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Abstract

We consider 5d SU(5) GUT models based on the orbifold S1/(Z2×Z′
2), and study the different possibilities

of placing the SU(5) matter multiplets in three possible locations, namely, the two branes at the two orbifold
fixed points and SU(5) bulk. We demonstrate that if flavour hierarchies originate solely from geometrical
suppressions due to wavefunction normalisation of fields propagating in the bulk, then it is not possible to
satisfy even the gross qualitative behaviour of the CKM and MNS matrices regardless of where we place the
matter multiplets.

PACS Nos: 11.10.Kk, 11.30.Hv

Key Words: Flavour, Orbifold compactification

I Introduction

In order to bypass some of the problems with conventional Grand Unified Theories (GUTs), namely, the doublet-
triplet splitting, too fast proton decay, etc, new proposals have been advanced which allow realization of GUT
gauge symmetry in a higher dimensional orbifold [1]-[8]. The quantitative success of supersymmetric (SUSY)
gauge coupling unification provides further attraction to embed SUSY in a higher dimensional SU(5) gauge
symmetry. Several attempts have been made in this regard. In this short note, we consider those which have
only one extra dimension compactified on the orbifold S1/(Z2 × Z ′

2). We go by the hypothesis that flavour
hierarchies originate purely from geometrical suppression of Yukawa couplings depending on the location of the
fields attached to the given vertex in the extra dimension. There are three possible locations where matter
fields can be placed: the SU(5) preserving five-dimensional (5d) bulk, and the two fixed points, namely, the
SU(5) preserving O brane (y = 0), and the standard model (SM) brane O′ (y = πR/2), where y is the 5th
coordinate and R is the radius of compactification. If a particular field extends in the bulk, it is associated with
a wavefunction normalisation factor (< 1), whereas for a field restricted to one of the two branes there is no such
suppression. So the relative size of two Yukawa couplings comes from the relative number of brane vis-a-vis bulk
fields attached to them. In this brief communication, we investigate whether by placing the SU(5) multiplets
of different generations (5̄i, 10i), including the right-handed singlet neutrinos (Ni), in different locations, one
can generate even the overall qualitative characteristics of the Cabibbo-Kobayashi-Maskawa (CKM) and Maki-
Nakagawa-Sakata (MNS) matrices: the question of quantitative success comes thereafter. We examine all
possible choices for the relative placements of the multiplets of different generations at alternate locations in a
systematic manner and demand that only locations matter in determining the relative Yukawa couplings. We
observe that each such case fails to meet this test. One can, however, argue that O(1) corrections to the Yukawa
couplings are in general unavoidable. Such corrections, as mentioned in [1]-[6], play a key rôle in generating
flavor mixings. Clearly, this is achieved at the cost of introducing many new and unknown parameters. In this
short note, we reach at a similar conclusion by looking at the problem from a different angle. We show on a
case by case basis that if hierarchies emerge purely from geometrical suppressions, barring any further O(1)
corrections for economy of parameters, it is not possible to simultaneously satisfy even the gross features of the
three generation CKM and MNS mixings, no matter where we place the different multiplets.
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II Formalism

We briefly summarise the primary consequences of orbifold compactification. Let us conceive a 5d GUT with
minimal SU(5) gauge group and N = 1 SUSY. The 5d spacetime is factorised into a product of the 4d spacetime
M4 (labelled by the coordinates xµ) with the extra spatial dimension compactified on the orbifold S1/(Z2×Z ′

2)
(labelled by the coordinate y = x5). The inverse radius R−1 is chosen to be of the order of MGUT = 1016 GeV.
The orbifold construction proceeds by dividing S1 first by a Z2 transformation y → −y and then by a further
division by Z ′

2 which acts as y′ → −y′ with y′ = y + πR/2. After these identifications, the physical spacetime
becomes the interval [0, πR/2] with a brane located at each fixed point y = 0 and y = πR/2. As a result of the
two reflections, the branes at y = πR and −πR/2 are identified with those at y = 0 and y = πR/2, respectively.
Now let us consider a generic field φ(xµ, y) existing in the 5d bulk. The Z2 and Z ′

2 parities (called P and P ′,
respectively) are defined for this field as

φ(xµ, y) → φ(xµ,−y) = Pφ(xµ, y),

φ(xµ, y′) → φ(xµ,−y′) = P ′φ(xµ, y′). (1)

Using the notation φ±± for the fields with (P, P ′) = (±,±), we are led to the following observations regarding

the 4d KK fields. φ
(2n)
++ acquire a mass 2n/R, while φ

(2n+1)
+− and φ

(2n+1)
−+ acquire a mass (2n + 1)/R and φ

(2n+2)
−−

acquire a mass (2n+2)/R. This implies that the only fields which can have massless components are φ
(2n)
++ . The

other interesting consequence is that only φ++ and φ+− can have non-vanishing components on the y = 0 brane.
In fact, compactification leads to symmetry reduction. The starting theory is 5d N = 1 SUSY invariant under
the gauge group SU(5). From a 4d perspective, this is equivalent to N = 2 SUSY. We assign suitable (P, P ′)
quantum numbers for the fields. Upon the first compactification by Z2 the conjugated fields are projected out and
the N = 2 SUSY reduces to N = 1 SUSY but still respecting the gauge SU(5); on the second compactification
by Z ′

2 the SU(5) gauge symmetry is broken to the SM gauge group SU(3)C⊗SU(2)L⊗U(1)Y with an unbroken
N = 1 SUSY1.

The P and P ′ quantum numbers are to be so arranged that the 5d SU(5) gauge symmetry remains intact at
O but is broken to SU(3)C ⊗ SU(2)L ⊗ U(1)Y at O′. This can be done by choosing P = (+ + + + +) and
P ′ = (− − − + +) or (+ + + − −) acting on 5. As has been noted [1, 2], with the above P ′ assignments it is
not possible to fill up a complete SU(5) multiplet by zero mode matter. One has to introduce 5̄′ and 10′ with
P ′ assignments opposite to those in 5̄ and 10 to obtain correct low energy matter content2.

Now we come to the discussion of Yukawa couplings. All such couplings consistent with gauge symmetry and
R-parity are admitted. We assume that the hierarchical structure of the effective 4d Yukawa couplings is
generated solely from the different normalisation of brane and bulk fields. Let us denote3 a Yukawa coupling
involving three brane superfields by λ. The Yukawa coupling for an interaction where one of the three fields is
replaced by the zero mode of a bulk field is λ/

√
M∗R, where M∗ is the UV cutoff scale of the 5d theory and

the appearance of M∗ is related to the canonical normalisation of the zero mode kinetic terms4. The number of
ǫ = 1/

√
M∗R factors in front of λ is given by the number of bulk zero modes in a given interaction, each bulk

field contributing one such factor.

III Fermion mass matrices

We write the fermion mass matrices in the convention that the fields on the left are left-handed and those on the
right are right-handed. The up quark mass matrix is given by 10i(Mu)ij10c

j and is hermitian. The down quark
mass matrix is given by 10i(Md)ij5

c
j . The charged lepton mass matrix Ml is simply (Md)

†. For illustration,

1The doublet-triplet splitting problem is elegantly solved as the coloured triplet Higgs do not have (++) assignments unlike the
Higgs doublets, as a result the former has a mass of order 1/R ∼ MGUT.

2If 5̄1and 101are kept in SU(5) bulk, then the first generation zero mode quarks and leptons come from different SU(5) multiplets,
and proton decay from broken gauge boson exchange does not exist at leading order.

3See, e.g. the Lagrangian in Eq. (6) of [1].
4M∗R ∼ 102−3 is a good choice for gauge coupling unification [3].
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Ml can be schematically represented as:

5̄1 5̄2 5̄3

Ml =







a b c
d e f
g h i







10c
1

10c
2

10c
3

. (2)

where the entries a, b, . . . , i are determined solely by the locations of the 10i and 5̄i fields.

The neutrino mass5 is given by 5̄i(Mν)ijNj. In general, Md, Ml and Mν are not hermitian, so they are
diagonalised by biunitary transformations. The CKM matrix is given by VCKM = V †

u Vd, where Vu diagonalises
Mu as V T

u MuVu = diag(mu, mc, mt). Similarly, Vd diagonalises Md(Md)
†. In the same way, the MNS matrix is

given by VMNS = V †
ν Vl, where Vν and Vl diagonalise Mν(Mν)† and Ml(Ml)

† respectively6.

IV Results

In this section we consider one by one the possible cases distinguished by the locations of the different SU(5)
matter multiplets and examine whether the gross features of the CKM and MNS mixing matrices can be
reproduced based on the geometric suppression factors alone.

1. 5̄1, 5̄2, 5̄3 all at the same location is not allowed: In this situation, as far as the contributions to
Ml are concerned, there will be no difference between lepton flavours. Ml(Ml)

† will have a democratic
structure because of the symmetry 5̄i↔ 5̄j for all i, j = 1,2,3. Mν(Mν)† will also share the same structure.
Consequently, Vl and Vν will be identical and the MNS matrix will be the identity matrix. Note that it is
only required that 5̄1, 5̄2, 5̄3 should not be at the same location; it does not matter whether this is the
SU(5) brane, the SM brane, or the bulk.

2. All 10i cannot be placed in the same location: This alternative can be ruled out on grounds very similar
to the previous one. Because of the permutation symmetry between the 10i, now Mu will be a democratic
matrix. This property will also be shared by Md(Md)

†. Thus, Vu and Vd will be identical and the quark
sector will remain unmixed.

3. No two 5̄i in the same location is allowed: Let 5̄1 and 5̄2 share a location. In this case, the first and
second rows and columns of Ml(Ml)

† will be identical. This will also be the case for Mν(Mν)†. Applying
a unitary transformation – the same for both matrices – they can be brought to block diagonal forms with
one state – say ‘1’ – decoupled from the other two – ‘2’ and ‘3’. This common unitary transformation will
have no impact on VMNS. Therefore, for this case, the lepton sector mixing will be among two generations
only. This disagrees with the form determined by the data.

4. Two 10i in the same location is not allowed: The argument in this case is the same as that of the previous
one excepting that one now has to appeal to the matrices Mu and Md(Md)

†. Now VCKM will mix only
two generations – a situation contradicting experimental requirements on flavour mixing.

5. In view of the possibilities excluded above, the three 10i must be in different locations and so should
be the three 5̄i. We now show that placing (5̄i, 10i) pair-wise in the same location for every i is not
allowed. As noted before, Mu is a hermitian matrix. When 5̄i and 10i are in the same location, then
Mu and Md become proportional since according to our starting hypothesis the entries in the matrix
are determined by geometrical considerations alone. Therefore, they are both diagonalised by the same
unitary transformation and mixing in the quark sector will vanish.

6. The only remaining possibility is that of having (5̄j, 10i) pair-wise placed at the same location for i 6= j.
But even this case is ruled out. This is because this alternative can be brought to the form of the previous
case by mere redefinitions of rows/columns in Mu and Md(Md)

†.

5One can also generate Majorana mass matrix of the form 5̄i(MM )ij 5̄j for light neutrinos via see-saw mechanism by integrating
out the heavy Ni fields. Even then our conclusions below will go through.

6The relation Ml = (Md)† and the hermiticity of Mu are valid in the SU(5) limit and will not be applicable when fermion
multiplets are located on the SM brane O′. Our conclusions below are not affected by this.
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V Discussions and Conclusions

In this brief note, we have considered a SUSY SU(5) theory defined on a 5d space where the extra dimension
is an S1/(Z2 × Z ′

2) orbifold. We have used the hypothesis that the entries of the fermion mass matrices are
determined entirely by geometrical factors determined by the locations of the SU(5) multiplets. We have shown
that though there are many alternate possibilities of locating the various fermion multiplets, in no case can one
reproduce even the qualitative nature of the CKM and MNS mixing matrices.

One way to get around this impasse is to invoke O(1) corrections to the entries of the mass matrices. By this is
meant that geometric factors only determine the scale of an entry but its exact value is arbitrary. This would
plague the arguments we used above. In such an event a qualitative or even a quantitative success can be
achieved. But this is at the cost of a huge arbitrariness since we have to acquiesce in a host of new parameters.

Some of the existing analyses have relied on the O(1) corrections to generate nontrivial mixings. In [4], 101 has
been kept at the O′ brane, 102 in the SU(5) bulk, while 103 has been placed at the O brane. All 5̄i have
been kept in the SU(5) bulk. Going by our hypothesis, this case will render the MNS mixing to be trivial a la

our case (1) in section IV. In [3], the placements are the following: 5̄1 and 101 in bulk, 5̄2 at O, 102 in bulk,
5̄3 and 103 at O. This possibility contradicts reality as per our case (3) or (4). In [6], all 5̄i have been placed
at O, while 101 and 102 reside in bulk with 103 at O. Again, following our case (1), this option fails to
reproduce observed data. The placement of matter fields in the above noted analyses have been motivated from
different considerations: suppressions of proton decay, mb = mτ at GUT scale, etc. We must admit one aspect
at this stage. All these analyses do emphasize the need of O(1) corrections to Yukawa couplings to reproduce
the data, i.e. the different entries of the mass matrices constructed in these analyses should be taken merely as
mass scales with the tacit assumption that there are hidden O(1) uncertainty factors multiplying those entries.
In any case, our study is neither intended to nor does it in any way undermine the different scenarios that
the above mentioned analyses deal with, rather we arrive at a similar conclusion. Our modest intention is to
demonstrate by exhaustion that geometrical suppressions (depending on localisation) alone, barring any O(1)
corrections to Yukawa couplings, cannot reproduce even the qualitative features of quark and lepton mixings
in the 5d SUSY GUT context. Any attempt to build a realistic model would be at the cost of economy of
parameters. Generalisation to 6d models with orbifolds of the structure T 2/(Z2 × Z ′

2)
2 opens up more options

for placing matter fields in different locations [1]. This allows further spatial separation of these fields which
help create textures that can admit hierarchical masses with appropriate mixings. We do not deal with this in
the present analysis.
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