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Tonic and dipolar solvation dynamics in liquid water "
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Abstract. The solvation time correlation function for solvation in liquid water was measured
recently. The solvation was found to be very fast, with a time constant equal to 55fs. In
this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes
in liquid water, based on the molecular hydrodynamic approach developed earlier. The
molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation
in liquid water as observed from recent experiments. The present study also reveals some
interesting aspects of dipolar solvation dynamics, which differs significantly from that of
ionic solvation. :
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1. Introduction

The study of solvation dynamics of newly created charged species in dipolar liquids
has been an area of intense research in the last decade (Bagchi 1989; Fleming and
Wolynes 1990; Bagchi and Chandra 1991; Maroncelli 1993; Hynes 1994). This activity
was fuelled by the availability of ultra-short laser pulses which made the study of
solvation dynamics possible. In the first phase (roughly between 1986 and 1991) one
could study solvation primarily in the slow liquids and attention was focussed on
understanding the validity of continuum model (Bagchi 1989; Maroncelli et al 1989).
In the second phase (roughly from 1991 to now), however, attention has shifted to
the study of ultra-fast underdamped solvation in highly mobile liquids like water and
acetonitrile (Rosenthal et al 1991; Roy and Bagchi 1993a; Jimenez et al 1994). In fact,
a question that was repeatedly asked in the past, “How fast is the solvation in liquid
water?” appears to have been provided an answer recently by Jimenez et al (1994),
who measured. this solvation for the first time. The solvation is extremely fast, with
a time constant of about 55 fs. '
Recently, we (Roy and Bagchi 1993b) have presented a theoretical calculation which
predicted that solvation in real water could be significantly slower than that predicted
in classical simulations (Maroncelli and Fleming 1988). This is because the classical
simulations neglected polarizability and, therefore, missed much of the response from
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the 199 cm ™! intermolecular vibrational band. Thus, it was predicted that the time
constant in real water could be around 70fs instead of the simulated value of 20fs.
Therefore, the experimental finding of the time constant of solvation as approximately
equal to 55fs was satisfactory.

However, the theory also predicted an oscillation at the intermediate time not
observed in experiment. We, therefore, carried out a detailed study of the solvation
dynamics with a view to understand the experimental result. This new calculation
further differs in using more accurate dielectric relaxation data than were used
previously.

The results are indeed interesting. It is found -that if the high frequency modes of
water are moderately damped, then an extremely good agreement with the experimental
result is obtained. In addition, we present here the solvation dynamics of a point
dipole in liquid water.

It is to be noted that precise dielectric relaxation data, which cover the whole time .

scale of the dynamical process under consideration, are necessary to compare the
theoretical results with the experimental one. To deal with the complicated relaxation
behaviour of an aqueous medium, it is thus certainly better to consider a suite of
distinct relaxation processes with discrete relaxation times (Barthel et al 1990). So,
we have used in the present study the experimental results from high frequency permit-
tivity measurements (Barthel and Buchner 1991) with sufficiently large frequency
coverage. -

Water is a hydrogen-bonded liquid and shows special spectral features in the
infrared region due to interaction induced dipoles (Madden and Impey 1986). To
obtain the full information on the dynamics of the system, the inclusion of the far
infrared range data is essential. Detailed information about the far infrared optical
constants of liquid water is available (Hasted et al 1985) and we have exploited their
results.

The solvation dynamics of ion or dipole can also be studied within the framework
of mean spherical approximation (MSA). The mean spherical approximation has
been extended to time domain to study the nonequilibrium solvation by Wolynes
(1987). Here we have studied the time-dependent solvation of an ion and a dipole
from MSA and compared with experimental and molecular hydrodynamic theory
(MHT) calculation. ’ :

The organization of the rest of the paper is as follows. In §2 we have discussed
the theoretical framework of the molecular hydrodynamic theory and the dynamic
mean spherical approach, for ionic and dipolar solvation respectively. In §3 we have

presented the results and their interpretation. Section 4 concludes with a brief
summary of results.

2. Theoretical discussion

Here we briefly present the theoretical formulations for ionic and dipolar solvation
by two currently popular theories, viz., the molecular hydrodynamic theory (Chandra
and Bagchi 1989; Bagchi and Chandra 1991; Roy and Bagchi 1993) and the dynamic

mean spherical approximation theory (DMSA) (Wolynes 1987; Nichols and Calef
1988; Rips et al 1988a).
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2.1 Molecular hydrodynamic theory

The progress of solvation of a nascent charge (ion or dipole) is usually described in
terms of solvation time correlation function, S(t), defined as

— Esol(t) - Esol(oo)
S() = E_,(0)—E_,(0)’ M

sol

where E(t) is the time dependent solvation energy. In MHT, it is assumed to be given
by the following expression

E(H)= —;— f drEo(r) P, 2). | )

Here, E,(r) is the bare electric field of the charged solute at a position r. The P(r, 1),

is the space and time-dependent polarization of the solvent molecules and is the

consequence of inhomogeneous density distribution around the solute molecule and_
can be obtained from the MHT by solving the coupled conservation equations of
number and momentum densities (Bagchi and Chandra 1991) and using the Fourier
and Laplace transformations in space and time respectively. For computation of
solvation energy the wave vector and frequency-dependent polarization is needed,
and its longitudinal and transverse parts are given by (Roy and Bagchi 1993a)

_Pykr=0)
PL(ka Z) - Z+ EL(k, 2)9 ) (3)
and
- PT(ka I= O)
Prles)= 5 oy )

where, 2, and Xy are longitudinal and transverse generalized rates, and are given by
2f.(k) pk* fi(k
1 24+ TRk, 2)] t7[z+T(k 2)]

2f7(k) + pk® fr(k)
2z + T (k. 2)] tf [z + T,k 2)]

()

Tk z)=

(6)

Here, k is the Fourier variable conjugate to r, and t; = (I/kg T)'/?, denotes the time
constant of free inertial motion of the solvent molecule. p = I/mo? is the translational
parameter and represents the relative weight of translational and rotational modes
of the solvent. The static structural correlations of the pure solvent are expressed by
(Bagchi and Chandra 1991)

ful)=1 —(f—‘l)cmo;k), G
4n v

and

frl)=1 +(39)c(111;k); | o ®
, ‘ 47 :
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where, c¢(llm; k) denotes the (IIm) component of the direct correlation function in the
intermolecular frame, with k parallel to the z axis and related to the longitudinal
and transverse part of wavevector dependent dielectric function by the relations
(Bagchi and Chandra 1991)

17-1

&, (k) = 1—3Yk1 —4—-c(110 k)) , )

and,

er(k)= 1+3Y<1 +——c(111 k)>ﬂ, | (10)

L

where, the polarity pardmeter is given by 3Y = (4n/3)Bu’p, in terms of ‘the dipole
moment x and the average number density, p, of water. = (ks T)™* (kg is the
Boltzman constant and T is the absolute temperature).

2.1a Ion solvation: Based on the above formulation, the time-dependent solvation
energy of an ion, with charge Q, can be expressed in the frequency plane as follows

. (Z)“_;Qijmdk(SInkr) [1_ 1 ] i 1
sol\¢/ ™ TEO'Z o kr 8L(k) zZ+ EL (k, Z) -

Here r, is the distance of the closest approach between the solute ion and the solvent
molecules. The computation of rotational and translational dissipative kernels are
highly nontrivial, but for underdamped liquids (like water) a robust scheme of fully
microscopic calculation of this kernel has been developed (Roy and Bagchi 1993).
For ultrafast relaxation, relevant to underdamped solvation dynamics, the solvent
response is expected to be fairly represented by its collective (that is, k =0) limit,
The dissipative kerpel can then be determined using the following relation between

I'r(k=0,z) and the frequency-dependent dielectric function, &(z) (Roy and Bagchi
1993a), ~

1 3 zrlzso[a(z)—nz:I.
z+Tpk=0,2)] 2f.(k=0)n?[e; —&(z)]

(12)

where, ¢, and n® are the static and optical dielectric constants of liquid water. The
dielec;tric relaxation experiments and far infrared FIR studies show complex frequency
dependence of ¢(z) which may be represented as follows

ez)=n? + ;( 1+'+1)+ 5 (2 =2, )1~ 20,2 (13)

where 1;,¢; are the time constants and dielectric constants of the Debye relaxation,
nj? are the optical dielectric constants related to the high frequency librational modes
and ®;(z) is the librational (or vibrational) moment correlation function corresponding
to the jth librational mode. This can be calculated using a model of underdamped
harmonic oscillator with a librational frequency equal to Q; 4nd a damping constant
v; (Hasted et al 1985). The time-dependent solvation energy can easily be obtained
by Laplace inversion of the above equation in the time domain.
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2.1b Dipolar solvation: The dipolar field is anisotropic in nature (Gray and Gubbins
1984) and hence, unlike for an ionic field, we have to consider both the longitudinal
and transverse components of the electric field of the solute dipole and also that of
the space-and time-dependent polarization of the solvent (Bagchi and Chandra 1989;
Chandra and Bagchi 1993). The time-dependent solvation energy of a dipole (dipole
moment u,) in water (dipole moment, y,,) in the frequency plane is given by

o R o 22
so 27‘[20'3 0 EL(k) 1 5 | 5

_____1;,.___ ) _ L EkR+1D)]/Tk(R+ 1)
z+2Ath*Jok‘M@TW) ”{JJZ 2 }/[ 2 ]}

1 -
Z+Eﬂ&ﬂ} a4

where R is the solute—solvent size ratio (equal to 2a/s, where a is the solute radius),
J, is the spherical Bessel function of first kind. The methods for obtaining the other
necessary ingredients for calculation e.g. &(z), I'g, I'r etc. are similar to that described
in §2.1a (for ionic solvation). The static transverse dielectric function &y(k) has been
calculated from the mean spherical approximation (MSA) model (Gray and Gubbins
1984). Since the large wave-vector process is more important in the case of dipolar
solvation, MSA gives fairly accurate values for ¢r(k). We have also compared the
er(k) obtained from MSA with that of other theoretical approaches (Raineri and
Friedman 1993) and good agreement has been observed. From the above equation
the solvation time correlation function can again be obtained by numerical Laplace

- inversion.

2.2 Dynamic mean spherical approximation (DMSA)

Similar to MHT, DMSA also assumes the linear response of the solvent to the solute
jon- (or solute dipole-) induced perturbation. The particular linearized theory used
to analyse the non-equilibrium solvation is the mean spherical approximation (Wolynes
1987). The rotational dynamics of the solvent molecules is the only relaxation mechanism
considered here. The effects of hydrodynamic and translational modes are neglected.
The predictions of the DMSA model depend on &(z) (in addition, on the solute to
solvent size ratio, for ionic solvation), which we can calculate from the method
described earlier (Roy and Bagchi 1993a). '

22a Ionic solvation: Within the framework of MSA, the ion solvation dynamics
can be described as follows (Rips et al 1988a). Here, solutes are neutral hard spheres
of radius R and solvent (water) molecule has hard sphere radius r,. The neutral
solute is instantaneously ionized at time ¢t = 0, and its progress of solvation is then
given by

S(2) = [x(z) — O] (15)
z[x(0) = x(0)]

where, S(z) is the Laplace transform of the solvation time correlation function and
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%(z) is the complex admittance of the solvent and is given by

_ ) 11 =(1/e(2))] 16
X(Z)—{ZR (1+A2) } (16)

Here, A(z) is the dynamic correction to the ionic radius, being the dynamic analogue
of the Gurney co-sphere and can be approximated by

AZ)= (3” )[108”3[9&)]“6 2]t 17)

2.2b Dipolar solvation: MSA has been used to analyse the time-dependent solvation
of a dipole in a dipolar solvent, for the special case, when the radius of the solvent
molecules r,, is equal to the solute radius R (Rips et al 1988b). The solution of equal-
sized hard spheres with a permanent dipole moment (Wertheim 1971) has been used.
The Laplace transform of solvation time correlation function is then given by

LA (c0) — h(0)1[A(0) — h(z)]

S(z)= . (18)
2[h(0) — h(c0)1[h(2) + 4]
The h(z) can be approximated by
h(z) = 4-7622[¢(z)]8. (19)

The numerical results obtained from the molecular hydrodynamic theory and mean
spherical approximation are presented in the next section for both ionic and dipolar

solvation. For ionic solvation, the results are compared with'current expenmental
results.

3. Results and discussion

In the present study we have used the experimental dielectric and FIR spectrum data
(table 1) for obtaining the dissipative kernel and the interaction-induced dipoles of
water are thus expected to contribute significantly to solvation dynamics. We have
observed that the 199 cm ™! band has significant influence on initial decay and this
band originates from interaction-induced dipoles as pointed out by Madden and
Impey (1986). From the experimental information, the intermolecular motions have
been related to the spectral features on the basis of semiquantitative arguments
(Gulliot 1991). For instance, the band around 650cm ™! is related with librational
motions of the hydrogen-bond network. The 199 cm ™! band is correlated with O... O
stretching mode of the O-H...O units and the low frequency flexion of O-H...O
is assigned to the 65c¢m™! band.

The librational motions (torsional oscillations in the field of the solute and other
solvent molecules) are particularly important for water, being a hydrogen-bonded
solvent (Hynes 1994). The importance of translational vibrational modes in liquid
water has already been pointed out in earlier studies (Roy and Bagchi 1993a,b). It
is to be noted that the motions of the solvent molecules are described in terms of
the molecular hydrodynamic equation with a dissipative kernel. The determination
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Table 1. The dielectric relaxation parameters of water.

(a) Time constants and dielectric constants of the Debye relaxation
&, = &, the static dielectric constant of the solvent; &; = ¢, the infinite
frequency dielectric constant obtained by fitting the low frequency
relaxation to a Debye form.

& 7, {P$) & T, (ps) €3

7797 832 618 1-02 449

Reference: Barthel and Buchner (1991)

(b) Frequency and dielectric constants for the high frequency librational modes
n2 =n?, the optical dielectric constant of the solvent. , ‘

n? Q,(cm™) nl Q,(cm™1) n? Q,(cm™!) n?

4-49 50 42 199 2:1 650 1-77

Reference: Hasted et al (1985)

of this kernel is made in terms of the dielectric function of water. The librational
modes are treated as a set of harmonic oscillators that can mimic the effects of high
frequency motions of water molecules. This implies that, in order to study the dynamics
of the aqueous solvation, precise knowledge of the dynamics of these modes with their
real physical characteristics (such as the mean frequency and the damping constant)
is necessary (Ohmine et al 1988; Tanaka and Ohmine 1989; Ohmine and Tanaka 1990).

From recent studies on instantaneous normal mode analysis in water (Cho et al
1994) a more detailed picture of the nature of the high frequency modes of liquid
water has emerged. A particularly interesting point is that the 199 cm ™! mode that
is prominent in the quenched normal mode analysis (Ohmine and Tanaka 1993),
almost disappears in the instantaneous normal mode calculations (Cho et al 1994).
This is rather surprising and the reason for such behaviour is not well-understood
(Ohmine, private communication). One possibility is that this mode is rather damped.
The question, of course, remains why this mode is observed in dielectric relaxation
or in Raman spectroscopy. One possibility is that local anharmonicity is important
in the instantaneous normal mode but not in the macroscopic experiments. This
point certainly deserves further study.

In this study we discovered that excellent agreement with experiments can be
obtained if the 199 cm ~! mode is treated as overdamped. In the previous treatment
this mode was treated as underdamped. While nearly perfect agreement was obtained
with computer simulations, there was a significant oscillation in the theoretical result
which was due to the assumed underdamping of the 199 cm™* mode, which was not
observed in the experiments.

In the case of dipolar solvation, the electric field has a shorter range than the ionic
one and, consequently, the contributions of the nearest neighbours become more
important than in the ionic case, and hence the contribution of the large wave-vector
process becomes more pronouced. This in turn results in a slowing down of the initial
decay (Rips et al 1988b). From figures 2 and 3 below, this feature has actually been
observed from both MHT and DMSA theories in the present calculation. The present
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Figure 1. The calculated (from (11)) and experimental (Jimenez et al 1994) solvation time
correlation function, S(z), as a function of time for the solvation of an ionic solute (having
size comparable to that of Coumarin-350 or C-350). The line represents the MHT prediction
and the circles correspond to the experimental results. The damping constant y; = x;€Q;,
where, x =20, 2-0, 05 and Q, =50cm ™, Q, =199cm™?*, Q, = 650cm ™. Other necessary
parameters are given in the text.
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Figure2. The calculated solvation time correlation function, S(t), for an ionic and a dipolar
solute (of size comparable to that of C-350 in each case) as a function of time, obtained

from molecular hydrodynamic theory. The damping constants are the same as those given
in figure 1.
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Figure 3. The calculated solvation time correlation function, S(t), for an ionic and a dipolar
solute as a function of time as obtained from dynamic mean spherical approximation (DMSA,
(15) and (18)). Both solute and solvent are of equal size. The rest of the solvent parameters
remain the same as in figure 1.

DMSA calculation differs from the calculation of Rips et al (1988) in using a better
&(z) value (vide §2.1a).

Figures 1, 2 and 3 depict the solvation-time correlation function obtained from
theoretical calculations, for both ionic and dipolar solvation. The ionic solute in the
present study has a size comparable to that of Coumarin-343 (C-343) in order to
compare our results with that of the experimental one (Jimenez et al 1994). In the
case of dipolar solvation, the solvent and the solute dipoles are assumed to be of the
same size. -

The results of ion solvation are presented in figure 1. The agreement between MHT
prediction and experimental situation is excellent. The calculated S(z) has a pronounced
bimodal character. The initial gaussian decay is extremely rapid, occurring at a time
constant of 54 femtoseconds. This is in excellent agreement with experiment, which
shows that a solvent response on a time scale of 55 fs dominates the aqueous solvation
dynamics and is attributed to the inertial (mainly librational) motions of the solvent
molecules. ‘

It may be noted that many real solute molecules have multipolar charge distribution
and are not ionic in nature. Hence, a sum of dipolar, quadrupolar, octupolar etc.
charge distributions is a better representation for such cases. The solvation dynamics
are also expected to be different from that of ion solvation. A study similar to the
present one may help in understanding the solvation dynamics of multipoles.

Conclusions

The present study shows that the initial part of the ultrafast solvation in liquid water
can be described essentially in terms of librational motion of the sclvent. The initial
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decay of the solvation time correlation function occurs with-a time scale of 54 fs
which is in excellent agreement with experimental findings. The solvation dynamics
of dipolar solutes have been observed 'to be much slower than in the ionic case
because the nearest neighbour contribution becomes more pronounced. ‘
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