arXiv:0710.2721v2 [cond-mat.mtrl-sci] 9 Dec 2007

Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated
from femtosecond z-scan measurements
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Nonlinear transmission of 80 and 140 femtosecond pulsed light with 0.79 pum wavelength through
single walled carbon nanotubes suspended in water containing sodium dodecyl sulphate is studied.
Pulse-width independent saturation absorption and negative cubic nonlinearity are observed, re-
spectively, in open and closed aperture z-scan experiments. The theoretical expressions derived to
analyze the z-dependent transmission in the saturable limit require two photon absorption coefficient
Bo ~ 1.4 em/MW and a nonlinear index v ~ —5.5 x 107" em? /W to fit the data.
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Single walled carbon nanotubes (SWNTSs) have been
studied for numerous applications including third or-
der optical nonlinearity. These applications include na-
noelectronics, gas and bio sensors, field emission dis-
plays, saturable absorbers for passive optical regenera-
tion, mode-locking and THz optical switching. The sus-
pended carbon nanotubes show optical limiting due to
nonlinear scattering, micro-plasma formation and subli-
mation in the nanosecond regime.!:2:34:2 In the femtosec-
ond (fs) regime where heating does not play a role in
the nonlinear transmission, an enormously large third-
order susceptibility (ImX(B) ~ 107% esu) has been re-
ported by resonantly exciting at the first inter sub-band
energy levels (S11) of semiconducting SWNTs.57 The
origin of this large nonlinearity is assigned to the co-
herence effect, rather than the incoherent or saturable
absorption, because the measured nonlinearity decreased
rapidly when the wavelength is changed away from the
first band gap.® This interpretation for the large nonlin-
earity is being debated.®? Other experimentst®t! using fs
pulses have reported a mixed variation with wavelength-
much smaller valuel® for Imy(®) ~ 10719 esu at 1.55 um
and a fairly large valuelt of ~ 1077 esu at 1.33 um. The
origin of the nonlinearity had not been identified. In this
letter we report the results of closed aperture (CA) and
open aperture (OA) z-scan measurements carried out in
suspension of almost isolated SWNT's at a wavelength of
0.79 um (energy fw of 1.57 eV'). The OA z-scan shows
saturated absorption and CA z-scan reveals negative cu-
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bic nonlinear refraction. We have developed a theoreti-
cal model incorporating saturated absorption along with
nonlinear absorption and refraction to derive the trans-
mission in both the OA and CA z-scans. The theoretical
analysis of our results obtained with two different pulses
with full-width at half-maximum (FWHM) of 80 fs and
140 fs clearly identifies two photon absorption (TPA) as
the source of nonlinearity and the TPA coefficient [ is
~ 1.4 em/MW . This translates to a fairly large value of
~1x 1072 esu for Imy® nonlinearity.

A dispersion of SWNTs (0.4 mg) and 1% of sodium do-
decyl sulphate (SDS) in water (1 ml) was sonicated for
5 hours and the resultant solution was found to be well
dispersed. This solution in 1 mm path length quartz cell
was used in our experiments. The SWNT sample used
in our experiments is pristine and contains two diame-
ter distributions at 1.41 nm and 1.58 nm as confirmed
by the radial breathing Raman modes at 160 cm ™! and
177.7 cm™ !, shown in the inset of Fig. 1.

Nonlinear transmission studies were carried out at
1.57 eV using Ti: Sapphire Regenerative femtosecond
amplifier (Spitfire, Spectra Physics). The chosen pho-
ton energy is nearly resonant with the first interband
transition energy in metallic tubes, M;; and off-resonant
with the second interband transition energy of the semi-
conducting tubes Ss2. From the absorption spectra of
the dispersed nanotubes shown in Fig. 1, we infer that
the absorption coefficient at this wavelength is about
5.6 x 10* ecm™'. The FWHM pulse width of the am-
plifier output was 50 fs at a repetition rate of 1 kHz.
Near the sample point, the pulse from the amplifier was
found to be broadened to 80 fs. For the experiments
done with 140 fs, we stretched pulse by adjusting the
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FIG. 1: Optical absorption spectrum of SDS suspended Sin-
gle walled carbon nanotubes in water. E5(E™Y) are the
second (first) interband transition energy of semiconducting
(metallic) nanotubes. The inset is the Raman spectrum show-
ing radial breathing modes

compressor of the amplifier. Two Si-PIN diodes (one for
the signal (B) and the other for reference (A)) triggered
at the electronic clock output (1 kHz) from the ampli-
fier are used for the data acquisition and the difference
between B and A was collected using a lock-in amplifier
(SRS 830), averaged over 300 shots. This difference data
was then converted into actual B/A signal in a personal
computer. The SWNT dispersion in 1 mm thick cuvette
was translated using a motorized translation stage (XPS
Motion controller, Newport) over the focal region. The
intensity of input beam was varied from 150 MW/cm?
to 6.2 GW/em?2. In the OA z-scan, all the light was col-
lected by using a collection lens in front of the diode. The
measured (and normalized) transmission data as shown
in Fig. 2(a) clearly demonstrates the saturable absorp-
tion where the transmission is enhanced at focus (z = 0).
For CA z-scan, we kept an aperture of diameter 3.6 mm
in front of the diode B and the measured transmission
(and normalized) data as shown in Fig. 2(b) indicates
photo-carrier induced reduction in the refractive index.

The procedure to calculate the transmission in z-
scan experiments has been well described!2:13:14:15 ip
the literature. For the optical limiting case, fairly ac-
curate solutions have been used to explain the z-scan
results 12131412 However, for the saturation absorption
case, the solutions are obtained either qualitativelyfor
in the limit where the intensity is far smaller than the
saturation intensity.l” To quantify the basic mechanisms
responsible for the nonlinear absorption and refraction,
we accurately solve the rate equation, but modified!® for
saturation absorption:

dl - Oéo]
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where « is the one photon absorption (including intrinsic
free carrier absorption) coefficient, 3y, is the fundamental

TPA coefficient, and oy is free carrier absorption (FCA)
cross section. I, is the parameter that characterizes the
saturation absorption. The intensity (/) at the radial
position r, time t, the position ( in the sample, and the
location of the sample z is denoted as I(z,(,r,t). The
generated photo-carrier density AN depends on both ag
and fy. In our experiment, the maximum value of I is
~ 6 GW/em? and ag is = 5.6 x 10* cm™!. Even with
a large value for By ~ 1076 ¢m /W, the dominant source
of carrier generation is one photon absorption. Since the
carrier decay time is much longer than the pulse width
70, Eq. 1 takes the form:
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where

Best = Bo + (ooanT0/Iw) (3)

The boundary condition required to solve Eq. 2 is the
input intensity which is assumed to be a Gaussian and
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wo is the beam waist at the focus, w(z) =
wo/1 + (2/20)? is the beam radius at z, z9 = mwg/A
is the diffraction length of the beam, 7y is the half
width at e~! of the maximum of the pulse, and \ is
the wavelength. The intensity at the exit side of sam-
ple, I(z, L,r,t) is obtained from the analytical solutiont?
to Eq. 2 and integrated over all r and ¢ to calculate the
transmitted energy. The transmission in the OA z-scan
experiment, Tpa(z) is simply the ratio of transmitted
energy to the incident energy. The solution to Eq. 2 de-
pends on two parameters Jog and I, which can be varied
to fit the measured OA z-scan data. Since several sets of
Begr and I can fit the data, we will choose appropriate
set that fits CA data as well.

The transmission for CA case is more complicated as it
requires the phase of electric field (F) in addition to the
intensity at the exit surface.l214:15 The phase at ( = L
is different from that at ( = 0 because of the change in
refractive index, An, caused by light absorption. To a
first order in I, the An is simply I, where =y is the cubic
nonlinear index.

The cubic nonlinear refraction coefficient, 7, in general
has contribution from the photo-generated carriers, tem-
perature change, and bound electrons. Following the well
established procedure!2, we calculate the electric field in-
side the sample. For thin samples where photo-carrier
generation is uniform, the change in phase from inci-
dent to exit surface is A¢p = kv fOL 1(¢)d¢, where k is
the wavenumber and I(¢) is the solution of Eq. 2. For
a given r and t, the intensity at any ¢ inside the sam-
ple is obtained analytically, fitted to polynomial series in
I(z,0,7,t), and substituted for A¢ to get,
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The electric field at the exit surface is then,

2 o2 2 .
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(6)
where R(z) = z[1 + 22/2?] is the radius of curvature of
the wave-front at z. As beforel?, e'2? is expanded in infi-
nite series and Gaussian decomposition methodi? is used
to obtain the field pattern at the aperture which is at a
distance d away from the exit surface. In our calculations
we found that the convergence is achieved with first four
terms in the expansion. We get normalized z-scan trans-
mittance, Toa(z) by integrating |E(z, L + d,r,t)|? over
all ¢t from —oo to +00, and 7 from 0 to aperture radius

2
—2r;

T'a, then dividing it by 72 row2Io[1 — exp( o2 )]/2.
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(a)OA z-scan and (b) CA z-scan ([1—exp( f;“ )]=0.72). The-

oretical fit (solid line) is obtained with feg = 1.4 em/ MW,
I, = 30 GW/cm? (for OA) and 37 GW/em? (in CA)

Normalized transmittance data (open circles) in

From the difference between the normalized peak
and valley transmittance in CA z-scan experiment and
aperture’s linear transmittance, value of ~ can be
calculatedi?. From our measured CA z-scan experi-
ments (shown in Fig. 2(b)), we obtain a value of
—5.5x 107 em? /W for . A simple calculation?? using
the value of —3 x 1072t ¢m =3 for (dn/dN) predicted?!
in wide bandgap semiconductors also yields a value
—3 x 107 em?2 /W for . However our measured value
for v is about two orders less compared to the value pre-
dicted by Margulies et al for SWNTs?2. Using a value
of —5.5 x 107 em?/W for v, we have then varied Seg
in the calculation of T 4(z) to fit the data. We found
that both OA and CA data can be fitted simultaneously
with one set of parameters as shown by solid line in Fig.
2. With larger values of (e, a good fit to CA data
could not be achieved for any value of I (the same is
true for OA data too). Although good fit is possible
with much smaller Gog, the I required to fit CA differs
considerably (by more than an order of magnitude) from
that needed to fit OA data. A consistent set of parame-
ters for v, B and I, respectively, —5.5 x 1071t em? /W,
1.4 x 1075 em/W, and 30 GW/em?, fit both OA and
CA data well as shown by solid lines in Fig. 2. As seen
from Eq. 3, the [Be.g has two contributions -TPA and
FCA. Noting that the FCA contribution depends on the
pulse width, we repeated both CA and OA z-scan with
FWHM width of 140 fs to evaluate the relative strength
of these two contributing mechanisms. We found that
z-scan data with 140 fs pulse width is identical to that
obtained with 80fs pulse width. This clearly indicates
that FCA cross section is extremely small and the funda-
mental TPA () is the dominant mechanism for nonlin-
ear absorption. The predicted value of 1.4cm/MW for
Bo in CNTs is two-to-three orders of magnitude larger
than that in wide band gap semiconductors at 1 to 2 um
wavelength. This large value of nonlinearity (both S
and ) arises mainly as the consequence of the one di-
mensional motion of delocalized-electron cloud along the
nanotube axis.2324 Although the large value of 3 at the
wavelength, where oy is also large, makes it less useful for
optical limiting applications, the underlying mechanism
responsible for Gy could be operative even at the forbid-
den wavelength. With our increasing ability to tune the
band gap with nanotubes’ radius, CNT's offer an interest-
ing possibility for enhanced nonlinearity in near visible
to short wave infrared wavelength region.
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