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ABSTRACT

We consider a 5-dimensional SU(5) model wherein the symmetry is broken
to the 4-dimensional Standard Model by compactification of the 5th dimen-
sion on an S1/(Z2 × Z ′

2) orbifold. We identify the members of all SU(5)
representations upto 75 which have zero modes. We examine how these light
scalars affect gauge coupling unification assuming a single intermediate scale
and present several acceptable solutions. The 5-D compactification scale co-
incides with the unification scale of gauge couplings and is determined via
this renormalization group analysis. When SO(10) is considered as the GUT
group there are only two solutions, so long as a few low dimensional scalar
multiplets upto 126 are included.
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1 Introduction

The SU(5) model[1] unifies the strong, weak, and electromagnetic interac-
tions in the smallest simple group. It has many other attractive features
which are well recognized. But it suffers from the following two major dif-
ficulties which are actually generic to the idea of grand unification[2] itself.
(i) Because quarks and leptons reside in unified multiplets and there are
B- and L-violating interactions, gauge boson exchanges can result in proton
decay[3]. If these gauge bosons are appropriately heavy, the decay rate will
be very small. Their masses, in the usual formulation, are, however, not
arbitrary but rather determined by the scale where the different gauge cou-
plings unify. The proton decay lifetime is therefore a robust prediction of
the model. No experimental signature of proton decay[4] has been found yet
and the model is disfavoured. More complicated unification models involv-
ing several intermediate mass-scales can evade this problem[5]. (ii) The low
energy Higgs doublet, responsible for electroweak breaking, is embedded in
a 5 representation of SU(5). The other members of this multiplet are color
triplet scalars which must have a mass near the unification scale – since no
such scalars have been observed at the electroweak scale. This leads to an
unnatural mass splitting among the members of the same SU(5) multiplet.
This is termed the double-triplet splitting problem[6].
These two unwelcome features of the SU(5) model can be tackled in an
elegant way if unified SU(5) symmetry exists in a 5-D world. Low energy 4-
D SU(3)c×SU(2)L×U(1)Y symmetry is recovered when the extra dimension
is compactified on a S1/(Z2×Z ′

2) orbifold[7]. This situation is realized when
space-time is considered to be factorized into a product of 4D Minkowski
space-time M4 and the orbifold S1/(Z2×Z ′

2). The coordinate system consists
of xµ = (x0, x1, x2, x3) and y = x5. There are two distinct 4-D branes; one
at y = 0 and another at y = πR/2. On the S1, y=0 is identified with
y = πR (Z ′

2 symmetry) while y = ±πR/2 are identified with each other (Z2

symmetry).
As is common in models of this type, we assume that the fermions are located
in the 4-D brane at y = 0 while the gauge bosons and the scalars are allowed
to travel in the bulk. The discrete Z2 and Z ′

2 symmetries, which we refer to
as P and P ′, permit the expansion of any 5-D field φ in the following mode
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expansions according to whether they are even or odd under (P, P ′):

φ++(y) =
√

2
πR

∑∞
n=0 φ

(2n)
++ cos 2ny

R
; Mn = 2n

R

φ−+(y) =
√

2
πR

∑∞
n=0 φ

(2n+1)
−+ sin (2n+1)y

R
; Mn = 2n+1

R

φ+−(y) =
√

2
πR

∑∞
n=0 φ

(2n+1)
+− cos (2n+1)y

R
; Mn = 2n+1

R

φ−−(y) =
√

2
πR

∑∞
n=0 φ

(2n+2)
−− sin (2n+2)y

R
; Mn = 2n+2

R

Here n = 0, 1, 2, . . . and we have suppressed the xµ dependence. The be-
haviour of the fields under P and P ′ can be read off from the subscripts in
the left hand side above. For example, φ−+ is odd under P and even under P ′.
We have also listed the masses of the different modes. Notice that only the
φ++ field can have a massless mode. One of the prime motivations of these
higher dimensional SU(5) models is to ensure doublet-triplet splitting within
the 5 scalar multiplet of SU(5) and to ensure that from within the adjoint
representation (24) of the gauge bosons only the SU(3)c × SU(2)L × U(1)Y

gauge bosons remain massless. Both can be achieved by ascribing P, P ′

parities of ++ to the (1,2,1/2) submultiplet in the 5 while the remaining
(3,1,–1/3) states carries +− parity1. For the sake of completeness, the de-
composition of the SU(5) representations upto 75 are listed in Table (1)
[7]. Since P, P ′ commute with the Standard Model (SM) gauge symmetry
SU(3)c×SU(2)L×U(1)Y , the Z2×Z ′

2 parities for the members of the higher
SU(5) multiplets can be built up from this assignment for the scalars in the
fundamental representation2. These parities have been indicated in Table (1).
In this way we can also assure that the (1,1,1)+(1,3,0)+(8,1,0) multiplets of
24 remain massless, breaking SU(5) symmetry below the compactification
scale 1/R ≡ MX .
Above MX , the mass scale of the non-SM gauge bosons, X, Y , and that of the
colour triplet scalars in the 5 representation, SU(5) symmetry is unbroken.
This scale is determined in our analysis by the unification of the three SM
gauge couplings. We assume one intermediate scale, MI , such that all scalars
which are permitted to have a zero mode, excepting the SM scalar doublet,

1Here we are using the decomposition of the SU(5) multiplets under SU(3)c×SU(2)L×

U(1)Y .
2In principle, one can assign arbitrary Z2×Z ′

2
parities to the submultiplets of the higher

SU(5) representations. However, to reduce adhocness, here we work with the ansatz that
once we assign the parities for the fundamental representation, those for the submultiplets
of higher SU(5) representations are determined by group theoretic relationships.
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SU(5) ⊃ SU(3)c × SU(2)L × U(1)Y

5 ⊃ (1, 2, 1/2)+ + + (3, 1,−1/3)+ −

5 ⊃ (1, 2,−1/2)+ + + (3, 1, 1/3)+ −

10 ⊃ (1, 1, 1)+ + + (3, 1,−2/3)+ + + (3, 2, 1/6)+ −

15 ⊃ (1, 3, 1)+ + + (3, 2, 1/6)+ − + (6, 1,−2/3)+ +

24 ⊃ (1, 1, 0)+ + + (1, 3, 0)+ + + (3, 2,−5/6)+ − + (3, 2, 5/6)+ − + (8, 1, 0)+ +

35 ⊃ (1, 4,−3/2)+ + + (3, 3,−2/3)+ − + (6, 2, 1/6)+ + + (10, 1, 1)+ −

40 ⊃ (1, 2,−3/2)+ + + (3, 2, 1/6)+ + + (3, 1,−2/3)+ − + (3, 3,−2/3)+ −

+(8, 1, 1)+ − + (6, 2, 1/6)+ +

45 ⊃ (1, 2, 1/2)+ + + (3, 1,−1/3)+ − + (3, 3,−1/3)+ − + (3, 1, 4/3)+ −

+(3, 2,−7/6)+ + + (6, 1,−1/3)+ − + (8, 2, 1/2)+ +

50 ⊃ (1, 1,−2)+ + + (3, 1,−1/3)+ + + (3, 2,−7/6)+ − + (6, 3,−1/3)+ −

+(6, 1, 4/3)+ + + (8, 2, 1/2)+ −

70 ⊃ (1, 2, 1/2)+ + + (1, 4, 1/2)+ + + (3, 1,−1/3)+ − + (3, 3,−1/3)+ −

+(3, 3, 4/3)+ − + (6, 2,−7/6)+ + + (8, 2, 1/2)+ + + (15, 1,−1/3)+ −

70′ ⊃ (1, 5,−2)+ + + (3, 4,−7/6)+ − + (6, 3,−1/3)+ + + (10, 2, 1/2)+ −

+(15, 1, 4/3)+ +

75 ⊃ (1, 1, 0)+ + + (3, 1, 5/3)+ + + (3, 2,−5/6)+ − + (3, 1, 5/3)+ +

+(3, 2, 5/6)+ − + (6, 2,−5/6)+ − + (6, 2, 5/6)+ − + (8, 1, 0)+ +

+(8, 3, 0)+ +

Table 1: The SU(3)c × SU(2)L × U(1)Y contents of the different SU(5)
representations. Also shown are the P and P ′ assignments.

pick up a mass at this scale. We include their contributions to the beta
functions of the one loop renormalization group equations (RGE) and solve
for both the intermediate scale MI and the unification scale MX . The beta
function coefficients are given by:

bi =







0
−22/3
−11





 + nf







4/3
4/3
4/3





 + T i
s/3 (1)

We take nf = 3. The above expression assumes that the scalar fields are
complex. For real scalar fields one has to use T i

s/6 in Eqn. (1). The T i
s
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R light scalar multiplets T 3
s T 2

s T 1
s

5 (1,2,1/2) 0 1/2 3/10
10 (1,1,1)+(3, 1,- 2/3) 1/2 0 7/5
15 (1,3,1)+(6,1,-2/3) 5/2 2 17/5
24 (1,3,0)+(8,1,0) 3 2 0
35 (1,4,-3/2)+(6,2,1/6) 5 8 28/5
40 (1,2,-3/2)+(3,2,1/6)+(6,2,1/6) 6 5 3
45 (1,2,1/2)+(3,2,-7/6)+(8,2,1/2) 7 6 38/5
50 (1,1,-2)+(3,1,-1/3)+ (6,3,-1/3)+(6,1,4/3) 21/2 3 51/5
70 (1,2,1/2)+(1,4,1/2)+(6,2,-7/6)+(8,2,1/2) 11 25/2 131/10
70′ (1,5,-2)+(6,3,-1/3)+(15,1,4/3) 25 22 146/5
75 (3,1,5/3)+(3,1,-5/3)+(8,1,0)+(8,3,0) 13 16 10

Table 2: The contributions to the β-functions from the light members of the
different SU(5) representations upto 75.

for the light scalar submultiplets of the different SU(5) representations upto
75 are listed in Table (2). Defining mk,l = ln(mk/ml) and bi

k,l to be the β
coefficients governing evolution in the range mk ↔ ml, we get the following
three solutions of the RGE.

2πα−1
i (MZ) = 2πα−1

X + bi
X,ImX,I + bi

I,ZmI,Z (2)

Using the values of couplings at the low energy scale MZ

α1(MZ) = 0.01688, α2(MZ) = 0.03322, α3(MZ) = 0.117 (3)

we solve the three equations in Eqn. (2). First, we present a simple illustra-
tive example below.

2 Simple example

Because the GUT symmetry is broken via orbifolding, let us consider the
case where there are only 5-plets of SU(5) Higgs scalars at the unification
scale and assume that there are n5 of them. Then compactification allows
only doublets to be light and not their triplet partners. In this case the β
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coefficients are given by,

bi
X,I =







41/10
−19/6
−7





 +
n5

3







3/10
1/2
0





 (4)

Solving Eqn. (2) we obtain

α−1
X = 38.53, mI,Z = 26.98 − 194.75/n5, mX,I = 194.75/n5 (5)

Because mI,Z ≥ 0 we obtain n5 ≥ 8. For the case of n5 = 8 we get,

MI = 1.39 TeV, MX = 5.0 × 1010 TeV. (6)

The GUT scale MX is rather low but it is consistent with proton decay
because of the existence of Z2 × Z ′

2 parity. Note that the intermediate scale
is in a very attractive region phenomenologically. Eight Higgs doublets can
be degenerate at this scale of 1.3-1.4 TeV. They may play an important role
in the fermion mass puzzle. Further, the scale MX ≃ 1010 TeV is interesting
from the point of view of the see-saw mechanism. The unification pattern is
shown in Fig. (1).

3 More general cases

We now turn to the more general possibility where scalars in higher represen-
tations of SU(5) are present. The light scalars of all SU(5) multiplets upto
75 and their contributions to the beta coefficients are listed in Table (2).

3.1 Small number of representations and low interme-

diate scales

We consider upto the 75 dimensional representation of SU(5) and demand
that the threshold scale, MI , be less than 10 TeV. For the sake of economy,
we also consider only those solutions where for every representation R, the
number nR is either 0 or 1. If we do not put any restriction on the number
of representations, but maintain that nR be zero or unity only, then we get
43 different solutions. In Table (3) we list those solutions for which not more
than two nR are non-zero.
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Representations MI MX

with nR = 1 (TeV) (TeV)
35 0.223 1.61 ×1011

5,35 5.70 1.38 ×1011

24,35 0.905 5.50 ×1011

35,40 3.61 1.84 ×1012

45,75 3.61 1.84 ×1011

Table 3: SU(5) repesentations of scalars whose light members ensure cou-
pling constant unification. The unification scale, MX , and the intermediate
scale, MI , are also given.

Though the intermediate scales, MI , and the unification scales, MX , in the
last two cases are the same, the value of αX turns out to be 0.037 and 0.710,
respectively.
Let us explain one case in more detail. Let there be only 35-plets of SU(5)
at the unification scale and assume that there are n35 of them. Then com-
pactification allows only (1,4,–3/2) + (6,2,1/6) fields at low energy. In this
case the βi coefficients are given by,

bi
X,I =







41/10
−19/6
−7





 +
n35

3







28/5
8
5





 (7)

Solving the RGE we obtain

α−1
X = 32.72, mI,Z = 28.20 − 27.3073/n35, mX,I = 27.3073/n35 (8)

Because mI,Z ≥ 0 we obtain n35 ≥ 1. For the case of n35 = 1 we get,

MI = 0.223 TeV, MX = 1.6 × 1011 TeV. (9)

3.2 Low dimensional representations only

Another alternative which we examine is by restricting to SU(5) represen-
tations upto 24 subject further to the requirements n5 < 8, n10 < 5, n15 <
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5, n24 < 5. Then we get the results given in Table (4) when we impose
MI < 70 TeV. The unification patterns of the gauge couplings for a few
sample cases are shown in Fig. (1).

n5 n10 n15 n24 MI (TeV) MX (TeV)
8 0 0 0 1.678 4.66 × 1010

7 0 0 1 0.223 1.61 × 1011

8 0 0 1 5.696 1.38 × 1011

7 0 0 2 0.905 5.49 × 1011

8 0 0 2 19.08 4.05 × 1011

7 0 0 3 3.607 1.84 × 1012

8 0 0 3 63.08 1.17 × 1012

6 0 0 4 0.407 1.33 × 1013

7 0 0 4 14.12 6.08 × 1012

6 0 0 5 0.199 5.22 × 1013

7 0 0 5 54.36 1.97 × 1013

8 1 0 5 0.407 1.33 × 1013

8 0 1 5 0.407 1.33 × 1013

Table 4: Various SU(5) scrnarios which gives low intermediate scales upto
70 TeV

4 Remarks about SO(10)

It might be of interest to extend this analysis to grand unification groups of
higher rank. It is readily seen that the solutions will become more difficult
to come by. For example, we give in Table (5) the SU(5) contents of the
SO(10) representations upto 126. Notice, that the inclusion of a single 126

of SO(10) is equivalent to the simultaneous presence of 5, 10, 15, 45, 50

repesentations of SU(5) and there is no flexibility of including the SU(5)
representations individually.
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R SU(5) components T 3
s T 2

s T 1
s

10 5 + 5 0 1 3/5
16 1 + 5 + 10 1/2 1/2 17/10
45 1 + 10 + 10 + 24 4 2 14/5
120 5 + 5 + 10 + 10 + 45 + 45 15 13 93/5
126 1 + 5 + 10 + 15 + 45 + 50 41/2 23/2 229/10

Table 5: The contributions to the β-functions from the light members of the
different SO(10) representations upto 126.

If we permit all SO(10) representations upto 126 and consider no more than
upto 8 of any single representation then we find just two allowed solutions:

1) n10 = 8, other ni = 0 ⇒ MI = 1.68 TeV, MX = 4.67 ×1010 TeV

2) n10 = 6, n16 = 1, other ni = 0 ⇒ MI = 295 TeV, MX = 7.99 ×109 TeV

5 Conclusions and Discussion

In this work, we have examined the light scalar modes that survive when
a 5-dimensional SU(5) model reduces to the 4-dimensional SM through the
orbifold compactification route. The scalars which are permitted to have
zero modes are assumed to pick up a mass at some scale MI intermediate
between the electroweak and Planck scales. They contribute to the beta
coefficients in the MI < µ < MX regime. The compactification scale, MX ,
above which SU(5) is unbroken, is determined by the unification of the gauge
couplings. This analysis also determines MI . We identify solutions for which
MI is in an interesting phenomenological range and can be probed at the
next generation colliders. This analysis is somewhat similar in spirit to the
approach chosen for supersymmetric-GUTs where the SUSY scale is fixed by
gauge unification.
It is seen from Table (2) that P is (+) for all the multiplets. Thus it does
not play any role in the present analysis. However, we would like to keep the
option of generalizing this method to the supersymmetric case where P has
a non-trivial role.
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The scale of degenerate scalars, MI , should be treated as an approximate
one in the sense that in reality some spread in the masses around it can be
expected. The standard model doublet has a mass at the electroweak scale.
This should not be viewed as an unnatural fine tuning as some relevant
Yukawa couplings can be of order 10−2 − 10−3.
When the unification symmetry is assumed to be of higher rank, then the
number of acceptable solutions reduces dramatically. For SO(10) just two
solutions can be obtained, so long as we stick to the low dimensional repre-
sentations of the symmetry group.
At first sight it might seem that we are introducing too many scalar degrees
of freedom. However, this appears less dramatic when we compare it to
the Minimal Supersymmetric Standard Model where too a large number of
scalars are required.
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Figure 1: Gauge unification in various models. Labels of cases are
(n5, n10, n15, n24). As a first approximation we have used one intermediate
scale which is given by the mass scale of extra scalars allowed by S1/Z2 ×Z ′

2

compactifications.
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