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Ever since its experimental discovery in the Kaon system, CP-violation has
been a fascinating field of theoretical research. Unfortunately, up until now
no CP-violating effect has been found elsewhere, so the main focus is still
on K9-K9. In this paper we will concentrate on the supersymmetry (SUSY)
contributions to the CP-violation parameter ¢'/e¢e which enters in the

measured amplitude ratios [1] n,_, Noo:
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where Ag,A; are the [=0,2 amplitudes for K°—mm and &;,8; are the strong
interaction phase shifts. These equations are first order relations in the
CP-violating quantities ¢,¢'. So far, the question if 1,. = Noe i.e., £'=0

has not been settled; there exists only a bound [2]:

{
£ = - 0.00461 0.0053 + 0.002Y4
€ (2)

but promising experiments are being undertaken or planned. This question
is important because the very successful standard model which also offers
the nice possibility of explaining CP-violation through the

Kobayashi-Maskawa (KM) mechanism also predicts a non-vanishing ¢'.

Recently however it has been claimed that the standard model might not be



able to account for ¢ if the top quark turned out to be light [3]. The
reason is that the KM angles 6,, 8; are constrained to be rather small [4]
because of the relatively long b-lifetime [5] and the small ratio R = Mb—

uev)/T(b— cev)< 0.04 [6].

Writing € and €' in more detail one obtains:

R
€= T £m+1}
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where & is given by the so-called penguin diagrams [7,8]. In the standard
model Im A,/Re A, is very small and we will neglect it. There are two
major theoretical uncertainties in the calculation of the K°-K® transition
matrix element M.,. Firstly, long distance contributions [9] to M., cannot
be calculated reliably and secondly, in the box diagram calculation [10]
there appears an inaccurately known parameter B which is the correction
factor to the matrix element calculated by vacuum insertion. In general long
distance contributions can modify the CP predictions of the box diagram
considerably [11]; however, arguments have been advanced that there may
be important cancellations in the imaginary part of My, [12]. Both large B
and long distance effects in M;, could conspire in such a way as to give
enough CP-violation in the standard model. On the other hand, it has been

shown that even in the worst case for the standard model, small B [13]



(B=0.33), low top gquark mass, My, and no long distance contributions,
CP-violation can be satisfactorily explained [14,15] by going to the
supersymmetric extension and including soft breaking terms [16]. In
particular, the gluino (g) - squark (J) box diagram can account for the
rﬁissing CP-violation in My, where the relevant source of CP-violation in the
§—g—d' interaction is again the KM phase 8. A new phase ¢, the "SUSY
phase”, can only enter in contributions to M;, through EL - gR mixing but
its effect on € is very small. This phase is a combination of possible phases
in the gluino mass (m) and in the parameter A which appears in the soft
SUSY breaking trilinear scalar couplings [16]. In view of this interesting
result, it is important to also examine the SUSY contribution to €', i.e.,
the superpenguins [17]. In this paper we make a detailed study of the
penguins involving gluinos, the 'pengluinos’ (Fig. 1}, which constitute the
most important SUSY contribution to €' originating in the KM phase &.
Using restrictions for the SUSY phase ¢ from the Electric Dipole ‘Moment of
the Neutron (EDMN) [18,14], we also look for additional effects of ¢ in &',

We begin by writing down the 5-3’—d interaction:

L

~ ~T = i
gdd T g, d e 7 (RPL+FRPR)Sd5+h.C.
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where g denotes the éoupling constant of the strong interactions and the

A¥'s are the Gell-Mann matrices of SU(B)C. In the basis where the quark

A
mass matrices are diagonal (Mu d)' the down squark mass matrix is
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K is the KM matrix, ML R and p come from soft SUSY breaking terms. The
parameter 'c' characterises radiative corrections to the tree level squark
mass matrix which introduce flavour violation [19]. It is in general between
0.1 and 1 and negative. In most of our calculations we will take ¢ = -1,

which favours SUSY contribution to €. The 6x3 matrices FL, ['R appearing

in Eq. (4) are given by [14]

eid)i O
0 2:@1

(6)

(,n)= U

where U diagonalises the down squark mass matrix in (5). The mechanism
of flavour violation through Eq. (4) explained above also leads to
interesting results in the B°-B° system, i.e. large mixing and enhanced

directly measurable CP-violating quantities [20].

To establish our conventions we exhibit in Fig. 2 the necessary

Feynman rules for the calculation of the pengluinos. After having done the



momentum integration, we obtain for the graphs of Fig. 1
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Mj denotes the down squark masses. We have used dimensional
regularisation (n = # of dimensions, y = Euler constant and p is a scale

parameter with the dimension of mass). Oj’ 6j are given by
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In order to keep track of the origin of the different terms in Eq. (7), we
have retained the quadratic Casimir operators C,(R), C,(G) of the
fundamental and the adjoint representations respectively. For SU(N) their

eigenvalues are:

C(P\)z-’—\li“—/—'— C (G)=N (9)
yA 1N { ZG)"

In Eq. (7), the infinities proportional to C,(G) cancel each other as
they must. The reason is the conservation of the gluonic current (SU(B)c

is unbroken) and the Ward - Takahashi identity

k" r/: = 9 %_"(E(PY‘ Z(P'))

(10)

r:, = ’l (Dq+ Db)(;;

which is preserved by the renormalised quantities. Because the self-energy
2 contains only C,(R) the infinities proportional to C,(G) must cancel each
other in I'pa. But, of course, as the alert reader has already noficed, in

this case all infinities are cancelled anyway by the GIM mechanism:

jdt i
F =0, AB=LR “”

However, the previous observations are independent of (11) and serve as a
check. Finally, we want to remark that on mass shell, using the
renormalised vertex era which is obtained by the renormalisation

conditions (10) and [21]
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(%, In denote the transition self-energies s—d) is equivalent to summing
over all {unrenormalised) diagrams a,b,c,d. Taking the latter option, after

having put the wings of the pengiuino on shell, one obtains expressions

corresponding to Eq. (7)

3
= _ 9 — )R D.
U (P (D) Y= 7in GE) g 3 Sf"gd’{[% Ftngat

1 z o~ 1 .
+ ts; ({Y"Y?'... Ky)l{ +ml)) + “',_D'_";' )(\/ W\d lo:quy"' "'_‘i;'—‘l(/umd [XY.—Z),*Z\I?-)].
b

LU ¥ 1 .
) (ﬁ_ ]_LJS PLH_‘: I?SFR>+%; [Xﬁmdm, x4 ms(x—xy*x ) léwlg".;.
Fkumg (2y=2y -3y 1) ] (TNTE R $T I 5P )+

+-—.éf Uﬂv"ﬁmdx + B 016,k in [4-x.27)] (TLH*]?S o~
3

ok - LI o i 4
+ VT8 m*”ﬁ} [‘ﬂmmsx(ﬁ_‘ Lop Ty ]'L‘SPR)}QS(P)

3 f’4 X
A . g _ _ l-‘ .
U, ) i (D)% u;p):ﬁz(ﬂzm) C"(G))u‘(P)lgdxng
Dy s |
: J



+ _;; mdk/u [’{—2)/_,()),] (Eid*}"nga +I—Rjd4I—RjSFR) +

/‘

—

£, L (0 mam o xoxi g, ¥ sk, (haeyfinea)
SO Y ) 3 Ly x=Bxig 07
ik, (1- ly-x)_] []‘Jd*rjs rsd*r]—JsP )+

* o B (7T R T i ) Tu

_ g3
Ua(p?) i(D4DyYy, ug(p) = -1-2——-2 ZC(R)ud(Pr) o
{15 (ms) ”‘S Tru(”'el ”’d jd¥ s jd¥
{ mi-my (1, AN AT

0 m (13)



Here m., my should be considered as constituent quark masses. Since
squarks and gluinos are expected to be much heavier than the ordinary

hadronic scale, we have
~L 2. e 2 R
m ¥ + M.! (1")() > ms’md Jk (14)

for all x € [0,1] and we can safely make an expansion in the latter
quantities which are all of the same order and neglect the terms of higher

order. We thus obtain our final result for the pengluinos:
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The functions A,B,C,D,E are given by

N— 1 —
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E@ = g [z ve tue ] 19

In the ordinary penguin there is no c}wkv-term which mixes left- and
right-handed quarks. Moreover, the ms’dcwkvnterms which can in
principle be of the same order as the y“kz-term are suppressed even if my
is large [21,22]. In the SUSY case we have no reason to expect a
suppression of the cr}wkv—ter'ms and this is borne out by our numerical
results.

To calculate the phase of the amplitude Ag(K°—nm) we have to estimate
the matrix elements of the relevant operators. One of them is the

well-known operator [23]

(17)

O = dy BoXs, (UR x‘f‘*Aun-raRMA"’oanL St 1%, )



- 11 -

where the gluon propagator is cancelled by the k2 from the vertex whereas
the other one containing cpvkv is non-local. To evaluate the matrix
elements we use the vacuum insertion method [23] with the modification
proposed in Ref. [24] to also include momentum dependence in the

pseudoscalar amplitudes, e.g.

Mg 1
myrmg 41—k /mZ (e

in order to be consistent with PCAC (fK:fn=93 MeV, m is the mass of the

<ol @ P S [ KS(10> = -iVT §y =

0* scalar meson and here the my » Mg should be considered as current
quark masses). To evaluate the matrix element of the second operator [25]
we replace the gluon propagator by MH“Z, where MH is a typical hadronic
mass scale, a procedure which should at least give us the right order of
magnitude. In the numerical analysis we will choose My to be the Kaon

mass. Now we can write down our results for

¥=—¥3mP/&P (19)

= or= GA — 3~1 (C (G)A(%J ) +C (R)B(Z))(I—M"rss rid}\‘ Js\
ols
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+ (GGEE) —4CRCE)) (T riP i) } :
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with

my Z
g —r. + t—— ) . = - .

GA comes from the contribution of the ordinary penguin and is wvalid in the

Himit my <€ MW (in our calculation we use the exact expression of Ref.

[21]). In this equation p is again a typical hadronic mass scale related to

the momentum transfer involved. As before, we will take H to be the Kaon

mass for our numerics. f is defined as the fraction of the total amplitude

Ao which can be attributed to penguins [8]. «. is the strong coupling

s
constant which appears in the loop and will be fixed at 0.1. mq denotes
the u,d constituent quark mass: we will choose mq = 300 MeV and mg = 500

Mev. f, is defined by

<'n’+(0() |Ur)“$l Ke (I(‘>=-F+(k+q)ﬁ+ f. (k""l\/& (22)

and its numerical value is f, = 1. Since in evaluating the necessary matrix
elements we neglect mnz/sz, f_does not appear in (20). Finally, for mg

we will take 700 Mev.

As far as the AI=1/2 rule is concerned [23], penguin contributions are
negligible for reasonable values of the squark and gluino masses [26] (in
the numerical examples below, the real part of the SUSY penguins does not
exceed 5% of that of the conventional penguin). It is therefore legitimate to
take the value of the parameter f from non-SUSY considerations. We choose

f=1/6 to be in agreement with Ref. [27].
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Before turning to the discussion of the numerical results, we briefly
describe our procedure [20,3]. Given the bottom lifetime LS and the ratio
R, the KM angle 65 is fixed and 6, is obtained as a function of the KM
phase &. Now, for a fixed My, the experimental value of € is used to fix 3,
w.her'e the theoretical expression for € is given by the sum of the ordinary
W-box and the gluino box diagrams. The contribution of £ is neglected
because of the smallness of &' /¢ (see numerical results below). As in the
standard case [27], for every s there exist two solutions for & for both

of which sind > 0. We will vary 74 but will always keep R=0.03.

Let us now mention the SUSY input values and the range of the top
quark mass. To get a significant SUSY contribution to & we choose a large
¢ (c=-1) and rather light SUSY mass parameters, namely m=40 GeV, H = 50
GE;‘V, pLz - pR2 = 100 GeV? and p = 40 GeV. As it can be easily seen from

Ma’, one obtains an upper bound on m,

mt- S; /U‘L /V: (23)

in order to keep SU(B)CXU(T)munbr‘oken (i.e. all sz > 0). This is a
consequence of ¢ < 0. Therefore, in this case, m, < 45 GeV to have a
reasonably heavy gL’ which is the lightest down squark in this scenario.

Finally, we should stress again that we always take B=0.33.

As far as our numerical results are concerned, one should keep in mind
that there is some uncertainty involved in the ratio of the matrix elements
in Eq. (20) which might affect the relative size of the Y, and
cpvkv-contr‘ibutions; nonetheless the general features should remain

unchanged.
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[t turns out that e€'/e is somewhat diminished by the SUSY contribution.
This point deserves some elaboration. The SUSY contribution to £/
consists of three terms which correspond to yp, ms,dcpvkv and 'r‘n’cuvkv in
Eg. (15) and are of the same order as the ordinary contribution. It can be
checked that for negative c, the last one, which is proportional to gL_gR
mixing, has the same sign as the ordinary contribution, while the other two
are of opposite sign. Therefore for A=0, the SUSY contribution to £'/¢ is
negative, whereas for |A|=3, it turns out that the last term dominates and
the net SUSY contribution is positive. However, the total (ordinary +
SUSY) e'/e is always less than the value obtained from the non-SUSY
theory alone. This is due to the fact that when SUSY contributions are

included, the &£ parameter can be fitted with a somewhat smaller KM phase

& and even the ordinary contribution to €'/e is thereby reduced.

The SUSY phase ¢ can only have an effect through the mcuvkv—term
and for Ax0. But the numerical calculations show that with the bound on ¢
from the EDMN (|4} 1072), it has at most an effect of 10% on £'/e. Since

this would shift the curves only marginally we do not show it in the plots.

In Fig. 3 we exhibit the behaviour of £/¢ as a function of m,. We have
taken |A|=3 and have plotted curves for several values of the bottom
lifetime Tg- Since €'/¢ is a double- valued function of Tg. it must also be
so as a function of m,. This is indeed so in Fig. 3 where for comparison
we have also presented the ordinary curve for TB=0.5x10'125ec; for the
range of m, in this figure, the other two values of Tg are excluded in the
ordinary case by the ¢ parameter. In Fig. 4 the top quark mass is fixed
at 40 GeV and the behaviour as a function of 1p for different choices of

|A] and c is shown. For A=0 there is a remarkable, although accidental,
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cancellation between the SUSY and the ordinary contributions and &'/e is
even slightly negative for the input values we have taken. In some
situations therefore Super-Kobayashi-Maskawa CP-violation mimics the
Superweak model predictions. Finally, we should point ocut that we have
u.sed R = 0.03. For smaller R, the curves lie within the corresponding ones

that we have presented.

in conclusion, we can say that in addition to the nice features of

CP-violation induced by gluinos in K°-K® mixing, this mechanism is not

endangered by EDMN [20] and £'/e. The prediction for e'/e is smaller than

that in the standard case for negative values of the flavour violation

parameter ¢, which is preferred by radiative corrections. Furthermore, our
~ o~

calculations indicate that dL-dR mixing is of significance as far as €'/¢ is

concerned.

After we had finished this work, we received a preprint by P.
Langacker and B. Sathiapalan (Univ. of Pennsylvania preprint UPR-0256T)
which also discusses the gluino contribution to £'/e. Our study is however

o~

~
more complete because we include dL-dR mixing and the m dcpvkv term.
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Figure Captions
The pengluino graphs.
Feynman rules for the vertices appearing in Fig. 1.

£'/e as a function of the top quark mass in the standard model for
f=0.5 (dotted lines) and in the SUSY model (characterized in the
text) for pB=0.5 (dashéd-dotted lines), 1.0 (full lines) and 1.5
{dashed lines). The bottom lifetime TB=Bx1O‘12sec. In this plot we
choose the flavour violation parameter c¢=-1 and the ’&'L-S'R mixing

parameter |A|=3.

e'/e as a function of the bottom lifetime B for a top quark mass
equal to 40 GeV in the SUSY model (for different choices of the

parameters ¢ and A) and the standard model.
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