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ABSTRACT

In the context of the left–right symmetric model, the decay b → sγ receives contribu-
tions from the gauge interactions mediated mainly by the WL, through WL–WR mixing
and also from the Yukawa interactions of the charged and the neutral (flavour-changing)
scalars (the latter type of Yukawa interaction has been overlooked in the previous litera-
ture). Following the recent CLEO measurement of the inclusive b → sγ process and the
measurement of the top-quark mass by the CDF and D0 collaborations, the parameter
space of the left–right symmetric model is more squeezed than before.

Phys. Lett. B357 (1995) 119.

CERN-TH/95-118
May 1995

∗gautam@cernvm.cern.ch
†amitava@cubmb.ernet.in

http://arXiv.org/abs/hep-ph/9505356v2
http://arXiv.org/abs/hep-ph/9505356


In the SU(2)L ⊗ SU(2)R ⊗ U(1) left–right symmetric model (LRM) [1] there is
a new scale at which the gauge group breaks to the SU(2)L ⊗ U(1) Standard Model
(SM). The sensitivity to this scale of low-energy phenomena such as K–K̄ mixing and
neutrino masses [2] has been a subject of wide interest over the past few years. Of late,
a particularly interesting channel to examine various species of new physics, including
this LRM scenario, has been provided by the inclusive B-decay measurement by the
CLEO collaboration, B(b → sγ) = (2.32 ± 0.57 ± 0.35) × 10−4 → (1.0 − 4.2) × 10−4 (at
95% C.L.) [3]. It has already been pointed out ([4]–[8]) that this rare decay has a strong
influence on restricting the parameter space of the LRM. Recently, Cho and Misiak [6]
investigated the effects of WL–WR mixing on b → sγ with an extensive analysis of QCD
corrections which are very important for this process; however, they have not considered
the contributions from the scalar sector. Babu et al. [7] included the charged scalars
in the analysis, but their treatment of QCD corrections is incomplete. In this paper we
attempt to improve upon the previous analyses by

• including all the above contributions coherently in a single analysis,

• incorporating the contribution of the flavour-violating neutral scalars, which has
so far been overlooked, and

• reexamining the parameter space in the light of the new CLEO measurement of
the b → sγ inclusive branching ratio [3] and the recent CDF and D0 measurements
of the top-quark mass as mt = 180 ± 12 GeV [9] 1.

In the SU(2)L ⊗ SU(2)R ⊗ U(1) gauge model the quarks (q) and the leptons (l)
transform as qL(2, 1, 1/3), qR(1, 2, 1/3), lL(2, 1,−1), and lR(1, 2,−1). The scalar sector
consists of the following Higgs fields: ∆L(3, 1, 2), ∆R(1, 3, 2) and Φ(2, 2, 0), of which
only the latter participates in the Yukawa interaction and is explicitly shown as:

Φ =
(

φ0
1 φ+

2

φ−
1 φ0

2

)

. (1)

∆R is used to break SU(2)L⊗SU(2)R⊗U(1)B−L to SU(2)L⊗U(1), while ∆L is introduced
to maintain a discrete parity invariance. The vev vR of ∆R sets the LRM breaking scale.
The vevs of Φ are given by 〈φ0

1〉 = k and 〈φ0
2〉 = k′. One requires vR ≫ k, k′ from the

excellent agreement between the (V − A) theory and the experimental data, while the
hierarchy vL ≪ k, k′ is set from the ρ parameter constraint. The SM gauge group is
reproduced in the limit vR → ∞, vL → 0. We neglect any small phase difference between
k and k′.

Introducing tanβ = k/k′, we obtain the physical charged scalars and the second set
of neutral scalar and pseudoscalar 2 as

H± = cos β φ±
1 + sin β φ±

2 ,
1The value is the weighted average of mt = 176± 13 GeV (CDF) and mt = 199 ± 30 GeV (D0).
2The neutral scalar and the pseudoscalar in the first set are identified with the Higgs and the

longitudinal component of the lighter Z, respectively, whose Yukawa couplings are flavour-diagonal.
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H0
2 =

√
2
(

− sin β Reφ0
2 + cos β Reφ0

1

)

, (2)

G0
2 =

√
2
(

cos β Imφ0
1 + sin β Imφ0

2

)

.

The Yukawa interaction in the quark sector is given by the Lagrangian [7] 3:

LY = q̄LhΦqR + q̄Lh̃Φ̃qR + h.c. (3)

where Φ̃ ≡ τ2Φ
∗τ2 and h, h̃ are 3 × 3 Hermitian matrices in flavour space. The up- and

down-type quark mass matrices are given by:

Mu = hk + h̃k′,

Md = hk′ + h̃k. (4)

After a straightforward calculation, the charged and neutral current (which are rel-
evant to b → sγ) Yukawa Lagrangian, in a more transparent form, are given by:

LC
Y = − N

cos 2β
ūi

[

sin 2β
(

M̂uV PL − V M̂dPR

)

+
(

M̂uV PR − V M̂dPL

)]

H+di + h.c. (5)

and

LN
Y (d) =

N√
2 cos 2β

d̄i

[

(V †M̂uV )ij − sin 2βM̂dδij

] (

H0
2 − iγ5G

0
2

)

dj, (6)

where M̂u and M̂d are diagonal up- and down-type quark mass matrices, V is the stan-
dard Cabibbo-Kobayashi-Maskawa mixing matrix and N = 1/

√
k2 + k′2.

The contribution of the flavour-violating neutral scalars has been overlooked in the
previous literature, which we find to be significant for some region of the parameter
space. It may be noted that H0

2 and G0
2 mediate flavour violation even in the limit

β → 0. This originates from the fact that the Yukawa interaction mediated by the
bidoublet scalar in LRM does not reproduce the SM scenario in the above limit.

In the charged gauge boson sector, W±
L and W±

R mix to give the lighter and heavier
mass eigenstates as 4

W±
1 = cos ξ W±

L + sin ξ W±
R ,

W±
2 = − sin ξ W±

L + cos ξ W±
R . (7)

where the mixing angle ξ is given by

ξ ≃ sin 2β
m2

W1

m2
W2

≡ sin 2β
m2

W

m2
W2

. (8)

3We use the same notation as in [7] as much as possible.
4Indeed, W

±
1

are identified with the W± of the SM.
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The effective Lagrangian relevant for the process b → sγ can be written as 5:

Leff =

√

G2
F

8π3
VtbV

∗
ts mb

[√
α {AγL sLσµνbR + AγR sRσµνbL}Fµν

+
√

αS {AgL sLTaσ
µνbR + AgR sRTaσ

µνbL}Ga
µν

]

+ h.c., (9)

where the contributions to AγL, AγR, AgL and AgR from the different sectors 6 are given
by (x = m2

t/m
2
W , y = m2

t /m
2
H+ , z1 = m2

b/m
2

H0
2

, z2 = m2
b/m

2

G0
2

) 7:

AγL = ASM
γ (x) + ξ

mt

mb
Amix

γ (x) + tan2 2β Fγ(y) +
mt sin 2β

mb cos2 2β
Gγ(y)

+
Qb

4

mt

m2

H0
2

(

mt

cos2 2β
− mb sin 2β

cos2 2β

)

{H(z1) + G(z2)} ,

AγR = ξ
mt

mb

Amix
γ (x) + sec2 2β Fγ(y) +

mt sin 2β

mb cos2 2β
Gγ(y)

+
Qb

4

mt

m2

H0
2

(

mt

cos2 2β
− mb sin 2β

cos2 2β

)

{H(z1) + G(z2)} , (10)

AgL = ASM
g (x) + ξ

mt

mb

Amix
g (x) + tan2 2β Fg(y) +

mt sin 2β

mb cos2 2β
Gg(y)

+
1

4

mt

m2

H0
2

(

mt

cos2 2β
− mb sin 2β

cos2 2β

)

{H(z1) + G(z2)} ,

AgR = ξ
mt

mb

Amix
g (x) + sec2 2β Fg(y) +

mt sin 2β

mb cos2 2β
Gg(y)

+
1

4

mt

m2

H0
2

(

mt

cos2 2β
− mb sin 2β

cos2 2β

)

{H(z1) + G(z2)} .

The functions in the above expressions are given by 8

ASM
γ =

x(8x2 + 5x − 7)

24(1 − x)3
+

x2(3x − 2)

4(1 − x)4
ln x,

ASM
g =

x(x2 − 5x − 2)

8(1 − x)3
− 3x2

4(1 − x)4
ln x,

Amix
γ =

−20 + 31x − 5x2

12(1 − x)2
+

x(3x − 2)

2(1 − x)3
lnx,

5We neglect the contributions proportional to ms.
6We do not show, in the expressions for AγR and AgR, the W2-induced contributions which are

sufficiently damped since mW2
is set to 1.6 TeV [10] all along our analysis. However, we have included

it in our numerical code.
7Whenever we encounter a b-quark inside a triangle loop, we take the running mass mb(mW ) ∼ 3

GeV, as in [7].
8ASM

γ and ASM
g were first calculated by Inami and Lim [11].

3



Amix
g = −4 + x + x2

4(1 − x)2
− 3x

2(1 − x)3
lnx,

Fγ(x) =
x(−25 + 53x − 22x2)

72(1 − x)3
+

x2(2 − x)

12(1 − x)4
ln x, (11)

Gγ(x) =
x(5x − 3)

12(1 − x)2
− x(2 − 3x)

6(1 − x)3
ln x,

Fg(x) =
−20x + 19x2 − 5x3

24(1 − x)3
− x

4(1 − x)4
ln x,

Gg(x) =
−3x + x2

4(1 − x)2
− x

2(1 − x)3
ln x,

H(x) =
16 − 29x + 7x2

12(1 − x)3
+

2 − 3x

2(1 − x)4
ln x,

G(x) =
20 − 19x + 5x2

12(1 − x)3
+

2 − x

2(1 − x)4
ln x.

It should be noted that there is a disagreement of sign between Babu et al.’s [7]
and Asatryan et al.’s [5] calculation of the charged scalar-induced contribution. Our
calculation agrees with the latter.

The effective Wilson coefficients can now be written as:

Ceff
7L = η16/23AγL +

8

3
(η14/23 − η16/23)AgL + C + C ′, (12)

Ceff
7R = η16/23AγR +

8

3
(η14/23 − η16/23)AgR + C ′. (13)

In the above equations, η = αS(MZ)/αS(µ), where µ is the QCD renormalization scale;
C corresponds to the leading log QCD corrections in SM [12], and C ′ refers to the extra
contribution from mixing of additional operators in LRM, which has been computed in
ref. [6]. These are given by

C =
8
∑

i=1

hiη
ai , (14)

where

ai =
14

23
,
16

23
,

6

23
,−12

23
, 0.4086,−0.4230,−0.8994, 0.1456 (15)

hi =
626126

272277
,−56281

51730
,−3

7
,− 1

14
,−0.6494,−0.0380,−0.0186,−0.0057 (16)

and

C ′ = ξ
mc

mb

4
∑

i=1

h′
iη

a′
i , (17)

where
a′

i = (0.6957, 0.6087,−1.0435, 0.1304) (18)
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h′
i = (−0.6615, 1.3142, 0.0070, 1.0070). (19)

Finally, the branching ratio of b → sγ is given, in units of the semileptonic b-decay
branching ratio, by

B(b → sγ)

B(b → ceν)
=

6α

πρλ

∣

∣

∣

∣

VtbV
∗
ts

Vbc

∣

∣

∣

∣

2
[

|Ceff
7L|2 + |Ceff

7R|2
]

, (20)

where ρ = (1 − 8r2 + 8r6 − r8 − 24r4lnr) with r = mc/mb and λ = 1 − 1.61 αS(mb)/π.
It may be noted that the mb

5 dependence in the partial decay widths of the b quark
cancels out in eq. (20). An O(m2

s/m
2
b) part in the branching ratio is neglected. We take

B(b → ceν) = 0.107.

In Figs. 1–3 we have plotted the branching ratio B(b → sγ) as a function of mH+ . We
have fixed mW2

= 1.6 TeV. To demonstrate the magnitude of the H0
2 -induced effect, we

work with two representative values: mH0
2

= 300 GeV and 800 GeV and have displayed
their effects in Figs. 1 and 2, respectively, for mt = 180 GeV. On the other hand, the
chirality-flip of the top quark inside the loop due to the presence of the right-handed
current is responsible for a strong mt-dependence of our prediction. To illustrate this
point, we demonstrate in Fig. 3 how a line curve in Fig. 1 corresponding to β = −10◦,
as an example, becomes a thick band due to the variation of mt in the range 168–192
GeV. In Fig. 4 we fix the charged Higgs mass to 800 GeV and plot the branching ratio
B(b → sγ) as a function of mH0

2
. The salient features of the relative contributions of

the different sectors of the LRM that emerge from the above figures are listed below:

1. The contributions induced by the WL–WR mixing and the charged scalar are very
sensitive to the choice of β. The reason is that the chirality-flipped (mt/mb)-
enhancement factor, which constitutes the potentially largest contribution, multi-
plies sin 2β. Even a choice of |β| ∼ 5◦ can rule out a charged Higgs up to a mass
of several hundred GeV. Evidently, choosing a larger |β| pushes it up even further.

2. Contrary to the Yukawa couplings of H0
1 or G0

1, those of H0
2 and G0

2 are not totally
flavour-diagonal and hence they contribute to b → sγ. For the sake of simplicity
we have assumed H0

2 and G0
2 to be mass-degenerate. With increasing mH0

2
the

contribution from the neutral scalar sector decouples fast, which is the origin of
the relative shifts between the curves in Fig. 2 (mH0

2
= 800 GeV) and in Fig. 1

(mH0
2

= 300 GeV). It may be noted, though, that the individual contributions from

H0
2 and G0

2 are in the same direction and roughly of the same order of magnitude.
So if one relaxes the condition of their mass degeneracy and their joint contribution
is thought to be of the same order of magnitude as their individual contributions,
the curves should lie somewhere between their corresponding positions in Fig. 1
and Fig. 2.

3. In the limit of β = 0◦, the dominant contribution in the LRM comes from the
new operator-mixing effect, represented by C ′, and also from the flavour-violating
neutral scalar sector (when those neutral scalar masses are not too heavy).
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4. The mt-dependent (dominant) contributions multiply 1/(cos2 2β) in the neutral
scalar sector and sin 2β/(cos2 2β) in the charged scalar sector. A close look at the
relative signs of the associated factors (see eqs. (10) and (11)) in those contribu-
tions reveals that for a positive (negaive) β, there is a constructive (destructive)
interference between the effects induced by the neutral and the charged scalars.
The WL–WR mixing contribution also depends on the sign of β through ξ. A com-
parison between the curves for β = −5◦ and 5◦ in Fig. 4, as an example, amply
demonstrates this analytic interplay involving the sign of β.

At this point, a few words about the theoretical uncertainties in this process are in
order [13]. The evolution of Leff from mW to a lower momentum scale (µ ∼ mb) by
the QCD renormalization group analysis involves a significant theoretical uncertainty
regarding a precise choice of µ at which αS is to be determined. The SM branching ratio
for a leading log calculation is quoted as BSM(b → sγ) = (2.8 ± 0.8) × 10−4 [14] where
the error comes mainly from the uncertainty of µ in the range mb/2 < µ < 2mb. We
take µ = mb to obtain BSM(b → sγ) = 2.9 × 10−4 for mt = 180 GeV. Recently a part
of the next-to-leading order QCD corrections has been estimated with a consequence of
reducing the QCD enhancement in the SM yielding BSM(b → sγ) = (1.9 ± 0.5) × 10−4

[15]. It may be noted that all our estimates of the LRM contributions stand above
the base value of the SM approximated at the leading order QCD corrections. If, for
instance, the full calculation of the next-to-leading order QCD corrections pulls the SM
estimate down, the total effect including the LRM contributions will also come down by
the same absolute amount. However, for a non-negligible β, the total LRM contribution
or even the contribution from each individual sector as well is shown to be numerically
significant and hence their impact are not likely to be masked by the uncertainties from
the next-to-leading order QCD corrections.

In conclusion: we have investigated the parameter space of the LRM in the context
of b → sγ. Different sectors of the LRM contributing to this process have been added
coherently. We have included the effect of the flavour-violating neutral scalars, which
was missing in the previous analyses. Upon imposition of the CLEO measurement of the
inclusive b → sγ rate, the lower limit of the charged Higgs mass is pushed up to several
hundred GeV even for a small value of |β|. Although there are lots of parameters in the
LRM which can conspire, leading to cancellations and reducing the power of prediction
in this model, still a reduction of errors in the inclusive b → sγ measurement at CLEO,
a more precise determination of the top-quark mass and, indeed, a better understanding
of the next-to-leading order QCD corrections will all serve to constrain the parameter
space even more strongly.

AR acknowledges partial support from the Council of Scientific and Industrial Re-
search and the Department of Science and Technology, India.

6



References

[1] J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 275;
R.N. Mohapatra and J.C. Pati, Phys. Rev. D11 (1975) 566;
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Figure 1: The branching ratio for the process b → sγ as a function of mH+ for different
values of β in the LRM. The value of mt has been fixed to 180 GeV and mH0

2
= mG0

2

has been set to 300 GeV. The SM line relies on leading log QCD calculation at µ = mb.
The shaded area is the experimentally allowed region at 95% C.L. [3].
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Figure 2: Same as in Fig. 1, but with mH0
2

= mG0
2

= 800 GeV.
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Figure 3: The mt dependence of the result is exhibited by showing how the curve
corresponding to β = −10◦ (as an example) in Fig. 1 becomes a band (hatched). The
SM line for µ = mb also becomes a band (horizontal hatched strip within the shaded
area) due to the same effect. The shaded area is the experimentally allowed region at
95% C.L. [3].
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Figure 4: The branching ratio for the process b → sγ as a function of mH0
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relies on leading log QCD calculation at µ = mb. The shaded area is the experimentally
allowed region at 95% C.L. [3].
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