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ABSTRACT
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possibilities of such singlet neutral scalars at hadron colliders are considered for dif-
ferent scenarios of vectorlike fermions. We find that for some values of masses and
couplings, detection at the CERN Large Hadron Collider (LHC) appears to be a dis-
tinct possibility, while at the Fermilab Tevatron upgrade the h° might be observed
only in very favourable circumstances.
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1 INTRODUCTION

Scalar higgs fields are an important ingredient in the Standard Model (SM) and its
popular extensions. Searches for higgs bosons are, therefore, among the important
objectives at present and projected colliders. Recent measurements of the p parameter
(or the oblique T' parameter) at the CERN ete™ collider LEP-1 yield a result very
close to unity [[ll], which limits the natural possibilities for light scalars to just singlets
and doublets of the SU(2), component of the SM gauge group. The SM adopts a
one-doublet scenario, while extra doublets appear in many of its extensions including
the minimal supersymmetric standard model (MSSM) and the left-right symmetric
model. Phenomenological consequences of one or more doublets and their detection
possibilities have been extensively studied in the literature [P, B], but the singlet
option has not received the same kind of attention. Save for some discussion in the
context of Majoron models and non-minimal supersymmetric models [B] one comes
across very few studies of singlet higgs bosons.

Interestingly, neutral SU(2);, singlet scalar particles are predicted in several ex-
tensions of the SM. They are present in a natural manner in many Grand Unified
Theories (GUTSs). For example, the fundamental 27-plet of Eg, utilised for spon-
taneous symmetry breaking, includes several such fields [f]. The next to minimal
supersymmetric standard model (NMSSM) [f] has just such an extra field to gen-
erate the higgs mass parameter — the so-called p-term. Other models — e.g., the
left-right symmetric SU(2), x SU(2)g x U(1l) model and its GUT extensions like
SO(10) [@] — also include singlet scalars. It has also been stressed [[ that in a class

of composite models of quarks and leptons such a neutral singlet scalar is an essential



prediction. Moreover, it has been shown [§] that the addition of a singlet higgs scalar
(with or without an extra generation of vectorlike fermions) can provide a realistic
solution to the fine-tuning problem in the SM. It is therefore of interest to consider
strategies for the detection of these scalar singlets (henceforth called singlet higgs
bosons) at the present and upcoming colliders.

Barring mixing with the doublet higgs bosons [H], the singlet scalars will not
couple to ordinary quarks and leptons. Rather, they will couple to vectorlike fermions
— quarks and leptons whose left- and right-handed components transform identically
(i.e., both singlets or both doublets) under SU(2),. Many of the models with singlet
higgs bosons include such quarks and leptons. Prominent among these are the Fjg
GUT models which contain vector singlet quarks of charge —% as well as vector singlet
and vector doublet leptons. The composite models of Ref. [[| also contain vectorlike
fermions which play an important role in explaining the masses and mixings of the
usual quarks and leptons.

The singlet higgs boson could be produced at the CERN ete™ collider LEP-1
through the vectorlike fermion loop induced decay Z° — h%y. In an earlier paper
[L0] two of the authors have considered, with reference to the ete™ collider LEP-1,
models in which a real singlet higgs boson h° occurs together with vectorlike quarks
and leptons. Unfortunately, though the signal is relatively clean, the number of such
events generally turns out to be too small for effective detection at LEP-1 — even
with a catch of 107Z%%.

In the present work we analyse possibilities for producing a singlet higgs boson
h® from gauge boson fusion at hadron colliders. The h%gg (or h%yy, h°Z%y, K°Z°Z°,

ROW W ™) interaction will be mediated by a triangle diagram containing vectorlike



quarks (leptons) just as the SM H%gg interaction is mediated by a top-quark triangle.
In fact, as the masses and couplings will be chosen to be rather similar, the numbers
produced in the two processes are comparable. Detection of the h°?, however, will
require modified strategies since its decay modes are quite different from the SM H°
and depend on the vectorlike fermion scenario being considered. In general, we find
the h® — vy mode to be the most promising one, since the occurrence of hadronically
quiet hard photon pairs with a peak in the invariant mass is a clear signal for the decay
hY — ~7. For sufficiently large values of the singlet mass my, the h® — Z% — (T(~
and h® — Z°Z% — (T¢=¢* ¢~ modes (¢ = e, uu) also become viable. We have estimated
SM backgrounds to these processes using a parton-level Monte Carlo event generator
and discussed ways of reducing them through appropriate kinematic cuts.

The plan of this article is as follows. In Section 2 we discuss those couplings of the
singlet hY at tree level and at one-loop level which are relevant for this analysis. We
then consider various possible vectorlike fermion scenarios and discuss their relative
viability insofar as detection of the h° is concerned. In Section 3 we discuss the
possible modes of production of the h° at hadron colliders. Section 4 is devoted to
a study of the decay modes of the h° in various scenarios and the possible signals.
Backgrounds to these are also analysed in Section 4 and our conclusions are stated

in Section 5.

2 COUPLINGS AND GENERAL STRATEGY

As explained above, the neutral singlet scalar h° has no SU(2); x U(1)y quantum

numbers at all and hence does not couple to the SM gauge bosons at tree level. Apart



from quartic interactions of the form H'Hh? it has no interactions with the standard
model quarks, leptons and higgs. However, it can couple to vectorlike singlet or

doublet fermions, and the couplings can be written as

singlet : Ei‘ff = fo(& + insys) fsh

doublet : £fo fala+ mays) fah (1)

where the subscripts s, d refer to singlet and doublet respectively and (f, = [Uq4, D4)).

The vectorlike fermions couple to the Z° boson as

singlet : L2077 = —— 90 sin® Oy Ty, f 2"
cos Oy
doublet : Efff S (Qy sin® Ow — Tiy) fayufaZ” (2)
cos Oy

and to photons and gluons through the usual QED and QCD couplings. In the
subsequent discussion the symbol f wil be used to denote vectorlike fermions gener-
ically. The Yukawa couplings &4 and 7, 4 are arbitrary and we examine the cases
E=n=1,6=1,n=0and £ =0,7= 1. One notes that the singlet and doublet vec-
torlike fermions can have gauge-invariant mass terms and hence it is not essential to
relate the Yukawa couplings to their masses. One of the results of this is that we have
no handle on the mass of the vectorlike fermions except the lower bound my > tmy
from the non-observation of the decays Z° — ff at LEP-1. It should be noted that
we assume no mizring between the singlet higgs boson and its standard counterpart
and similarly between the vectorlike fermions and their ordinary counterparts. As a
result our analysis is not constrained by mass bounds derived using such mixings.
Since the singlet higgs boson does not couple to any of the constituents of the pro-
ton, it is clear that it cannot be produced in pp or pp collisions through tree-level dia-

grams. At the one-loop level, however, h° can be created via gg (or vy, Z%, Z°Z° W+W ™)
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fusion through a triangle of vectorlike quarks or leptons as the case may be. The mech-
anism is illustrated in Fig. 1(a) where V;, V; can be any of the pairs of vector bosons
mentioned above. Fig. 1(b) exhibits the diagram corresponding to loop-induced
decay of the h°.

To perform a general analysis of the production and decay of the singlet higgs
boson we need to know the partial width (I') and the branching fractions of processes
of the type h® — V;V;. The fermion in the loop can be any of f = Uy, Dy, Uy, Dy, Ls,
Ny, Ly, depending on the scenario under consideration, but not N,. Here U, D refer
respectively to quarks of charge % and —% and L, N to leptons of charge -1 and 0.

We can write the transition amplitude for the generic process as
M =€) (p)e (p))T} (3)
where the effective coupling T'4” can be written in the schematic form [I0]

v QW; Fw; FMm i G i
Py = 30—l [ (R g — Flpipd) + ing B e pipgs] . (4)

Here the summation is operative only for the vector doublet fermion scenario and
runs over the members of the multiplet. Further, a sum over repeated greek indices
is implied. The factors w;s,w;; depend on the gauge bosons V;, V; and the vectorlike
fermion scenario under consideration. A list of the possibilities is given in Table 1.
The colour factors szj are given in Table 2. The presence of an overall m; can be
explained by helicity flip arguments. The form factors Ffj , inj , F?fj are calculated in
terms of the well-known two- and three-point functions of 't Hooft and Veltman and

Passarino and Veltman [[1]],

L
FIJ = Bo(mf,mf;mh) — 4024 — 5771;%00



Fy = A(Cy — Ca) — Cy

Fy = G (5)

where each of the C' functions has arguments C'(my, my, my; my,, my,, my). If at least
one of the gauge bosons V;, V; is massless, these can be written in closed form [[[T, [7],
but if both are massive, they have to be expressed in terms of rather complicated
formulae involving dilogarithms. These are evaluated using a computer code [[[J]
developed using the algorithms of Ref. [LT].

If V;, V; are either photons or gluons, gauge invariance demands
FY = pip;Fy. (6)

This is explicitly verified by using relations among the B and C functions which
obtain when one of the external masses vanish. These relations can be found in Refs.
[0, [

At this juncture it seems appropriate to discuss the vectorlike fermion scenario(s)
considered in this paper and the various search strategies prescribed for each. Rather
than include a complete extra generation of vectorlike quarks and leptons, we have
chosen to consider the different possibilities one at a time. This has the advantage
of simplicity and is theoretically quite legitimate since these extra fermion represen-
tations are anomaly-free due to their vectorlike nature. We thus have the following

options:
1. a vectorlike doublet of quarks f; = (Uy, Dy);
2. a vectorlike singlet quark f = U, of charge %;

3. a vectorlike singlet quark f = D, of charge —3;

6



4. a vectorlike doublet of leptons f; = (Ng, Ly);
5. a vectorlike singlet lepton f = L, of charge —1;

A sixth possibility, that of a vectorlike singlet neutrino, has been discounted because
it does not couple to any of the SM gauge bosons.

Let us consider scenario 1 in more detail. Since vectorlike doublet quarks couple
to all the SM gauge bosons, the possibilities in Fig. 1(a) are for V;V; to be any of
the pairs gg, vy, Z°%y, Z°Z° W+W~. Of all these, the only one worth considering
is the gg mode, not only because the hgg coupling is the largest, but because of
the high gluon luminosity at a hadron collider. The production mechanism would be
analogous to that envisaged for the SM higgs boson from gluon-gluon fusion through
a top quark triangle [[J], and the numbers obtained are, in fact, comparable. Some of
the advantage is lost, however, when we look for the detectable signals for the h°. The
dominant decay modes of h° will be h® — gg or h°® — UyU,, DyDy depending on the
masses of h and Uy, Dy (doublet fermions have to be more-or-less degenerate, from
the bounds arising from the oblique 7" parameter). In either case, one would see a
pair of hadronic jets which would be lost in the large QCD background. Accordingly,
we have to turn to the electroweak modes, viz. h® — v, h® — Z% h® — Z°Z° h® —
W*W~=. The last possibility, though it has a large branching fraction (see below),
will not be considered further in this work because the hadronic decays of the W=
pair would be swamped by the QCD background while the leptonic decays would
involve missing transverse energy and momentum due to two neutrinos, rendering
the analysis based on reconstruction of invariant masses impossible. We choose,

therefore, to restrict ourselves to the possibilities that V;/, V} are v or Z 0 as the case



may be. Furthermore we assume that the Z° is identified by its charged leptonic
decay modes Z° — utpu~,ete™, (these decay channels contribute 6.6% to the total
Z° width) generically denoted Z° — ¢*/~ in the subsequent analysis.

Scenarios 2 and 3 are rather similar. However, all electroweak amplitudes in
scenario 3 would be suppressed by the charge —% of the Dy quark (see Table 1) which
makes detection more difficult.

Scenario 4 is interesting since gluonic couplings are disallowed and one has to
rely on electroweak production modes, i.e. V;, V; can be v, Z%, Z°Z°, W+W~. The
lesser numbers of h%s produced are partially compensated by the large branching
ratios now available for the vy, Z%, Z°Z° decay modes. Of course, the tree-level
decay h’ — L*L~ will be the dominant one, if allowed kinematically. In this case,
the heavy lepton L* should behave rather like a muon, except that its track will show
little or no curvature. This last circumstance will, however, render measurement of
momenta difficult, so this mode may not, after all, be a good option to pin down the
h°. Scenario 5 is almost identical to 4 except that the h® — W*TW~ mode is absent
and the couplings are rather different.

Here it might not be irrelevant to compare the total width of this singlet scalar
with that of the SM higgs. For the sake of this discussion we consider two values of
the vectorlike fermion mass: 50 and 150 GeV. In Table 3, we present the widths of h°
in the various scenarios for £ = n = 1. For comparison, the width of the ‘Standard’
Model higgs for a hypothetical top quark mass of 50 and 150 GeV are also presented.
Note that beyond the 2m threshold the singlet higgs width is large as a consequence
of the tree level decay and the choice £ =7 = 1.

As noted earlier, the signal for production and decay of an h° at a hadron collider



is a pair of vector bosons V, V;, which are either of v or Z 0 and whose invariant mass
shows a sharp peak (below the mj; = 2m/ threshold) at the singlet higgs mass. The
principal SM background to each of these processes comes from ¢g annihilation and
gluon gluon fusion to a pair of vector bosons V;/, V through a box diagram. (For the
~v final state, bremsstrahlung is also an important background.) These backgrounds
could be quite significant even after imposing various kinematic cuts. The search
strategy suggested, therefore, is to plot the invariant mass distribution of the final
decay products in suitable bins. Presence, or otherwise, of an h° component will be
indicated by an excess of events in the particular bin where the peak of the signal
lies (this will naturally depend on the mass of the h?). The subsequent discussions
are based on this strategy. For the decay h® — Z%y, since we identify the Z° by its
decay to £T¢~, another possible background will be the radiative process qg — £T¢~~.
This last background can, however, be easily dealt with by requiring isolation of the

photon from the {* and [~ and demanding that the invariant mass of the lepton pair

be around my.

3 HADRONIC PRODUCTION OF THE A°

It has already been mentioned above that the mechanism for producing h° in pp or
pp collisions will depend upon the vectorlike fermions in the loop. So long as these
are quarks, the dominant process will be through gg fusion via a vectorlike quark (Q)

triangle, the effective h°gg coupling being given by Eqs. (f) — (f). Using these, we



obtain, at the parton level, the cross section

: aimiy - : : A
6lgg = h)) = =~ OVAE | FP6) P4y | FE(3) P )(mn = V5)
2
= =D — g9)3(m, = V3) (™)

where V/§ is the total centre-of-mass energy of the colliding partons and (R — gg)
is the decay width of an k" to a gg pair. In view of the other uncertainties involved as
regards masses and couplings, we have not included QCD corrections — which can be
fairly substantial [[4] — to this process. To obtain the inclusive hadronic cross section
for h° production, 6(gg — h°) must be convoluted with the distribution functions

fp/q(x) for the gluons. The resulting formula (for scenario 1) is

7.‘.2

o(pp,pp — h° + X) =

D — 90) [ @) sl D) )
smy, r X x

where /s is the centre-of-mass energy of the colliding hadrons and 7 is a dimensionless
quantity given by m3 /s.

To obtain numerical estimates for the production cross section we have used a
parton-level Monte Carlo event generator incorporating the recent structure function
parametrisations of Martin, Roberts and Stirling [[§]. The resulting estimates for
production of h° for three different choices of £ and 7 are illustrated in Fig. 2 (a), (b)
and (c) for a vectorlike doublet of quarks (scenario 1). The solid curves correspond to
Vs =14 TeV (LHC) and the dashed curves correspond to /s = 1.8 TeV (Tevatron).
The kink near m;, = 100 (400) GeV in each of these curves corresponds to the my =
2mg threshold for mg = 50 (200) GeV where the numerical results are not very
reliable.

In Fig. 2, for \/s = 14 TeV, the cross section has been multiplied by a luminosity

of £ = 10° pb~! /year (i.e. the so-called high luminosity option at the LHC) while for
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Vs = 1.8 TeV, the corresponding luminosity has been taken to be £ = 10® pb~! /year
i.e. for the projected Tevatron®. It may be seen that at the Tevatron®, one could
produce over 10* h% per year for m;, < 200 GeV for mg = 50 GeV; this number drops
to 10 when my, becomes 500 GeV. For mg = 200 GeV, the number of h’s produced
per year is less than the number obtained with mg = 50 GeV over the entire mass
range of h” except when my, crosses the 2mg threshold, when the numbers obtained
with the two different fermion masses are more or less the same. This is inevitable in
view of the fact that the h°gg coupling falls rapidly with mg. It is interesting to note
the contrast with the case of the SM H%gg coupling, which becomes roughly constant
for large m,. This is because the H°tt coupling is proportional to m; whereas we have
taken the h°QQ coupling to be a constant (see above).

At the LHC, with the high luminosity option, we immediately notice that one
could produce over 108 h% per year for m; < 200 GeV with mg = 50 GeV. The
corresponding numbers for mg = 200 GeV are about an order of magnitude smaller.

We see from the Figs. 2(a), (b), and (c) that the number of h’s produced for
three different choices of £ and 1 do not produce any significantly different result.
Also the trend of variation with my, is more or less the same in the above three cases.
Thus in our analysis we shall use £ =7 =1 from now on.

The corresponding estimates for scenarios 2 and 3 are obtained in the same way
and are smaller than in scenario 1 as there is just one quark — singlet — in the loop.
Fig. 2(d) shows the number of h’s produced for singlet U-type quarks at the LHC
and the Tevatron.

The situations for scenarios 4 and 5 are quite different. Since the loop-fermion is

now a lepton, there is no h%gg coupling. Accordingly we should now expect the h" to
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be produced from the fusion of vvy,v2° Z°Z° (and in scenario 4 from W*W ™) pairs
emitted from the parent hadrons. Such electroweak production of the h° naturally
leads to lower cross sections, not only because of the small couplings involved in
emission of v, Z° from the parent quarks, but also due to the lower flux of quarks
coming from the proton compared with that of gluons at high energies, especially at
the LHC. The parton-level cross section for vy — h® is easily obtained by multiplying
the same for the gg — h° case by the factor (ew.;/gswys)*. The values of w.; and wy;
are given in Table 1 and are different for the cases 4 and 5. As in the case of two-gluon
fusion, in order to obtain the cross section at the hadron level, one must convolute the
parton-level cross section with the quark distribution in the proton (or antiproton)
as well as the probability for the emission of a photon from a quark. The relevant
formulae can be obtained using the well-known effective photon approximation and

are given in Ref. [[7]. Accordingly, we have

o(pp,pp — 1" + X) (9)
2
S
sSmp,
1 p 1 p 1 y 1 P
<3 [ [ o[ des o ) s ) o)

where the sum over a,b runs over valence quarks only. When the h° is produced
from the fusion of the massive vector bosons W*, Z% the calculation becomes more
complicated. The probability of emission of a massive vector boson from a quark
depend on its polarisation, and hence one must consider the polarised amplitudes

M, rather than the spin-averaged one we have been discussing till now. The
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nonvanishing amplitudes are

amyw;pw; €y | 1 i
Mo = Wb(mi—m% mv)F19+ )‘(mhamVamV)F‘|
QM pW; s W5 i Ui
M+— = _%FF] f\/)\ mhamVamV)F‘|
QM Wi pW; i1 ij
M_, = _%[&Fﬂ+Ef\/)\(m%’m%,m%)%al (10)

where \(z,y, 2) = 2% +y% + 2% — 20y — 2yz — 222 and i, j are either W, W or Z°, Z° or
ZY ~. The polarisation-dependent probabilities of emission of massive vector-bosons
from a parton are calculated in the effective W, Z° approximations for /s > my 2
and are given in Ref. [[d]. The final formulae are analogous to Eq. (9) but are rather
cumbersome and have not been presented explicitly.

Numerical estimates for the electroweak production of h’s may be obtained from
a parton-level Monte Carlo event generator as before, and are presented in Fig. 2(e)
for scenario 4. The numbers are rather small and the behaviour with growing my,
more or less mimics that in the case of strong production. At the Tevatron, hg can
be produced only via photon photon fusion. But at the LHC it can also be produced
via Z°Z° WFW = or vZ° fusion. The sharp peaks in the plots correspond to the
thresholds at mj, = mz, 2mz, 2my and as usual at 2my. Observing the smallness of
the numbers of hy produced, we will not further analyse the signals from this scenario

(and scenario 5, which is similar).

4 DETECTION POSSIBILITIES

Once produced, the h° will decay to a pair of vector bosons V7, V7 through a vectorlike

fermion triangle, or, in case it is sufficiently massive, to a pair of vectorlike fermions.
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If the vectorlike fermions are quarks (@), then the dominant decay modes will be
h® — gg for my, < 2mg and h° — QQ for my, > 2mg. Neither of these decays will
be observable, however, because of the large QCD background. We turn, therefore,
to the electroweak decay modes.

The branching ratios for the various decay channels are plotted as functions of
my, (for my = 100 GeV) in Figs. 3(a) and (b) for the vectorlike fermion scenarios 1

and 2 respectively. The convention followed regarding the different curves is:
1. solid: h°® — v+ mode;
2. solid with dots: h® — Z% mode;
3. large dashes: h’ — Z°Z° mode;
4. dot-dash: h® — WTW~ mode;
5. small dash: h° — ff mode;
6. dots: h® — gg mode.

As one would expect, there is no W*W ™ mode in Fig. 3(b).

It has already been explained that the W*W ™~ decay mode in scenario 1, though
quite prominent, may not be viable for detection due to the missing energy carried
away by two neutrinos, so we shall concentrate on the vv, Z%y, Z°Z° modes only. For
scenarios 1 and 2 (and also 3, though this is not shown), when the vectorlike fermion
are quarks, these branching ratios are rather small, being of the order of 1073 or less.
However, in these three cases, many more h%s are produced because of the gluonic

mode of production, so this disadvantage is more than offset as we shall see presently.
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One notes that for singlet fermions, the couplings of v and Z° are proportional to
the charge of the fermion, as a result of which (and the favourable kinematics) the
vy mode is the dominant one of the three. For vectorlike doublets, however, the Z°
couples more strongly than the photons, so that modes with a final Z° are enhanced
above the purely photonic mode. In fact, the Z°Z° mode, though suppressed by a
factor of % compared with the Z%y mode because of Bose statistics, still turns out to
be dominant because of the presence of a vectorlike neutrino triangle in the doublet
case. However, since we consider the detection of the Z° through its ¢*¢~ decay
channel, both signal and background are suppressed by the relevant branching ratio.

Since the mass of the singlet higgs boson h° is unknown, it is convenient to divide
the possible mass range into four regions, somewhat as is done in the case of the SM

higgs boson. These are

1. Very light: m; < 50 GeV;

2. Light: 50 GeV < my, < my;

3. Intermediate mass: my < my, < 2my;
4. Heavy: my > 2my.

For light and very light singlet higgs bosons, the only viable decay mode is h® —
~vv; for intermediate mass, the decay h® — Z%y becomes available; while for the
heavy case we also have the decay h’ — Z°Z% Assuming the Z° is to be identified
by its £T¢~ decay mode, we accordingly look for either v, or £*¢~~ or the so-called
‘gold plated’ signal ¢+~ ¢*¢~ respectively. Throughout the mass range of the h° the

h® — ~~v mode remains viable and the role of the other modes is to present further
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options which can add to the signal. For high values of my, h" production itself goes
down, as shown in Fig. 2, and it becomes desirable to look for the the singlet higgs
in as many channels as possible.

As we have stated earlier, the principal SM background to each of these processes
will come from the tree-level process g — V/V/ and gluon gluon fusion through a
box diagram to V;V;. (Bremsstrahlung makes an additional important contribution
to the two photon background.) We evaluated the tree diagram contribution using a
parton-level Monte Carlo event generator and multiplied the numbers by appropriate
factors to take the other process(es) into account (see later). In general, for these
processes the vector bosons will be produced closer to the beam-pipe and with softer
transverse momentum distributions than in the case of the signal, so that kinematic
cuts are helpful to reduce the backgrounds. Even with the above cuts, the signal is
quite often smaller than the background, decreasing, in fact, as m,, increases because
of a fall in the number of h% produced. Accordingly, we adopt the strategy suggested
in sec. 2, viz. we plot the distribution in the invariant mass of the final products vy~
or {T¢~~ or 70~ ¢*¢, as the case may be, and look for a peak indicative of the decay
of an h°.

We shall now turn to the results obtained with a parton-level Monte Carlo gener-
ator for the above signals and their respective backgrounds. In each case, we present
numbers for the Tevatron™ and the LHC (high luminosity option) separately, for the
different vectorlike fermion scenarios enumerated above. It may be noted at the very
outset that we have used the same kinematic cuts (see above) for all the vectorlike
fermion scenarios considered and also for studies at the Tevatron with /s = 1.8 TeV

and the LHC with /s = 14 TeV. This rather artificial choice is purely for purposes
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of comparison and is not suggested as a prescription for a realistic analysis. One can,
for example, relax the cut EJ. > 25 GeV on the transverse energy of the final state
photons in the case of vectorlike doublet quarks (scenario 1) at LHC with the high
luminosity option, and thereby obtain some information about very light singlet higgs
bosons. However the analysis presented in this work is meant to be illustrative and
some of the results can be improved if we fix upon a particular vectorlike fermion
scenario. Results at the Tevatron upgrade and at the low luminosity option of the
LHC can be obtained by scaling the signal by a factor of % in either case, while the
1o fluctuations in the background get scaled by \/LTO' Since the graphs are plotted
on a logarithmic scale, these factors simply correspond to vertical shifts of the entire
curve(s) and the numbers may be easily read off.

The h® — ~~v mode: For 50 GeV < m; < my the only viable decay mode is

h® — ~~. This is also the dominant one of the electroweak modes with singlet
fermions in the loop for all mass ranges. The signal will be a pair of hard photons
produced back-to-back in the h° rest frame (but not in the laboratory frame), whose
invariant mass, M,, has a sharp peak around M., = my;. In Fig. 4(a) we have
shown, for scenario 1, i.e. a doublet of vectorlike quarks, the number of events
expected per year as a function of M., — in bins of 10 GeV — at the LHC with the
high luminosity option (see above). The solid, large dashed, small dashed curves
represent the expected signal in relevant bin (should the singlet h° have a mass which
falls in that particular bin) for mg = 50, 100, 200 GeV respectively. In view of the
sharpness of the resonance, the entire signal will lie in the relevant bin [[7]. The kinks
correspond to the m; = 2mg thresholds. It may be noted that this contribution goes

down more or less steadily as the invariant mass increases. This simply reflects the
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fall in A" production for increasing my. In this analysis, we have imposed a cut on
the photon pseudo-rapidity n, < 2.5. To obtain a viable signal, it usually becomes
necessary to impose a further cut £} > 25 GeV. This tells us that very light singlet
higgs bosons (of mass my, < 50 GeV) are unlikely to be seen at hadron colliders.

The histogram shows the square root of the number of events from the SM back-
ground deposited in each binf] which is a reasonable measure of the 1o fluctuation.
We have multiplied the numbers obtained from the ¢g — vy Monte Carlo by a factor
of 8 [I§ to take into account the di-photon production from gluon gluon fusion and
the bremsstrahlung contribution. It may be pointed out that the background will be
suppressed by the fact that the ¢ is a sea-quark at the LHC. Since the signal will
be seen as a peak in a particular bin over and above the SM background (and its
fluctuations), it is clear that the numbers shown in Fig. 4(a) indicate that detection
of the singlet h° will be viable in the entire range mj;, = 50 — 400 GeV for mg = 200
GeV considered in this paper since we will get more than a 5o peak in the invariant
mass distribution of the photons. With the low luminosity option, it may be difficult
to probe more than m; ~ 100 GeV if mg ~ 50 GeV, though this limit goes up to
about 200 GeV if mgq is 100 GeV or more.

We have chosen bins of 10 GeV since this appears typical of present experiments
Bd]. A coarser resolution will not usually affect the signal, but will increase the
background and its fluctuations. For example, if the data is collected in bins of 20
GeV, the background will increase by a factor of about 2 and its fluctuations by about

1.4. This will hardly affect numbers in the high luminosity option, but will reduce

IThis convention will also be followed in figs. 5-7.

18



the discovery limits for the low luminosity option still further by about 50 GeV in
each case.

Fig. 4(b) shows the same curves for scenario 2, i.e., the quark doublet is now
replaced by a singlet U-quark. The curves are roughly similar, except for the slightly
smaller number of h°® produced in this case, and the comments made regarding Fig.
4(a) are equally applicable to this case.

Figs. 5(a) and (b) illustrate the same numbers for scenarios 1 and 2 respectively
at the Tevatron* with a centre-of-mass energy of 1.8 TeV and a luminosity of 103
pb™!. As in the case of Fig. 4, we have displayed results for mg = 50,100,200
GeV (the solid, large dashed and small dashed curves respectively) and a histogram
representing the 1o fluctuation in the background. Since the Tevatron is a pp collider,
both the ¢ and the ¢ can be valence quarks. Hence, there is no suppression of the
background as was the case for the LHC. This is unfortunate for the kind of signal we
are investigating in this work. As is clear from Fig. 5, one cannot expect a reasonable
signal at the Tevatron™ very much above 100 GeV for the most promising situation
of light vectorlike quarks in the loop (mg = 50 GeV). For larger values of the quark
mass, the situation is much worse and a 1o effect is just obtained. At the Tevatron
with a luminosity of 100 pb™! one can at best obtain a 20 effect if the masses of both
h® and the vectorlike fermion are in the vicinity of 50-60 GeV. Electroweak production
at this energy is too small to yield even a single h” with the design luminosities, so
the corresponding graphs in scenarios 4 and 5 have not been shown. It is obvious
that data from the Tevatron or Tevatron* are not likely to impose serious constraints
on the scenarios being considered in this work, except for the corner of parameter

space where the masses of the singlet and the vectorlike fermions are light and their
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Yukawa couplings are large.

The h°® — Z% mode: For my;, > my the h° can decay into a Z%y pair as well as

a 7y pair. Fixing on the £/~ decay mode of the Z°, we look for an isolated photon
and a pair of leptons with the demand that the total invariant mass My+,-~ of the
final state has a sharp peak which would indicate the presence of an h° component.
To remove the radiative background from g — ¢*¢~~ we also require the invariant
mass of the £T¢~ pair to lie in the vicinity of m.

In Fig. 6(a) we illustrate, as before, the distribution in invariant mass for the
final products at the LHC with the high luminosity option, subject to the following
kinematic cuts: (a) Transverse energy of the photon is greater than 25 GeV; (b)
Transverse momentum of the leptons are each greater than 20 GeV; (c) All decay
products have pseudo-rapidity 7 < 2.5; (d) The photon is isolated from the lepton,
i.e. 6, > 15°; (e) The invariant mass of the lepton pair lies between 85 to 95 GeV. (f)
The angle between the photon and the reconstructed Z° is greater than 10°. (This
helps in removing a significant part of the background.)

The signal is rather small in the range m;, = 90 — 120 GeV and has not been
exhibited here. As regards the background in this decay channel, we examine the
qq@ — vZ° — ~ITl~ and the radiative process ¢qg — ITl~ using event generators.
The latter contribution is essentially eliminated by the 85 GeV < my+;- < 95 GeV
cut. To estimate the contribution to the background from gluon-gluon fusion, we
multiply the numbers by a factor of 1.3 [2I]. For doublet fermions in the loop, the
signal is larger than a 5o fluctuation of the background upto 400 GeV higgs mass with
mgq = 200 GeV. With mg = 50 (100) GeV, the signal is more than the 50 fluctuation

of the background upto m;, = 170 (220) GeV.
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Fig. 6(b) contains the results for scenario 2 (i.e. for singlet U type quark) and
the situation is not as promising. Here also we see that for m¢g = 200 GeV the signal
is above a 20 to 5o fluctuation of background when m;, changes from 150 to 400 GeV.
For mg = 100 GeV, below m; = 200 GeV the signal is very large compared to the
background but it falls sharply as my, crosses the 2mg threshold. For mg = 50 GeV,
the situation is hopeless as the signal is less than 1o fluctuation of the background
for the entire higgs mass range. This seemingly paradoxical result, in view of the
propagator effect with increasing my, is easily explained by considering the branching
ratios of Fig. 3. The signal drops rapidly beyond m;, = 2m¢ simply because of the
opening-up of the h°® — Q@ channel. If one considers the low luminosity option, the
predictions for scenario 1 are rather similar to the predictions for scenario 2 with the
high luminosity option. Scenario 2 with the low luminosity option, is, however, no
longer detectable.

At the Tevatron the signal remains below a 1o fluctuation of the background
starting from low higgs mass upto higher ones. We do not present these numbers.

The h° — Z°Z° mode: Finally, we consider the possibility that m; > 2my . For

this mass range, the h® — Z°Z% — ¢+{=¢*¢~ channel becomes available in addition to
the ones considered before. One notes that out of a final state {5 ¢3¢ it is possible
to pair the £*s and ¢~s in two ways, viz. £{{5, 03¢5 and ¢{ ¢, (305 . Only one of these
sets corresponds to a process with h® — Z°Z% — ¢T¢=¢*¢~ and it is for this pairing
that the invariant masses of the two ¢*¢~ pairs will peak around the Z°boson mass.
Demanding, therefore, that two of the four possible ¢/~ pairs that can be formed
have invariant masses close to mz, one can remove most of the backgrounds except,

naturally, those due to qg — Z°Z°. Once again we take into account the gluon gluon
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fusion to a pair of Z% by multiplying the qg — Z°Z° contribution by a factor of 1.3
BT]. One then considers the invariant mass of all four leptons in the final state, more
or less as was done in the previous cases. This is a very clear signal and its analogue
for the SM H° — where it is a tree-level decay — is widely referred to as a ‘gold plated’
signal. Unfortunately, however, the rather large mass of the A" leads to production
of smaller numbers in the first place, so that this signal ultimately turns out to be
less promising than the previous ones.

For scenario 1, Fig. 7 shows the distribution in invariant mass Mjy+,—p+,— for
the four final-state leptons in the mass range 180 to 500 GeV at the LHC with the
high luminosity option. These plots have been obtained with the kinematic cuts: (a)
Transverse momentum of each lepton is greater than 20 GeV; (b) All the leptons have
pseudo-rapidity n < 2.5; (¢) Two of the four possible £/~ invariant masses lie in the
region 85-95 GeV (see above). (d) The angle betweeen the two reconstructed Z% is
greater than 10°.

Once again, these cuts are quite adequate to suppress the background. Though
the signal itself is small, one may nevertheless find evidence for the singlet higgs in
this channel if m;, < 210 GeV for mg = 50 or 100 GeV while for mg (=~ 200 GeV) an
upper limit of around 400 GeV can be probed. The situation becomes much worse
with the low luminosity option when only the range m; = 180 —200 GeV can yield an
acceptable signal, and that too for m¢g =~ 50 GeV only. At the Tevatron upgrade and
the Tevatron®, one hardly predicts anything observable except in the narrow band
180 — 185 GeV, which is not worth investigating in this mode.

From the above discussion, and the illustrative numbers presented, it appears

that at the LHC, with high luminosity, there is a good chance that one will see a
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signal for the h°, especially if it appears in conjunction with a doublet of vectorlike
quarks. The question that immediately comes to mind is: how can one distinguish
it from the SM higgs boson, which has similar decay modes. To answer this, one
must recollect the fact that the SM H° has a tree-level coupling to bb as a result
of which its branching ratios to vector boson pairs (except to WTW~ and Z°Z°,
which also occur at tree level) are strongly suppressed. Of course, if a tiny signal,
compatible with the SM, should be observed, it could equally well be due to an h°,
with the amplitudes suppressed by small values of n; and £y or large values of my. The
distinguishing feature will be the absence of tree-level bb, Z°Z° and W+W = decays.
Thus, a higgs boson signal through the processes H? — v, H® — Z%, H° — Z°Z°,
but unaccompanied by the other signatures for the SM H?, could very well be a signal

for a singlet h°.

5 CONCLUSIONS

We have investigated possibilities for the detection of SU(2)y x U(1)y singlet scalars,
at the LHC and the Tevatron. The production and decay modes of these scalars de-
pend on the presence of vectorlike fermions whose left- and right-handed components
transform identically under the gauge group. Setting aside the A’ — gg decay mode,
which is expected to be swamped by QCD backgrounds, the detectable decays are
h? — 4y, h® — Z%, and h°® — Z°Z° where the Z° subsequently decays to a pair of
electrons or muons. Among these, the first process h® — v seems to be the most
promising. The other two channels can be interesting if the singlet scalar comes in

conjunction with a vectorlike doublet of quarks, but not otherwise.
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In all the channels that we have examined there is a sharp drop in the signal above
the my, = 2mg threshold due to the opening up of the tree-level i — Q@Q decay mode.
Thus for a vectorlike fermion mass of 50 GeV only a rather limited region of singlet
higgs mass can be explored. On the other hand, for mg = 200 GeV the signal remains
above the 5o fluctuations of the background upto large higgs masses. It is easily seen
that for larger mg, though the higgs mass threshold is increased, the signal itself is
reduced and will not be more than the 50 fluctuation of the background.

Irrespective of the decay mode, our findings indicate that it is unlikely that an
h? signal will be seen at the Tevatron. Only with the commissioning of the LHC can
we look forward to a potential detection of this particle. A very light singlet h° with
mass less than 50 GeV will escape even these tests and one will have to look for its
signals in processes other than the ones expected at hadron colliders. Similarly, one
cannot constrain models in which a singlet higgs boson h° (of any mass) couples only

to vectorlike leptons.
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Table 1

Scenario f Wy f Wz f Wy ww f
1 quark doublet | —Qf | —Qtan Oy + 215 csc20y | gs/e | cscby/ V2
2,3 singlet quark | —Qf —Qytan Oy, gs/e 0
4 lepton doublet | —Qf | —Qftan by + 2T55csc20y | 0 | cschy/ V2
5 singlet lepton | —Qy —Q s tan Oy 0 0
Table 2
Scenario f Ciy | Cyzo | Cgoz0 | Cgogy | Cww | Cry
1 quark doublet | 3 3 3 %5@ 3 V3
2,3 singlet quark | 3 3 3 %5@ 0 V3
4 lepton doublet | 1 1 1 0 1 1
) singlet lepton | 1 1 1 0 0 1
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Table 3

Higgs width in GeV

my = 50 GeV my = 150 GeV
Scenario my, = 100 GeV | my, = 200 GeV | my, = 100 GeV | my, = 200 GeV

Doublet Quarks 0.2058 72.854 0.0034 0.0357
Singlet U Quark 0.0515 36.289 0.00085 0.0088
Singlet D Quark 0.0513 36.288 0.00084 0.00874
Doublet Leptons | 897 x 107° 24.128 2.126 x 107° 9.39 x 107°
Singlet Lepton 8.90 x 107° 12.063 2.124 x 107 2.91 x 107°
‘Standard’” Model 0.0034 2.897 0.0028 1.511
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Table Captions

Table 1 : Overall factors multiplying the production (and decay) matrix element
for different scenarios. The symbol f stands for vectorlike fermions generically.
Qs and T3¢ denote, respectively, the electric charge and the third component of

weak isospin of the vectorlike fermion.

Table 2 : Colour factors multiplying the production (and decay) matrix element
for different scenarios. The symbol f stands for vectorlike fermions generically.
C,; denotes the relevant colour factors for the decay h° — V;V; through a vec-

torlike fermion loop.

Table 3 : The width of a singlet higgs for m;, = 100 and 200 GeV in various
vectorlike fermion scenarios with £ = n = 1. For comparison, the width of a
‘Standard’ model higgs with a hypothetical top quark of mass 50 and 150 GeV

are also shown.
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Figure Captions

Fig. 1: Feynman diagram for (a) the hadroproduction of an h° and (b) the

loop-induced decay of h° to a pair of vector bosons.

Fig. 2: h° production rate for a doublet of vectorlike quarks with (a) n =1, £ =
1,(b)n =0, =1,and (c) n = 1, £ = 0. The rate for a singlet U type vectorlike
quark with n = 1, £ = 1 is shown in (d) while that for a doublet of vectorlike
leptons with n = 1, £ = 1 is presented in (e). Upper lines correspond to my = 50
GeV, and lower lines correspond to m; = 200 GeV; high luminosity options are

taken both for the LHC (solid lines) and the Tevatron® (dashed lines).

Fig. 3: Branching ratios for h° decay with (a) a doublet of vectorlike quarks and
(b) a singlet vectorlike U quark. The conventions followed for each of these is the
following: (7) solid: h® — vy mode; (i) solid with dots: h° — Z% mode; (iii)
large dashes: h® — Z°Z° mode; (iv) dot-dashed: h® — WTW ™~ mode; (v) small
dashes: h® — ff mode; (vi) dotted: h® — gg mode. We have set m; = 100 GeV

throughout.

Fig. 4: ~v signal as a function of invariant mass of the final state in bins of
10 GeV with (a) a doublet of vectorlike quarks and (b) a singlet vectorlike U
quark, for m; = 50,100,200 GeV (solid, large dashed and small dashed curves
respectively) at the LHC with the high luminosity option. The histogram shows

the square root of the number of events from the SM background in each bin.

Fig. 5: v signal as a function of invariant mass of the final state in bins of 10

GeV with (a) a doublet of vectorlike quarks and (b) a singlet vectorlike U quark,
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for m; = 50,100,200 GeV (solid, large dashed and small dashed curves respec-
tively) at the Tevatron®. The histogram shows the square root of the number of

events from the SM background in each bin.

Fig. 6: (T( ~ signal as a function of invariant mass of the final state in bins
of 10 GeV with (a) a doublet of vectorlike quarks and (b) a singlet vectorlike U
quark, for m; = 50,100,200 GeV (solid, large dashed and small dashed curves
respectively) at the LHC. The histogram shows the square root of the number

of events from the SM background in each bin.

Fig. 7: (T¢~(*(~ signal as a function of invariant mass of the final state in bins
of 10 GeV with a doublet of vectorlike quarks for m; = 50, 100, 200 GeV (solid,
large dashed and small dashed curves respectively) at the LHC with the high
luminosity option. The histogram shows the square root of the number of events

from the SM background in each bin.
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