simultaneous 90% CL limits on Im cγ
d and Im cZ

d

using Ach with different beam polarizations, and at a cm energy of 500 GeV
and cut-off angle 60◦. Mass of the top quark is taken to be (a) 174 GeV and
(b) 200 GeV.

Fig. 3. Bands showing simultaneous 90% CL limits on Im cγ
d and Im cZ

d

using Afb with different beam polarizations, and at a cm energy of 500 GeV
and cut-off angle 10◦. Mass of the top quark is taken to be (a) 174 GeV and
(b) 200 GeV.
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Table Captions

Table 1. Number of tt̄ events, with either t or t decaying leptonically, for
c.m. energy 500 GeV and integrated luminosity 10 fb−1 for two different top
masses with polarized and unpolarized electron beams at different cut-off
angles θ0.

Table 2. Limits on dipole couplings obtainable from different asymmetries.
In case (a) limits are obtained from Ach and Afb using unpolarized beams
(Fig. 1), and in case (b) from either of Ach (Fig. 2) and Afb (Fig. 3) with
polarizations Pe = 0, ±0.5. Charge-asymmetric angular distribution is used
in case (c) where 0 and ± 0.5 polarizations are considered separately. All
the limits are at 90% CL.
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mt = 174 GeV mt = 200 GeV
θ0 Pe = −0.5 Pe = 0 Pe = +0.5 Pe = −0.5 Pe = 0 Pe = +0.5
0◦ 1003 845 687 862 723 585
10◦ 988 832 675 849 712 576
35◦ 826 689 553 711 593 475
60◦ 507 419 330 438 362 286

Table 1

mt = 174 GeV mt = 200 GeV

Case |Imcγ
d | |ImcZ

d | |Imcγ
d | |ImcZ

d |
(a) unpolarized 2.4 17 4.0 28

(b) polarized(Pe = 0, ±0.5) 0.45 1.5 0.78 2.5

(c) angular distribution: Pe = +0.5 0.13 0.74 0.21 1.21
Pe = 0.0 0.13 0.81 0.20 1.30
Pe = −0.5 0.12 0.28 0.18 0.43

Table 2
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