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Abstract

An SO(10) model where the 10H and 120H representations are used for generating fermion
masses is quite predictive, though due to the absence of SU(2)L,R triplet/singlet fields it cannot
give rise to neutrino masses through the usual type-I or type-II seesaw mechanisms. In this paper
for neutrino masses we propose an extension of such an SO(10) model by adding fermions in the
adjoint representation (45F ) and a symmetry breaking scalar 16H . The 16H couples the adjoint
fermions to the standard fermions in 16F and induces neutrino masses through the ‘double seesaw’
mechanism. In order to enhance the predictivity of the model we impose µ − τ flavour symmetry
on the Yukawa matrices for 10H and 16H whereas for the 120H it is assumed to be antisymmetric.
We discuss the conditions that the mass matrices must obey so that the model can reproduce the
tri-bimaximal mixing pattern.
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I Introduction

A number of experiments with solar, atmospheric, reactor and accelerator neutrinos have now unam-
biguously established that these elusive particles are massive. In addition, the data imply one small
and two large mixing angles in complete contrast with the quark sector where all three mixing angles
are small. In Table 1 we present the best-fit values and 3σ ranges of neutrino oscillation parameters as
obtained from the global oscillation analysis [1]. These values are close to the so called tri-bimaximal
mixing pattern [2] which implies sin2 θ12 = 1/3, sin2 θ23 = 1/2 and sin2 θ13 = 0.

Since in the Standard Model (SM) neutrinos are massless this compels one to transcend beyond the
realms of the SM. There are also several theoretical motivations for going beyond the SM, one of
which is that the SM is a product of three gauge groups and so involves three independent couplings.
A Grand Unified Theory (GUT), which is a theory of strong and electroweak interactions based on
a single gauge group [3], aims to unify the three forces with a single coupling constant [4]. It also
unifies the matter fields by placing the quarks and leptons in the same irreducible representation of the
underlying gauge group [5]. Since GUTs aim to unify quarks and leptons it is a challenge to reconcile
the large mixings in the lepton sector with the small mixings in the quark sector. The issue of fermion
masses and mixing in the context of GUTs has received much attention from this perspective.

Several GUT models based on gauge symmetries such as SU(5), SO(10), and E(6) have been proposed
and studied extensively. The minimal GUT group which has the same rank as GSM ≡ SU(3) ⊗
SU(2)L ⊗ U(1)Y is SU(5) [3]. SU(5) requires two different representations (5̄ + 10) to accommodate
all the fermions of one generation. Moreover the minimal model does not achieve gauge coupling
unification neither does it allow a neutrino mass. On the other hand, SO(10) GUT has the feature
of unifying all quarks and leptons within its 16-dimensional spinor representation [6]. This accounts
for the 15 SM fermions and a right-handed neutrino and allows a natural implementation of the
seesaw mechanism [7]. It has been shown in a number of papers that renormalizable SO(10) – with
and without supersymmetry (SUSY) – is quite predictive and powerful in constraining fermion mass
patterns because of the underlying SU(4)c symmetry which relates the quark and lepton Yukawa
couplings. In SO(10), 16⊗ 16 = 10⊕ 120⊕ 126 and so Higgs fields giving mass to the 16F can reside
in the 10H , 120H and 126H representations. Obtaining correct masses for the quarks and the charged
leptons requires at least two Higgs multiplets. It has been noted, for example in [8], that any one of the
combinations (10H , 120H ), (10H , 126H), or (120H , 126H) can, in principle, be utilized. Among these
the model with 10H and 126H has been extensively considered as the most successful candidate for
the minimal SO(10) GUT [9]. 126H contains colour singlet submultiplets which transform as a triplet
under SU(2)L and a singlet under SU(2)R or vice versa; these are the cornerstones of the seesaw
mechanism [7]. Both type-I (mediated through singlets [7]) and type-II (mediated through scalar
triplets [10]) seesaw have been examined for both supersymmetric [11] and non-supersymmetric [12]
cases. The 126H relates the Majorana mass of the neutrinos to the Dirac mass as well as other charged
fermion masses making the model predictive. It is also possible and in some cases advantageous to
include all the three Higgs representations [13, 14]. The model with 10H +120H [15, 16], on the other
hand, does not have the requisite scalars to lead to neutrino masses through the seesaw mechanism.
Here, neutrino mass can be obtained at two loop through the radiative seesaw mechanism due to
Witten [17] by adding 16H + 16H multiplets. This model has been studied in [18] and it was shown
that under plausible assumptions it predicts b − τ unification, natural occurrence of large leptonic
and small quark mixing and large value for the atmospheric mixing angle. However, the radiative
seesaw runs into difficulty with low-energy SUSY although it works well in the context of split SUSY
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best fit 3σ range

∆m2
21 [10−5 eV2] 7.59 7.03 - 8.27

|∆m2
31| [10−3 eV2] 2.40 2.07 - 2.75

sin2 θ12 0.318 0.27 - 0.38
sin2 θ23 0.50 0.36 - 0.67
sin2 θ13 0.013 ≤ 0.053

Table 1: The best-fit values and the 3σ ranges of neutrino mass and mixing parameters as obtained
from a global analysis of oscillation data [1]. ∆m2

ij = m2
i −m2

j .

[19]. Moreover, as has been shown in [16] the SUSY SO(10) model containing 10H and 120H cannot
reproduce the charged fermion masses correctly. On the other hand in non-SUSY SO(10) the two-loop
neutrino mass is very small.

In this paper we consider the generation of neutrino masses in the 10H+120H model embellished with a
16H by adding fermions belonging to the adjoint representation (45F ) of SO(10). Such fermions couple
to the usual sixteen-plet of quarks and leptons via the 16H and can give rise to neutrino masses through
the ‘double seesaw’ mechanism. In models with 10H +120H this can serve as an alternative option for
generating small neutrino masses1. Fermions in the triplet adjoint representation of SU(2)L are also
considered in the so called type-III [21] seesaw mechanism. Such models have become quite popular
in the context of SU(5) GUTs [22]. SU(2)L triplet fermions fit naturally into the 24-dimensional
representation of SU(5) and can cure two main problems of these theories, viz. generation of neutrino
masses and unification of gauge couplings. The latter requires the mass of the fermionic triplets to be
∼ O(1 TeV) making the model testable at the LHC [23]. Presence of adjoint fermions in the context
of left-right symmetric models has been considered in [24] and generation of neutrino masses and
possible collider signatures were discussed. From this point of view our model can also be considered
as a generalization of type-III seesaw for SO(10). However as in LR symmetric models the mechanism
of mass generation here is actually the ‘double seesaw’ mechanism.

We discuss the conditions which the Yukawa coupling matrices should satisfy for the model to have
predictive power. This requires ascribing some additional flavour symmetry to the model which we
choose to be the generalized µ − τ symmetry that has been considered widely for explaining the
neutrino mixing angles [25]. It predicts θ23 to be π/4 which is the best-fit value of this angle from
global fits. In addition it implies θ13 = 0 which is also consistent with the data. Small deviation from
these exact values may be generated by breaking the µ− τ symmetry by a small amount. Combining
µ − τ flavour symmetry with GUTs has been considered in the case of SU(5) in [26] and also for
SO(10) [14]. Here we impose µ− τ symmetry on the Yukawa matrix for the 10H and 16H whereas the
one for 120H is taken to be antisymmetric. We also impose a parity symmetry leading to Hermitian

Yukawa matrices. Thus we consider the model SO(10) ⊗ Z
(µ−τ)
2 ⊗ ZP

2 [14]. Imposition of these two
symmetries help in reducing the number of unknown parameters in the Yukawa sector. In addition, we
make an ansatz relating the effective νR mass matrix arising due to the inclusion of adjoint fermions
with the Yukawa matrix for 10H . As a result the light neutrino mass matrix after seesaw mechanism
obtains a simple form and can be written as a sum of two contributions. It turns out that with the
above choice the neutrino mass matrix is µ − τ symmetric so that one immediately gets θ13 = 0 and
θ23 = π/4. It is straight-forward to get the prediction for the neutrino masses and θ12 and obtain the

1It is also possible to get a double seesaw type mass matrix using singlet fields [20].
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conditions on the parameters such that tri-bimaximal mixing is obtained. We also present the limiting
values when one of the two contributions dominates. With the above set of assumptions one can get
masses and mixing angles consistent with those presented in Table 1.

The plan of the paper is as follows. In the next section we discuss the model. In section III we
compute the evolution of the gauge couplings in the context of this model and obtain the range of the
intermediate as well as unification scales. In section IV we discuss the neutrino mass matrix. Finally
in section V we impose µ− τ symmetry and obtain predictions for neutrino masses and mixing angles.
We end with the conclusions.

II The Model

We explore an SO(10) model where the three fermion families acquire mass through the 10H and/or
120H . The model also includes additional fermion multiplets in the SO(10) adjoint representation,
45F , and a 16H .

In this model the Yukawa terms for the fermions can be expressed as:

L = Y1016F 16F 10H + Y12016F 16F 120H . (1)

In general, Y10 is a complex symmetric matrix while Y120 is complex antisymmetric. When the 10H
and 120H scalars obtain their vacuum expectation values (vevs) quarks and leptons obtain masses
which can be represented as:

md = M0 + iM2, mu = c0M0 + ic2M2,

ml = M0 + ic3M2, mD = c0M0 + ic4M2. (2)

Above, md (mu) denotes the mass matrix for the d-type (u-type) quarks, ml is the charged lepton
mass matrix, whereas mD is the Dirac mass matrix of the neutrinos. The matrices M0 and M2 are
proportional to Y10 and Y120 respectively.

M0 = MT
0 , M2 = −MT

2 . (3)

c0, c2, c3, and c4 are constants fixed by Clebsch-Gordan (CG) coefficients and vev ratios which are
taken to be real. We impose a generalized parity symmetry and make appropriate choices of the vevs
[27] which make M0 and M2 real thereby reducing the number of free parameters and ensuring the
hermiticity of the mass matrices in eq. (2).

For neutrinos the above implies the presence of only the Dirac mass term which cannot reproduce
the correct neutrino mass pattern [18]. Since the 126H field is not present the type-I and type-II
seesaw mass terms are absent in this model. One can of course generate the neutrino mass through
the Witten mechanism of radiative seesaw [17] but then for non-SUSY SO(10) such contributions are
too small [18].

In this work we propose a new mechanism to generate a neutrino mass in a non-SUSY SO(10) with 10H
and 120H . We introduce additional matter multiplets (45F ) which belong to the adjoint representation
of SO(10). Note that this is similar to the so called type-III seesaw mechanism where one adds
additional matter fields in the adjoint representation. However, as we will see, the neutrino mass
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is generated here through the ‘double seesaw’ mechanism. SO(10) breaks to the SM through two
intermediate steps:

SO(10)
MX−→ SU(4)c ⊗ SU(2)L ⊗ SU(2)R

MC−→ SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)(B−L)
MR−→ GSM . (4)

The Pati-Salam (G422 ≡ SU(4)c ⊗ SU(2)L ⊗ SU(2)R) decomposition gives:

45 = (Σ3L,Σ3R,Σ4C ,ΣLRC) = (1, 3, 1) ⊕ (1, 1, 3) ⊕ (15, 1, 1) ⊕ (6, 2, 2). (5)

It is useful to note the SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L decompositions

(15, 1, 1) ≡ (1, 1, 0, 0) + (3, 1, 0,−4/3) + (3̄, 1, 0, 4/3) + (8, 1, 0, 0) , (6)

(4, 1, 2) ≡ (1, 1,±1

2
, 1) + (3, 1,±1

2
,−1/3) .

The colour, U(1)R, and U(1)(B−L) singlet members of Σ3R and Σ4c couple to νR when 16H gets a vev

along (1, 1,−1
2 , 1) ⊂(4,1,2) that breaks U(1)R ⊗ U(1)B−L. The relevant Yukawa coupling is:

Y1616F 45F 16H ⊃ Y16

[

a1(1, 1,
1

2
,−1)F (1, 1, 0, 0)

Σ3R

F + a2(1, 1,
1

2
,−1)F (1, 1, 0, 0)

Σ4c

F

]

(1, 1,−1

2
, 1)H .

(7)
a1,2 are CG coefficients. The vev vR ≡< (1, 1,−1

2 , 1)H > sets the scale MR.

The masses of the adjoint matter fields are generated from

M Tr(452F ) + λ Tr(452F 210H) . (8)

Once 210H acquires a vev along the (1,1,1) direction, SO(10) is broken to SU(4)c⊗SU(2)L⊗SU(2)R.
In the mass term MN of (1, 1, 0, 0)F ⊂ (15, 1, 1)F and MΣ3R

of (1, 1, 0, 0)F ⊂ (1, 1, 3)F , an extra
contribution (from the second term of eq. (8)) is added, i.e., MΣ3R

= MN = M + λ < (1, 1, 0, 0)H >.
There is no symmetry that protects the masses of these adjoint fermions. So naturally these are very
heavy (∼ MX).

III Constraints from gauge coupling unification

In this section, we discuss the Renormalization Group (RG) evolution of the gauge couplings at the
one-loop level, check for the scale of unification and determine the possible intermediate scales. The
symmetry breaks in two stages following the steps given in (4). The contributions in the RG running
from scalars at the different scales are included according to the ‘extended survival hypothesis’2 (ESH)
[28] which amounts to minimal fine tuning of the parameters of the potential. Our model contains
extra adjoint fermions. But these fermions are very heavy ∼ O (MX), so they do not contribute in
the renormalization group evolution of the gauge couplings.

When the SO(10) symmetry is broken to the Pati-Salam group [5] G422 by a 210H multiplet through
the vev in the < (1, 1, 1) > direction, D-parity3 [29] is spontaneously broken at this scale (MC).

2Only those scalars are light which take part in the symmetry breaking.
3D-parity is a symmetry that connects the SU(2)L and SU(2)R sectors of a multiplet.
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SO(10) Symmetry Scalars contributing to RG evolution
representation breaking MZ → MR MR → MC MC → MX

Under GSM Under G3211 Under G422

10 (1,2,2)
GSM → EM (1,2,±1) (1,2,±1

2 ,0)
120 ... ... (1,2,2), (15,2,2)

16 G3211 → GSM ... (1,1,−1
2 ,1) (4,1,2)

210 G422 → G3211 ... ... (15,1,3)

Table 2: Higgs submultiplets contributing to the RG evolution as per the extended survival hypothesis
when symmetry breaking of SO(10) takes place with two intermediate stages – see (4).

The gauge coupling evolution is usually stated as [4]:

µ
dgi
dµ

= βi(gi, gj), (i, j = 1, . . . , n), (9)

where n is the number of couplings in the theory and at one-loop order

βi(gi, gj) = (16π2)−1big
3
i . (10)

There is, however, a subtlety which must be taken into account since the gauge symmetry in the energy
range MR to MC includes two U(1) factors. According to the ESH the SO(10) multiplets are split in
mass with some submultiplets having mass above and some below this range. The incomplete scalar
and fermion multiplets that contribute to the RG evolution at this stage lead to a mixing between
these two U(1) gauge groups. Thus even at the one-loop level one cannot treat the evolution of these
U(1) couplings in separation and in a generic scenario one must include a (2 × 2) matrix of U(1)
couplings. The details of this U(1) mixing are skipped here4. We have computed the RG-coefficients
following the proposals given in [30] at the one-loop level including the U(1) mixings. The bi are the
ordinary beta-coefficients and the b̃j are the additional ones which arise due to the mixings stated
above. Taking all this into account, the gauge couplings evolve as follows:

i) From MC to MX :
b2L = 7/3; b2R = 13; b4c = −1. (11)

ii) From MR to MC :

b2L = −3; bRR = 53/12; b3c = −7; b(B−L)(B−L) = 33/8; b̃R(B−L) = b̃(B−L)R = −1/4
√
6. (12)

iii) From MZ to MR:
b1Y = 21/5; b2L = −3; b3c = −7. (13)

4See, for example, reference [30].
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Figure 1: The allowed ranges of the unification (MX , pale, green) and intermediate Pati-Salam (MC , dark, red)
scales as a function of the U(1)(B−L) breaking scale (MR) for SO(10) with two intermediate scales. The inset is a
zoom of the region of interest for generating neutrino masses of the right magnitude.

The mixing of the two U(1) groups adds flexibility to the model. With this, we find for every MR a
range of consistent solutions for MC and MX (see Fig. 1). In the plot we have exhibited the maximum
and minimum values of both MC and MX consistent with unification. In a Grand Unified Theory low
intermediate scales are always perceived with extra interest. These low intermediate scale scenarios
keep alive the hope that signals of the GUT may be identified at accessible energies. In Fig. 1, we
have shown that MR and MC can be quite low – ∼ 10 TeV – which is within the reach of recent
colliders, such as the LHC; this is an artifact of the inclusion of the U(1) mixings. The vev vR of the
scalar (1, 1,−1

2 , 1) ⊂ 16, sets the scale MR. In the next section we have shown that vR needs to be
very high (∼ 1014 GeV) to yield the correct neutrino mass with the Yukawa couplings ∼ O(1). In the
inset of Fig. 1 we magnify this range of MR. It is to be noted that this establishes that the proposed
model of ‘double-seesaw’ mechanism is compatible with gauge coupling unification at a scale which is
not in conflict with the present bound on the proton lifetime.

IV Neutrino Mass

The neutrino mass matrix in the basis ((νL)
c, νR,Σ

0
R, N) is:

Mν =









0 mD 0 0
mT

D 0 a1Y16vR a2Y16vR
0 a1Y

T
16vR MN 0

0 a2Y
T
16vR 0 MN









. (14)

The left-handed fermionic triplets, Σ3L, having a mass matrix identical to MN , do not mix with other
fermions since the left-handed analogue of vR is chosen to be zero. From the mass matrix (14) it is
seen that the masses of the light neutrinos are obtained by integrating out the heavy triplet and singlet
fermions. Thus we can have type-III and type-I seesaw mechanism in succession. The right-handed
neutrino mass term is generated once the heavy triplet fermion Σ0

3R and N are integrated out – an
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effective type I + III seesaw. Assuming MN ≫ vRY16 ≫ mD, the right-handed neutrino mass matrix
is:

MR = v2RY16M
−1
M Y T

16, (15)

where,
M−1

M = (a21 + a22)M
−1
N , (16)

and the light neutrino mass matrix after an effective type-I seesaw becomes:

mν = mDM
−1
R mT

D . (17)

Substituting for mD from eq. (2) one arrives at the general expression of mν as

mν = c20M0M
−1
R M0 − c0c4M0M

−1
R M2 + c4c0M2M

−1
R M0 + c24M2M

−1
R M2 . (18)

Typical values for the various parameters are vR ∼ 1014 GeV, MN ∼ 1015 GeV, and ci ∼ O(1),
Yi ∼ O(1) which gives MR ∼ 1012 GeV. Then with mD ∼ 100 GeV one gets mν ∼ 1 eV.

With three neutrino generations, the model has 6 real parameters inM0 and 3 in M2. In addition there
are 5 vevs (c0, c2, c3, c4, vR). Besides, there are additional parameters in Y16 and MN . However the
low energy neutrino mass matrix is characterized by 9 parameters. Neutrino oscillation experiments
have so far determined and/or bounded 5 of these. The general case is obviously not sufficiently
constrained. One way to address this lacuna requires invoking some flavour symmetry. We consider
this to be the µ− τ symmetry.

V µ− τ symmetry and allowed textures

µ− τ symmetry has been considered widely for explaining the large atmospheric mixing angle in the
neutrino sector [25]. In addition it gives θ13 = 0 which is also consistent with the current global fits5.
We impose the condition of a generalized µ−τ symmetry on the Yukawa matrices stemming from 10H
and 16H . This implies that these matrices are invariant under the exchange of the second and third
rows and columns. This reduces the number of unknown parameters in the Yukawa sector. However,
this symmetry cannot be exact in the quark and lepton sector. This is accomplished by the term
M2 in the fermion mass matrices which originates from the 120H which is taken to be antisymmetric
under the exchange of 2 ↔ 3 and breaks µ−τ symmetry spontaneously. In addition we had imposed a
generalized parity symmetry [27] which makes the complex matrices M0 and M2 real thereby reducing
the number of free parameters. Thus the model that we consider is SO(10)⊗Z2

µ−τ⊗ZP
2 [14]. However

it is to be mentioned that if we assume exact µ − τ (anti)symmetry in (M2) M0 then a generalized
CP-invariance holds [14] and the CKM matrix comes out as real. This can be rectified either by
assuming some of the vevs to be complex or by allowing a small explicit breaking of µ− τ symmetry
in M0. This induces CP-violation phases in both UCKM and UPMNS [14]. We work in the basis where
the charged lepton mass matrix is diagonal and the PMNS matrix is solely determined by the mixing
in the neutrino sector6.

5Recent global fits have found indication for non-zero θ13 although this is only a 1σ effect. A small non-zero value of
θ13 can be induced by breaking the µ− τ symmetry.

6For the purpose of this paper we only consider the implications of this model for neutrino masses. The predictions
for the charged lepton and quark masses would require a detailed fit which we do not discuss in this work.
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The structures for M0 and M2 under the above symmetries are given by

M0 =





a′ b′ b′

b′ c′ d′

b′ d′ c′



 , M2 =





0 x′ −x′

−x′ 0 y′

x′ −y′ 0



 . (19)

We consider a model with three adjoint fermion multiplets, i.e., the model consists of (3νL + 3νR +
3N + 3ΣR). Thus, Y16 and MN are also (3 × 3) matrices which we take to be µ − τ symmetric. It
follows from eq. (15) that MR also respects this symmetry. Thus we have both M0 and MR to be
µ − τ symmetric. In order to make the model predictive we make the further assumption that MR

and M0 are proportional, i.e.,
KMR = M0. (20)

where K is a constant. mν in eq. (18) then takes the form

mν = Kc20M0 +Kc24M2M
−1
0 M2 = M1 +M ′

1 . (21)

The number of free real parameters in the theory are now 4 from M0, 2 in M2, and 4 real vevs. Because
of eq. (20) MR adds just one further parameter. Thus in total we have 11 real parameters. The vev

ratios c2 and c3 do not affect eq. (21) and thus we have 9 parameters involved in the neutrino sector.
Some of these appear only as overall scale factors.

We note that although M2 is µ− τ antisymmetric the product M2M
−1
0 M2 possesses µ− τ symmetry.

Thus mν is µ− τ symmetric. This immediately implies θ13 = 0 and θ23 = π/4. Therefore the mixing
matrix in the basis where the charged lepton mass matrix is diagonal is given as,

UPMNS =





c12 s12 0

−s12/
√
2 c12/

√
2 1/

√
2

−s12/
√
2 c12/

√
2 −1/

√
2



 . (22)

which can be brought to the standard UPMNS form by a suitable redefinition of fermion phases. We
have

mν = UPMNSMdiaU
T
PMNS, (23)

where Mdia = Diag(m1,m2,m3). m1,m2,m3, the mass eigenvalues are real 7, and are given as

m1 =
X −

√

X2 − 4(d− c)Y

2(d− c)
, m2 =

X +
√

X2 − 4(d− c)Y

2(d − c)
, m3 =

Y

2b2 − ac− ad
. (24)

Here

X = −ac− c2 + ad+ d2 + 2x2 + y2;

Y = 2b2c− ac2 − 2b2d+ ad2 + 2cx2 + 2dx2 + 4bxy + ay2, (25)

and
a = Kc20a

′, b = Kc20b
′, c = Kc20c

′, d = Kc20d
′, x = Kc24x

′, y = Kc24y
′ . (26)

Note that the eigenstate m3 is determined to be the one associated with the eigenvector
(0, 1/

√
2,−1/

√
2). Whether this is the highest mass state or the lowest mass state i.e. whether

7Since the mass matrices have real entries, complex roots can appear only in conjugate pairs leading to unacceptable
degenerate neutrinos. We take the eigenvalues to be all non-negative.

9



the hierarchy is normal or inverted will depend on the values of the parameters. We further require
∆m2

21 > 0 from the solar data. This implies that for our choice of m2 and m1

X

(d− c)2

√

X2 − 4(d − c)Y > 0 (27)

Using eqs. (22) and (23) we obtain,

tan θ12 =
1√
2

(a−m1)(c− d)− 2x2

b(c− d) + xy
. (28)

The condition for tri-bimaximal mixing implies

(a−m1 − b)(c− d) = 2x2 + xy . (29)

V.1 10H dominance

In this case, a, b, c, d ≫ x, y. The light neutrino mass matrix mν is approximated as Kc20M0 with M0

defined in eq. (19). In this limit the mass eigenvalues are given as,

m1 =
1

2
(f1 −R), m2 =

1

2
(f1 +R), m3 = c− d , (30)

with

R = +
√

8b2 + f2
2 , (31)

where,
f1 = a+ c+ d, f2 = −a+ c+ d . (32)

Again, m3 is identified as the eigenvalue for the state eigenvector (0, 1/
√
2,−1/

√
2). Since the solar

data has determined the ordering of the 1 and 2 mass states to Then the mass squared differences can
be expressed as,

∆m2
21 = f1R ∆m2

31 = (f1R− a2 − 4b2 + c2 + d2 − 6cd)/2 . (33)

Again, the mass ordering will depend on the values of the parameters. In general both normal and
inverted hierarchy are possible. In addition, the solar neutrino data require ∆m2

21 > 0 which implies
f1R > 0 for the above selection of states.

The mixing angles are given as,

θν13 = 0 , θν23 = π/4 , tan θν12 =
(R− f2)

2
√
2b

. (34)

Tri-bimaximal mixing implies θ13 = 0, θ23 = π/4 and tan2 θ12 = 1/2. We see that the requirements
for θ13 and θ23 are already satisfied. If in addition we impose

f2 = b =⇒ R = 3b, f1 = (2a + b), (35)

tri-bimaximal mixing is obtained. In this limit

∆m2
21 = 3 b (2a+ b) ∆m2

31 = (c− d)2 − (a− b)2 . (36)
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V.2 120H dominance

In this limit a, b, c, d ≪ x, y and the low energy neutrino mass matrix is given as

mν = M4 = Kc24M2 M−1
0 M2 . (37)

The UPMNS continues to be given by eq. (22). The eigenvalues, in terms of the parameters defined in
eq. (26), are given as,

m1 = 0, m2 =
2x2 + y2

d− c
, m3 =

2cx2 + 2dx2 + 4bxy + ay2

2b2 − ac− ad
. (38)

Since the eigenvector (0, 1/
√
2,−1/

√
2) belongs to the eigenvalue m3 so that the zero eigenvalue has to

be associated with the eigenstate m1. Therefore this case corresponds to the normal hierarchy. Since
m1 = 0, ∆m2

21 = m2
2 and ∆m2

31 = m2
3. Then, using eqs. (22) and (23) one obtains the 1-2 mixing

angle as,

tan θ12 = −
√
2x

y
(39)

Thus, the mixing matrix in this case is completely determined by the parameters of M2. The condition
for obtaining exact tri-bimaximal mixing is y = −2x.

VI Conclusions

We consider a non-SUSY SO(10) model in which the fermion masses originate from Yukawa couplings
to 10H and 120H . In such a model the usual type-I and type-II seesaw mass terms which originate
from 126H are not present. Here, it is possible to generate the neutrino mass at two loops by the
radiative seesaw mechanism [17]. But for non-SUSY SO(10) the contribution is very small.

In this paper we suggest a new possibility to generate neutrino masses in a non-SUSY SO(10) model
with 10H + 120H using fermions in the 45F representation and an additional 16H scalar multiplet.
Constraints from gauge coupling unification requires these vev < 16H > to be in the range ∼ 104−1016

GeV. However from the standpoint of generation of naturally small neutrinos masses the range ∼
1013 − 1015 GeV is preferred. We show that in this case one can generate small neutrino masses
through the ‘double seesaw’ mechanism. Predictions for mixing angles require further imposition of
a flavour symmetry which we chose to be the µ − τ symmetry for the Yukawa matrices due to 10H
and 16H whereas for the one originating from 120H we assume the matrix to be µ− τ antisymmetric.
We further assume the right-handed matrix (MR) due to the heavy fields to be proportional to the
one (M0) originating from 10H . With this the light neutrino mass matrix is given by the sum of
two terms which are both µ − τ symmetric. This automatically satisfies θ13 = 0 and θ23 = π/4.
We present the neutrino masses and θ12 obtained from this model and determine the condition for
satisfying tri-bimaximality. We also discuss the limiting values when one of the terms dominate. For
the 10H -dominance case both hierarchies are possible whereas if the 120H dominates the hierarchy
can only be normal.
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[8] G. Senjanović, arXiv:hep-ph/0612312.

[9] J. A. Harvey, D. B. Reiss and P. Ramond, Nucl. Phys. B 199 (1982) 223; G. Lazarides and
Q. Shafi, Nucl. Phys. B 350 (1991) 179; K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70
(1993) 2845 [arXiv:hep-ph/9209215]; C. H. Albright and S. Nandi, Phys. Rev. Lett. 73 (1994)
930 [arXiv:hep-ph/9311227].

[10] M. Magg and C. Wetterich, Phys. Lett. B 94, (1980) 61; G. Lazarides, Q. Shafi and C. Wetterich,
Nucl. Phys. B 181, (1981) 287.

[11] K. y. Oda, E. Takasugi, M. Tanaka and M. Yoshimura, Phys. Rev. D 59 (1999) 055001
[arXiv:hep-ph/9808241]; H. S. Goh, R. N. Mohapatra and S. P. Ng, Phys. Rev. D 68 (2003)
115008 [arXiv:hep-ph/0308197]; H. S. Goh, R. N. Mohapatra, S. Nasri and S. P. Ng, Phys. Lett.
B 587 (2004) 105 [arXiv:hep-ph/0311330]; S. Bertolini, M. Frigerio and M. Malinsky, Phys. Rev.
D 70 (2004) 095002 [arXiv:hep-ph/0406117]; T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac
and N. Okada, Eur. Phys. J. C 42 (2005) 191 [arXiv:hep-ph/0401213]; B. Bajc, A. Melfo, G. Sen-
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D 82 (2010) 053004 [arXiv:0904.2390 [hep-ph]].
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