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We present here a microscopic and self-consistent calculation of the self-diffusion coefficient of a
small tagged particle in a dense liquid of much larger particles. In this calculation the solute motion
is coupled to both the collective density fluctuation and the transverse current mode of the liquid.
The theoretical results are found to be in good agreement with the known computer simulation
studies for a wide range of solute–solvent size ratio. In addition, the theory can explain the
anomalous enhancement of the self-diffusion over the Stokes–Einstein value for small solutes, for
the first time. Further, we find that for large solutes the crossover to Stokes–Einstein behavior
occurs only when the solute is 2–3 times bigger than the solvent molecules. The applicability of the
present approach to the study of self-diffusion in supercooled liquids is discussed. ©1997
American Institute of Physics.@S0021-9606~97!51805-8#
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I. INTRODUCTION

Diffusion of small solute particles~atoms, molecules! in
a dense liquid of larger particles is an important but
understood problem of condensed matter physics and ch
istry. In this case one does not expect the Stokes–Eins
~SE! relation between the diffusion coefficient (D) of the
tagged particle of radius (R) and the viscosity~h! of the
medium to be valid. Indeed, experiments1,2 have repeatedly
shown that in this limit the SE relation significantlyunder-
estimatesthe diffusion coefficient. The conventional SE r
lation is D5CkBT/Rh, wherekBT is the Boltzmann con-
stant times the absolute temperature andC is a numerical
constant determined by the hydrodynamic boundary co
tion. To explain the enhanced diffusion, sometimes an e
pirical modification of the SE relation of the form
D5const/ha is used,1 where the value of the exponent
typically a.2/3. The fractional viscosity dependence ofD is
often referred to as the microviscosity effect. On the ot
hand, Zwanzig and Harrison3 proposed that it is more mean
ingful to discuss the experimental results in terms of anef-
fective hydrodynamic radius which is determined, amo
many factors, by the solute-solvent size ratio. Neither
fractional viscosity dependence ofD nor the origin of the
effective hydrodynamic radius are well understood. Anot
unresolved problem is a quantitative understanding of
crossover to SE behavior, which is expected as the so
size is increased far beyond that of the solvent.

Note that the above problems are unsolved even
dense liquids in the normal temperature–pressure conditi
When the liquid is supercooled below its freezing point, s
eral additional~and interesting! anomalies are known to ap
pear which are the subject of intense research at pres4

The present work is, however, limited to normal liquids on
Although detailed microscopic calculations of the pro

lems mentioned above are not available, there exist sev
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computer simulation studies,5,6 particularly for small solutes,
which also find the anomalous enhanced diffusion, even
simple model potentials such as the Lennard-Jones.
physical origin of the enhanced diffusion is not clear fro
the simulations. We present here a microscopic calcula
of the size dependent diffusion based on the recently de
oped mode coupling theory. The theory gives excell
agreement with the simulation results and provides a ph
cal interpretation of the enhanced diffusion. In addition
study of the crossover to the SE behavior at large solute s
is presented. The expression of the friction used in this st
is a well-known mode coupling expression. But in our ca
as we have studied friction on a solute which is different
size from the solvent, we had to extend the mode coup
expression of friction for a pure system to that for a bina
system.

The layout of the rest of the paper is as follows. Sect
II deals with the theoretical formulation. Section III contain
the numerical results and comparison with experiments.
nally, Sec. IV concludes with a brief discussion on the
sults. Mathematical details are present in the Appendix.

II. THEORETICAL FORMULATION

Let us consider a single tagged solute particle among
solvent molecules. Letv12(r ) denote the interaction pair po
tential between the solute and a solvent molecule, whilev(r )
denotes the same for a pair of solvent molecules. Both
assumed to be given by the Lennard–Jones potential and
characterized by the same energy parameter. The other
evant interaction parameter, the LJ diameter, is denoted
s1 and s2 for the solvent and the solute, respective
R215s2/s1 is the solute-to-solvent size ratio. The liquid
characterized by its number densityr and absolute tempera
tureT. We shall use the reduced densityr*5rs1

3 as a mea-
sure of the density of the liquid and shall concentrate on
high density limit for which detailed computer simulatio
results are available.

At a purely microscopic level the motion of a tagge
particle in a dense liquid can be described in terms of
h,
1757757/7/$10.00 © 1997 American Institute of Physics
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1758 S. Bhattacharyya and B. Bagchi: Anomalous diffusion in dense liquids
inertial motion of the particle, interrupted by rather hard
pulsive collisions with the surrounding solvent particles. T
inertial motion is not free; it occurs in the force field of th
neighboring molecules. The difficulty describing this moti
comes from the structure of the liquid which is isotropic
the long length scale but which exhibits pronounced sh
range order. Thus, the collisions are strongly correlated.
short time direct collision between the tagged particle a
the solvent molecules can be described within certain
proximation via the Enskog binary collision expression. T
other is a long time process which is the correlated reco
sion of the tagged particle with the same solvent molecu
The correlated collision takes place due to the coupling
the solute motion with the different hydrodynamic modes
the solvent. The hydrodynamic modes which have b
found to make contribution to the diffusive motion of th
tagged particle are the density fluctuation and the transv
current mode. The neighboring solvent molecules crea
cagelike structure around the tagged particle which hind
the motion of the particle. The density fluctuation causes
structural relaxation of the solvent, which is actually the
laxation of this cage. The slower the structural relaxation,
less the tagged particle can migrate. Coupling to the tra
verse current mode helps the particle to diffuse with the
of the natural current of the solvent. The strength of
coupling of the solute motion to these two hydrodynam
modes depends on the density of the solvent and also on
solute-to-solvent size ratio. Theoretical studies have reve
the following picture: At low density and for a comparab
solute–solvent size ratio, it is the direct collision part whi
dominates the friction, as here both the solvent cage and
flow of the natural current of the solvent are not fully dev
oped. At intermediate density, it is the current mode wh
makes a major contribution to the friction as the solvent c
relaxes very fast in this density regime. The situati
changes drastically at high density and in supercooled liqu
where the density relaxation becomes very slow. Here,
primary contribution to the friction, and hence the diffusio
comes from the coupling of the solute’s velocity field to t
solvent density fluctuations. However, even here the pic
may be quite different for very large and also for very sm
solutes. When the solute is larger than the solvent part
then the caging effect of the solvent particles on the solut
not pronounced as the solute cannot probe the microsc
structure of the solvent. It is mainly the natural current of t
solvent that then determines the motion of the solute. Ag
when the solute is very small compared to the size of
solvent, then its velocity is completely decoupled from t
density mode of the solvent and it is the direct collision p
which determines the friction on the solute.

The diffusion coefficient (D) of a particle is given by the
Einstein relation,

D5
kBT

mz
, ~1!

wherez is the friction on the particle having massm. The
calculation of this friction is highly nontrivial. Here we ca
culate it by using the renormalized kinetic theory~RKT!.
J. Chem. Phys., Vol. 106,
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The final expressions obtained by using RKT are essenti
identical to those given by the standard mode-coupl
theory. The microscopic expression for friction on a tagg
particle is given by the followingexactexpression:

z~z!5
1

kBTmV E d1 ..d28@ q̂•¹ r1
v12~r12r2!#

3Gs~12;1828,z!@ q̂•¹ r
18
v12~r182r28!#, ~2!

where the four-point functionGs(12;1828,t8) describes the
correlated motion of the tagged particle and the solvent p
ticles. It describes the time dependent probability that
tagged particle moves from the position (r 18 ,p18) at t8 to po-
sition (r 1 ,p1) at t and a solvent particle which is located
(r 28 ,p28) at t8 and the same or some other solvent particle
found at (r 2 ,p2). G

s(12;1828,t8) also contains information
on the static correlation between the tagged particle and
solvent particles through its initial valueGs~12;1828!. z is the
Laplace frequency,Gs(12;1828,z) is obtained by the usua
Laplace transformation ofGs(12;1828,t).

By using the separation of time scales between the
nary collision and the repeated recollisions, the above ex
expression of the friction can be decomposed into a sh
time and a long time part. The resulting expression is giv
by

z~z!5zD~z!1zR~z!, ~3!

wherezD(z) is the short time part of the friction which arise
due to direct collision between the solute and the solv
particle, andzR(z) is the long time part which arises due
the correlated recollision of the solute particle with the s
vent particles. Note that decomposition~3! is a standard pro-
cedure in the kinetic mode-coupling theory treatments of
uid and is known to be fairly accurate. We next describe
calculation of the direct collision term and the recollisio
friction.

A. Calculation of the direct collision term

We are interested here only in the zero frequency va
of the friction in dense liquids. In this calculation we hav
replacedzD(z50) by the Enskog value for the friction@zE
5 8/3mA2pmkBT(rs12

2 g12(s12)#
7 where g12~s12! is the

value of the radial distribution function at contact.m is the
reduced mass.m is the mass of the solvent.s125~s11s2!/2,
wheres1 and s2 are the diameters of the solvent and t
solute molecule, respectively. This substitution is reliable
the present purpose as in high density limit the repulsive p
of the intermolecular potential dominates the structure a
the dynamics. The thermodynamic perturbation theory8,9 has
been used to find the reference hard sphere diameter an
density corresponding to the given Lennard–Jones sys
The Enskog friction is calculated with these values. The
lidity of this procedure was further checked by explicit
calculating the value ofzD(z50) from its more involved
microscopic expression.10

For the reduced density 0.844 and the reduced temp
ture 0.75, we find thatzD(z50)513.17 while zE513.18.
No. 5, 1 February 1997
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1759S. Bhattacharyya and B. Bagchi: Anomalous diffusion in dense liquids
The agreement is satisfactory for the present purpose~the
values presented here are all scaled byt0 5 Ams1

2/kBT!.

B. Calculation of the recollisional friction

The calculation of the recollisional term is highly no
trivial. This term is obtained by expanding the total frictio
in the basis set of the eigen functions of the Liovelle ope
tor. The hydrodynamic modes are the natural choice of
basis set as they are the slowly decaying dynamic variab
Among all five hydrodynamic modes, the density mode a
the transverse current mode of the solvent make the m
important contribution. The derivation of the final expressi
of zR(z) is lengthy and complex. Such a derivation was c
ried out by Sjogren and Sjolander for neat liquids.10We have
extended the calculation for a binary system, where one
the component can be different in size from the other. Tak
the concentration of one of the components in the zero lim
the final expression ofzR(z) is given by

zR~z!5Rrr~z!2@zD~z!1Rrr~z!#RTT~z!z~z!. ~4!

In the above expression,Rrr(z) gives the coupling of the
solute motion to the density modes of the solvent through
two-particle direct correlation function.RTT(z) gives the
coupling to the transverse current through the transverse
tex function.Rrr(z) and RTT(z) are obtained through th
Laplace transformation ofRrr(t) andRTT(t), respectively.
The expressions forRrr(t) andRTT(t) are given by

Rrr~ t !5
rkBT

m E @dq8/~2p!3#~ q̂•q̂8!2q82@c12~q8!#2

3@Fs~q8,t !2Fo~q8,t !#F~q8,t !, ~5!

RTT~ t !5
1

r E @dq8/~2p!3#@12~ q̂•q̂8!2#@gd12
t ~q8!#2

3vo12
24@Fs~q8,t !2Fo~q8,t !#Ctt~q8,t !. ~6!

The input parameters needed to calculateRrr(t) are the
two-particle direct correlation function of the solute–solve
mixture, c12(q), the dynamic structure factor of the solut
Fs(q,t), the inertial part of the dynamic structure factor
the solute,Fo(q,t) and the dynamic structure factor of th
solvent,F(q,t). Similarly, the input parameter needed to c
culateRTT(t) is the vertex function of the solute–solve
mixture,gd12

t (q), which actually takes care of the interactio
of the solute motion with the current mode of the solve
The other parameters required are the Einstein frequenc
the solute in presence of the solvent molecules,vo12, the
dynamic structure factor of the solute, and the transve
current autocorrelation function of the solvent,Ctt(q,t).

Thus, in order to solve all the above equations one ne
to calculate a large number of dynamical variables. The
pressions of these variables are presented in the Appen

Finally, note that the expression for the recollision fri
tion given by Eq.~4! involves the full friction itself on the
right-hand side. Thus, the equations are to be solved s
J. Chem. Phys., Vol. 106,
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consistently. This is achieved by substituting the express
of zR(z) in Eq. ~3!. The final expression of the total friction
is now given by,

1

z~z!
5

1

zD~z!1Rrr~z!
1RTT~z!. ~7!

A merit of Eq. ~7! is that it can, in principle, describe th
crossover from the collision and density dominated regime
the transverse current dominated regime when the size o
solute is increased. This is demonstrated later.

It is curious to note that in certain limits the prese
formulation provides a microscopic justification of a sem
empirical expression of friction given by Hynes, Kapral, a
Weinberg11 many years ago. These authors attempted to
clude the microscopic effects of the friction by dividing th
contribution of the solvent in two parts. The microscop
contribution arises from the friction produced by an assum
microscopic boundary layer around the tagged particle. T
is given by zc . Beyond this layer the contribution to th
friction is considered to be given by the hydrodynam
Stokes result denoted aszh . The total friction was given by
the following rather unusual form

1

z
5

1

zc
1

1

zh
. ~8!

If in Eq. ~7! we neglect the contribution from the densi
mode, we recover a form which is identical to that given
Hynes, Kapral, and Weinberg@Eq. ~8!#. Note that while com-
paring the above equation with Eq.~7!, zc may be approxi-
mated byzD for hard-sphere-like systems andRTT

21 is equal
to zh in the hydrodynamic regime. The above authors ha
also found that the microscopic part may contribute m
than 40% to the total friction. This clearly invalidates th
basic assumptions behind the SE relation and deserves
ther study. We shall return to this point later.

III. RESULTS

We have carried out a detailed calculation of the s
dependence of the diffusion coefficient. The size of the s
ute is varied from1

20 times to 12 times that of the solven
The study has been carried out in two parts. The first p
deals with solute smaller in size than the solvent. Here
have compared the results with the existing computer sim
lation results. In the second part we have studied solu
which are larger than solvents. Here we have shown
crossover from the collision and density dominated region
the transverse current dominated region.

A. Solute size smaller than solvent

We have considered diffusion in the Lennard-Jones~6–
12! system with reduced temperatureT*50.75 and reduced
density betweenr*50.844 and 0.92. The calculated se
diffusion coefficient of the bulk liquid atr*50.844 and
T*50.728 is equal to 1.9731025 cm2 s21, which is close to
the simulated values 1.7531025 cm2 s21.12 The mass of the
solute is the same as the solvent molecules. This is preci
the system studied in computer simulations.5 The variation of
No. 5, 1 February 1997
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1760 S. Bhattacharyya and B. Bagchi: Anomalous diffusion in dense liquids
the self-diffusion coefficient with the solute size is shown
Fig. 1, where the size of the solute molecule has been va
from 1 to 1

20 times that of the solvent molecule. In the sam
figure we show the comparison of the calculated results w
the computer simulated values.5 The agreement is very good
The following comments on this comparison are in order:~i!
There is an enhanced diffusion at size ratiosR ~R5s1/s2!
between 1.5 and 15. This occurs due to rather sharpdecou-
pling of the solute’s motion from the density modes of t
solvent in this region. To get a measure of this decoupl
we give below a few values of the Enskog contribution~zE!
and the contribution from the density mode of the solv
[Rrr(z50)] ~the values presented here are all scaled byt0!.
For same size of the solute and the solvent~R51!,
zE513.18 andRrr(z50)510.512. ForR52, zE56.855 and
Rrr(z50)52.39. On the other hand, forR55 and above,
Rrr(z50) becomes negligible compared to the binary pa
This sharp decoupling also explains the saturation
R.10. ~ii ! There is an apparent disagreement between
theory and simulation betweenR512 and 18. While the
theory gives a smooth curve, there is a dip in the simulat
result. We have studied the system in the limit of the sol
concentration zero. So in our case the size of the so
should not influence the diffusion of the bulk solvent.
should remain constant for a particular density and temp
ture as the solute size is varied. We have tried to make
simulation system comparable with our studied system
fixing the value of the diffusion of a solvent molecule

FIG. 1. The ratio of the self-diffusion coefficient of the solute~D2! to that of
the solvent molecules~D1! is plotted as a function of the solvent–solute si
ratio ~s1/s2! for equal mass. The solid line represents the values calcul
from the present mode coupling theory. The filled circles and the cro
represent the computer simulated~Ref. 5! and the modified computer simu
lated values, respectively. For comparison we have also shown the re
predicted by the Stokes–Einstein relation~represented by the dashed line!.
Here the range of density studied isr* ~5rs3!50.8520.92 and
T* (5kBT/e)50.75.
J. Chem. Phys., Vol. 106,
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presence of other solvent molecules,D150.024 forr*50.92.
This leads to a smooth curve shown in Fig. 1. The agreem
between theory and simulations is now excellent.

One interesting point to be noted is that forR51 ~when
the solute is of the same size as the solvent! more than 50%
contribution to the friction at high density comes from th
direct collision term. It shows that even such zero frequen
quantity as the diffusion coefficient may receive a significa
microscopic contribution. This is in agreement with the e
lier observation by Hynes, Kapral, and Weinberg.11 How-
ever, note that forR51 we find the hydrodynamic contribu
tion to the friction to be negligible.

B. Solute size larger than solvent

We next address the interesting question of the crosso
to the SE behavior for large solutes. In the regime where
solute size is bigger than the size of the solvent, the diffus
mechanism can be completely different. In this limit o
expects a hydrodynamic behavior and the SE relation to
valid. Earlier studies13 show that Eq.~7!, with only the
RTT(z) term, can correctly reduce to the SE limit for larg
s2/s1, provided thatFs(q,t) is set to unity,F0(q,t) is ne-
glected, and the vertex function has the proper form wh
was, however, left unspecified. No detailed study of t
problem, to the best of our knowledge, has ever been car
out for dense liquids. We consider the following questio
particularly interesting: Where exactly the crossover ta
place? Is there any sharp crossover at all? Since we are
terested in large solute sizes,F0(q,t) is neglected. This fur-
ther guarantees thatRTT(z) has the correct hydrodynami
form. We have studied the relative values of 1/[zD(z)
1Rrr(z)# andRTT(z) which are calculated self-consistentl
In Fig. 2 we have plotted the size ratio dependence of
values of the first term and the second term of Eq.~7!. We
see that value ofRTT(z) is higher than 1/zD(z)1Rrr(z)
whens2/s1 is 3 and above. The scenario changes below s
ratio 3 andRTT(z) rapidly becomes smaller as we approa
size ratio 1. WhenR21>4, the magnitude ofz~z50! in-
creases almost linearly with the size of the solute. The ra
mz(z50)/hR, which can be termed the hydrodynam
boundary coefficient~HBC!, is equal to 12.545 forR2154,
which is very close to 4p, the value of the slip HBC. We
were also curious to know the effect of the inertial ter
[F0(q,t)] on the crossover. With this term present inRTT we
found that the crossover takes place at somewhat larger
ute sizes2/s1.6. However, the ratiomz(z50)/hR remains
large, which is rather unphysical. The effect ofF0(q,t) on
the diffusion of solute for larger sizes requires further stu

A study of the crossover has also been carried out
considering the mass dependence of the solutes of diffe
sizes. It is known that for inert gasses and alkanes the m
varies almost linearly with the diameter.8,14Considering this,
we calculated the values of 1/zD(z)1Rrr(z) and RTT(z).
The results obtained are not significantly different, reflect
the relative insensitivity of diffusion to the mass. In this ca
the crossover shifts to a slightly larger size rat

d
es

lts
No. 5, 1 February 1997
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1761S. Bhattacharyya and B. Bagchi: Anomalous diffusion in dense liquids
It is found that the total friction is higher in this case whic
is expected.

IV. CONCLUSION

After summarizing the results, the following physica
picture of the size dependence of diffusion emerges from
present study. In dense liquids the relative importance of t
hydrodynamic modes of the solvent in the motion of a solu
particle is determined largely by the solute–solvent size
tio. When the size of the solute is decreased from a ve
large value~where the hydrodynamic SE relation is valid!
the combination (zD1Rrr) ~the combined effect of the bi-
nary collision and the density modes! decreases rapidly
which, in turn, leads to the breakdown of the hydrodynam
behavior. The density term itself,Rrr , is most important
when the solute–solvent size ratio is about two. If we furth
decrease the size of the solute, then the density mode a
becomes irrelevant and it is only the binary part which co
tributes to the friction on the tagged particle.

From the above study we find that for normal liquids an
for the same solute–solvent size ratio, the direct collisio
part contributes more than 50% to the total friction. Th
picture is expected to change in supercooled liquids. In th
regime the structural relaxation of the solvent becomes ve
slow, which causes the friction to increase rapidly as t
liquid is progressively supercooled. Although the number
direct collisions will undergo a modest increase due to t
increase in the number of nearest neighbors, it is the co
pling of the solute motion to the density fluctuation which
expected to make the dominant contribution. In the sup
cooled regime the natural flow of the solvent also becom
very slow. As both the structural relaxation and the flow o

FIG. 2. The size mediated crossover from the microscopic to the hydro
namic behavior of diffusion. In this figure the contribution to the diffusio
from the binary and the density modes given by [zD1Rrr]

21 has been
compared with that from the transverse current mode given byRTT . All the
values are scaled byt05[ms2/kBT]

1/2.
J. Chem. Phys., Vol. 106,
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the natural current of the solvent slow down, the position
crossover might shift as the size of the solute is varied. In
deeply supercooled regime the picture may change ag
Here the density fluctuation becomes so slow that diffus
occurs through an activated hopping mechanism, the or
of which is not yet clearly understood. The present formu
tion cannot be applied to describe this regime.

An interesting result of the present study is the recov
of the Stokes expression between the friction and the visc
ity. An intriguing aspect is the natural convergence of t
ratio mz(z50)/hR to the slip hydrodynamic boundary co
efficient ~HBC! as the solute size is increased. This th
naturally raises the question that, what are the conditi
under which the stick HBC, 6p, can be recovered. In ou
calculation we have considered the LJ energy paramete
the solute–solvent pair~e12! equal to that of solvent–solven
pair ~e!. We think that an appropriate calculation would be
study the dependence of the friction as a function of~e12/e!.
Whene12.e, the value of the friction on the solute particle
expected to increase as the solute experiences a great
traction toward its neighboring solvent molecules. This r
in the friction might lead to the stick HBC. We hope t
address this problem in the future.

In conclusion, the results presented here show, for
first time, that the known enhancement of diffusion for sm
solute sizes can be explained from first principles. In ad
tion, we predict that the crossover from the microscopic
the hydrodynamic regime should occur when the solute
about 2–3 times larger than the solvent molecules. T
present study also suggests that the decoupling of the so
motion from the solvent hydrodynamic modes is hierarc
cal. However, the quantitative details may again chan
when the liquid is in the supercooled regime.
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APPENDIX

Here we present the calculational details of all the inp
parameters required to calculateRrr(t) andRTT(t).

In Eq. ~5!, c12(q) is the two-particle direct correlation
function between the solute and the solvent molecules in
wave vector (q) space and it is calculated by using the we
known WCA theory which requires the solution of th
Percus–Yevick equation for the binary mixture.15 The latter
is obtained after taking the limit of solute concentration ze
Fs(q,t) is the self-dynamic structure factor which is a
sumed to be given by7,9,16
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Fs~q,t !5expF2q2kBT

mz0
S t1 1

z0
~e2tz021! D G , ~A1!

where z05z~z50!, the latter has been calculated se
consistently from Eq.~7!.12 In the expression ofFs(q,t) us-
ing the zero frequency value of the friction is an approxim
tion. It is the time dependent friction which would hav
given us the correct result; but doing an infinite-loop calc
lation with the time dependent friction is nearly impossib
Assuming the zero frequency limit does not introduce mu
error, we know that the major contribution ofRrr(t) to the
total friction is in the long time limit.F0(q,t) is the inertial
part of the self-dynamic structure factor given by

F0~q,t !5expS 2
kBT

m

q2t2

2 D . ~A2!

F(q,t) is the dynamic structure factor of the solvent. It
obtained from its Laplace transform fromF(q,z). By using
the following well-known Mori continued-fraction expansio
and truncating at second order, the expression forF(q,z) can
be written as7,12

F~q,z!5
S~q!

z1
^vq

2&

z1
Dq

z1tq
21

, ~A3!

whereS(q) is the static structure factor. The static structu
factor is calculated from the solution of the Percus–Yev
equation for pure liquids.9 ^vq

2&5(kBTq
2)/mS(q) and tq

21

5 2ADq /p. Dq5v l
2(q)2^vq

2&, wherev l
2(q) is the second

moment of the longitudinal current correlation functio
given by7,12

v l
2~q!53q2

kBT

m
1v0

21gd
l ~q!. ~A4!

Heregd
l (q) is the longitudinal component of the vertex fun

tion andv0 is the well-known Einstein frequency of the so
vent,

gd
l ~q!52

r

m E dr exp~2 iq–r !g~r !
d2

dz2
v~r !, ~A5!

v0
25

r

3m E drg~r !¹2v~r !. ~A6!

g(r ) is the radial distribution function andv(r ) is the inter-
atomic potential of the solvent. It is known that Eq.~A3!
provides a reliable description ofF(q,z) over the whole
(q,z) plane.

In Eq. ~6!, gd12
t (q) is the tangential component of th

vertex function andv012 is the Einstein frequency of th
solute–solvent mixture. The expression ofv012

2 is the same
as Eq. ~A6!, only replacingg(r ) by g12(r ) and v(r ) by
v12(r ). The expression forgd12

t (q) is given by

gd12
t ~q!52

r

m E dr exp~2 iq–r !g12~r !
d2

dx2
v12~r !.

~A7!
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We have assumed that the transverse current correla
function is given by

Ctt~q,z!5
1

z1
v t
2~q!

z1t t
21~q!

, ~A8!

wherev t
2(q) is the second moment of the transverse curr

correlation function which is given by7,12

v t
2~q!5q2

kBT

m
1v0

21gd
t ~q!. ~A9!

Heregd
t (q) is the transverse component of the vertex fun

tion which has the same expression as Eq.~A7!, only replac-
ing g12(r ) by g(r ) andv12(r ) by v(r ). For t t(q) we have
used the expression proposed by Akazu and Daniels,17

t t
22~q!52v t

2~q!1

t t
22~0!22v t

2~q!12q2
kBT

m

11~q/q0!
2 .

~A10!

Hereq0 is an adjustable parameter which actually determi
the transition of the behavior ofCtt(q,z) from ‘‘small q’’
to ‘‘large q.’’ For argon q051.5 Å21; tt

21~0!
5limq→0[mrv t

2(q)]/q2h. Here h is the zero frequency
shear viscosity which is calculated from the following mo
coupling expression:18,19

h5hE1kBT/60p
2E

0

`

dqq4@S8~q!/S~q!#2

3E
0

`

dt@F~q,t !/S~q!#2. ~A11!

HereS8(q) is the first derivative of the static structure facto
hE is the Enskog shear viscosity given by18

hE5hB

~113.2fg12~s12!112.18f2g12
2 ~s12!!

g12~s12!
, ~A12!

where f5pr* /6 and hB50.179(mkBT)
1/2/s2. We have

compared the value of viscosity calculated from the abo
expression with simulation results.20 The agreement is good
For example, atT* (5kBT/e)50.728 andr* ~5rs3!50.844,
h~simulation!52.53 andh~calculated!52.77. Heres and e
are the usual Lennard–Jones parameters for the diamete
well depth, respectively. The values ofh are scaled by
(mkBT)

1/2/s2. Equation~A8!, after using the proper value o
q0, provides a satisfactory description of the transverse c
rent fluctuations over a wide range of wavelength. All t
microscopic equations given above are fully self-contain
and are solved self-consistently.
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