Anomalous diffusion of small particles in dense liquids
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We present here a microscopic and self-consistent calculation of the self-diffusion coefficient of a
small tagged particle in a dense liquid of much larger particles. In this calculation the solute motion
is coupled to both the collective density fluctuation and the transverse current mode of the liquid.
The theoretical results are found to be in good agreement with the known computer simulation
studies for a wide range of solute—solvent size ratio. In addition, the theory can explain the
anomalous enhancement of the self-diffusion over the Stokes—Einstein value for small solutes, for
the first time. Further, we find that for large solutes the crossover to Stokes—Einstein behavior
occurs only when the solute is 2—3 times bigger than the solvent molecules. The applicability of the
present approach to the study of self-diffusion in supercooled liquids is discussed99©®
American Institute of Physic§S0021-96067)51805-§

I. INTRODUCTION computer simulation studi€ particularly for small solutes,
which also find the anomalous enhanced diffusion, even for
Diffusion of small solute particleGatoms, moleculgsn  simple model potentials such as the Lennard-Jones. The
a dense liquid of larger particles is an important but ill- physical origin of the enhanced diffusion is not clear from
understood problem of condensed matter physics and cherthe simulations. We present here a microscopic calculation
istry. In this case one does not expect the Stokes—Einsteinf the size dependent diffusion based on the recently devel-
(SB) relation between the diffusion coefficienD} of the  oped mode coupling theory. The theory gives excellent
tagged particle of radiusR) and the viscosity(#) of the  agreement with the simulation results and provides a physi-
medium to be valid. Indeed, experimertave repeatedly cal interpretation of the enhanced diffusion. In addition, a
shown that in this limit the SE relation significantiynder-  study of the crossover to the SE behavior at large solute sizes
estimateghe diffusion coefficient. The conventional SE re- is presented. The expression of the friction used in this study
lation is D=CkgT/R7, wherekgT is the Boltzmann con- is a well-known mode coupling expression. But in our case,
stant times the absolute temperature &hds a numerical as we have studied friction on a solute which is different in
constant determined by the hydrodynamic boundary condisize from the solvent, we had to extend the mode coupling
tion. To explain the enhanced diffusion, sometimes an emexpression of friction for a pure system to that for a binary
pirical modification of the SE relation of the form system.
D=consth® is used: where the value of the exponent is The layout of the rest of the paper is as follows. Section
typically a=2/3. The fractional viscosity dependencelbfs Il deals with the theoretical formulation. Section Il contains
often referred to as the microviscosity effect. On the othethe numerical results and comparison with experiments. Fi-
hand, Zwanzig and Harrisdproposed that it is more mean- nally, Sec. IV concludes with a brief discussion on the re-
ingful to discuss the experimental results in terms ofeén  sults. Mathematical details are present in the Appendix.
fective hydrodynamic radius which is determined, among
many facto_rs, by the solute-solvent size ratiq._Neither thql_ THEORETICAL FORMULATION
fractional viscosity dependence Bf nor the origin of the
effective hydrodynamic radius are well understood. Another  Let us consider a single tagged solute particle among the
unresolved problem is a quantitative understanding of thesolvent molecules. Lai,(r) denote the interaction pair po-
crossover to SE behavior, which is expected as the solutential between the solute and a solvent molecule, wihit¢
size is increased far beyond that of the solvent. denotes the same for a pair of solvent molecules. Both are
Note that the above problems are unsolved even foassumed to be given by the Lennard—Jones potential and are
dense liquids in the normal temperature—pressure conditionsharacterized by the same energy parameter. The other rel-
When the liquid is supercooled below its freezing point, sev-evant interaction parameter, the LJ diameter, is denoted by
eral additionalland interestinganomalies are known to ap- o; and o, for the solvent and the solute, respectively.
pear which are the subject of intense research at présentZZ '=a,lo; is the solute-to-solvent size ratio. The liquid is
The present work is, however, limited to normal liquids only. characterized by its number densjtyand absolute tempera-
Although detailed microscopic calculations of the prob-ture T. We shall use the reduced densiffy=po3 as a mea-
lems mentioned above are not available, there exist severatre of the density of the liquid and shall concentrate on the
high density limit for which detailed computer simulation

a o _ . , . results are available.
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inertial motion of the particle, interrupted by rather hard re-The final expressions obtained by using RKT are essentially
pulsive collisions with the surrounding solvent particles. Theidentical to those given by the standard mode-coupling
inertial motion is not free; it occurs in the force field of the theory. The microscopic expression for friction on a tagged
neighboring molecules. The difficulty describing this motion particle is given by the followingxactexpression:

comes from the structure of the liquid which is isotropic on
the long length scale but which exhibits pronounced short
range order. Thus, the collisions are strongly correlated. The
short time direct collision between the tagged particle and
the solvent molecules can be described within certain ap-
proximation via the Enskog binary collision expression. The

other is a long time process which is the correlated recolliWhere the four-point functios*(12;1'2',t’) describes the

sion of the tagged particle with the same solvent molecules.‘?_OrrelateOI moti_on of the _tagged particle and the_golvent par-
The correlated collision takes place due to the coupling of/CleS- It describes the time dependent pr’c>bab|I,|ty that the
the solute motion with the different hydrodynamic modes oft@g9ed particle moves from the position} (p;) att’ to po-

the solvent. The hydrodynamic modes which have beeﬁ't,'on,(rl’pl) att and a solvent particle which is located at
found to make contribution to the diffusive motion of the (F2.P2) att” and thse same or some other solvent particle is
tagged particle are the density fluctuation and the transverd@Und at €2,pz). G*(12;12",t’) also contains information
current mode. The neighboring solvent molecules create 4" the static correlation between the ta;gged p’artlclle and the
cagelike structure around the tagged particle which hinderSolvent particles throsugh Its |r,1|t|alivall£é (12,12"). zis the

the motion of the particle. The density fluctuation causes th&@Place frequencyts (12;152 2) ,ls,obtalned by the usual
structural relaxation of the solvent, which is actually the re--@place transformation d&%(12;1'2",t). _
laxation of this cage. The slower the structural relaxation, the ~ BY USing the separation of time scales between the bi-
less the tagged particle can migrate. Coupling to the trand?a@ry CO"ISIOH and th_e repeated recollisions, the gbove exact
verse current mode helps the particle to diffuse with the ai@XPression of the friction can be decomposed into a short

of the natural current of the solvent. The strength of thelime and a long time part. The resulting expression is given

coupling of the solute motion to these two hydrodynamicby

modes depends on the density of the solvent and also on the
. ! ) ; = +

solute-to-solvent size ratio. Theoretical studies have revealed §2)=0o(2)+ (D), 3

the following picture: At low density and for a comparable ywheres(z) is the short time part of the friction which arises
solute—solvent size ratio, it is the direct collision part whichgye to direct collision between the solute and the solvent
dominates the friction, as here both the solvent cage and thgarticle, andZx(z) is the long time part which arises due to
flow of the natural current of the solvent are not fully devel-the correlated recollision of the solute particle with the sol-
oped. At intermediate density, it is the current mode whichyent particles. Note that decompositit8) is a standard pro-
makes a major contribution to the friction as the solvent cag@edure in the kinetic mode-coupling theory treatments of lig-
relaxes very fast in this density regime. The situationyid and is known to be fairly accurate. We next describe the

changes drastically at high density and in supercooled liquidga|culation of the direct collision term and the recollision
where the density relaxation becomes very slow. Here, th@iction.

primary contribution to the friction, and hence the diffusion,
comes from the coupling of the solute’s velocity field to the
solvent density fluctuations. However, even here the picture  We are interested here only in the zero frequency value
may be quite different for very large and also for very smallof the friction in dense liquids. In this calculation we have
solutes. When the solute is larger than the solvent particleeplaced/,(z=0) by the Enskog value for the frictiof g
then the caging effect of the solvent particles on the solute is= 8/3m\27ukgT(po3,0:2(01)]1" where g;,(a7,) is the

not pronounced as the solute cannot probe the microscopiglue of the radial distribution function at contagt.is the
structure of the solvent. It is mainly the natural current of thereduced massn is the mass of the solvent;,=(o;+0,)/2,
solvent that then determines the motion of the solute. Againyhere o; and o, are the diameters of the solvent and the
when the solute is very small compared to the size of theolute molecule, respectively. This substitution is reliable for
solvent, then its velocity is completely decoupled from thethe present purpose as in high density limit the repulsive part
density mode of the solvent and it is the direct collision partof the intermolecular potential dominates the structure and

1 ,\
e I U CR e

><GS(12;1’2’,z)[61~Vrivlz(ri—ré)], )

A. Calculation of the direct collision term

which determines the friction on the solute. the dynamics. The thermodynamic perturbation thtdhas
The diffusion coefficientD) of a particle is given by the  peen used to find the reference hard sphere diameter and the
Einstein relation, density corresponding to the given Lennard—Jones system.
keT The Enskog friction is calculated with these values. The va-

m_g‘ (1) lidity of this procedure was further checked by explicitly
calculating the value of(z=0) from its more involved

where ¢ is the friction on the particle having mass The  microscopic expressioff.

calculation of this friction is highly nontrivial. Here we cal- For the reduced density 0.844 and the reduced tempera-

culate it by using the renormalized kinetic thedi®KT).  ture 0.75, we find thaty(z=0)=13.17 while {r=13.18.
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The agreement is satisfactory for the present purfgdse consistently. This is achieved by substituting the expression

values presented here are all scaledrpy \/malzlkBT). of {r(2) in Eq. (3). The final expression of the total friction
is now given by,
1
B. Calculation of the recollisional friction {(2) = {p(2)+R,,(2) +Rr1(2). )

The calculation of the recollisional term is highly non- A merit of Eq. (7) is that it can, in principle, describe the
trivial. This term is obtained by expanding the total friction crossover from the collision and density dominated regime to
in the basis set of the eigen functions of the Liovelle operathe transverse current dominated regime when the size of the
tor. The hydrodynamic modes are the natural choice of thgglute is increased. This is demonstrated later.
basis set as they are the slowly decaying dynamic variables. |t is curious to note that in certain limits the present
Among all five hydrodynamic modes, the density mode andormulation provides a microscopic justification of a semi-
the transverse current mode of the solvent make the mogimpirical expression of friction given by Hynes, Kapral, and
important contribution. The derivation of the final expressionweinberd! many years ago. These authors attempted to in-
of {r(2) is lengthy and complex. Such a derivation was car-clude the microscopic effects of the friction by dividing the
ried out by Sjogren and Sjolander for neat liquiisVe have  contribution of the solvent in two parts. The microscopic
extended the calculation for a binary system, where one ofontribution arises from the friction produced by an assumed
the component can be different in size from the other. Taking'nicroscopic boundary |aye|’ around the tagged partide_ This
the concentration of one of the components in the zero limitis given by £,. Beyond this layer the contribution to the
the final expression ofg(2) is given by friction is considered to be given by the hydrodynamic
Stokes result denoted ds. The total friction was given by

R(2)=R,,)(2) ~[Ep(D) TR, (2) [Rr1(2)£(2). @ the following rather unusual form
In the above expressioR, (z) gives the coupling of the 1 1 1
solute motion to the density modes of the solvent throughthe -—= (8

= —4 —,
two-particle direct correlation functionrR;{(z) gives the £ e bn
coupling to the transverse current through the transverse velf in Eq. (7) we neglect the contribution from the density
tex function.R,,(z) and Rr1(z) are obtained through the mode, we recover a form which is identical to that given by
Laplace transformation oR,,(t) and Ry(t), respectively. Hynes, Kapral, and Weinbef&d. (8)]. Note that while com-

The expressions foR , (t) andRy+(t) are given by paring the above equation with E(), {, may be approxi-
T mated by/p, for hard-sphere-like systems aR§+ is equal

_ P¥s ' 3R A2 2 "2 to ¢, in the hydrodynamic regime. The above authors have

Roolt) m f[dq /2m)7](a-a)7a" " ea")] also found that the microscopic part may contribute more

than 40% to the total friction. This clearly invalidates the
basic assumptions behind the SE relation and deserves fur-
ther study. We shall return to this point later.

X[FS(q",t)=F°(q’,t)JF(q’,1), (5)

1 .
RTT('[)ZEf[dQ'/(ZTr)s][l—(Q-Q')z][vfélz(Q')]z
lll. RESULTS

X e f FS(q' )= F°(q",0)]Cy(q’,t).  (6) , , , _
We have carried out a detailed calculation of the size
The input parameters needed to calcuRjg(t) are the  dependence of the diffusion coefficient. The size of the sol-
two-particle direct correlation function of the solute—solventute is varied fromz times to 12 times that of the solvent.
mixture, ¢15(q), the dynamic structure factor of the solute, The study has been carried out in two parts. The first part
F*(q,t), the inertial part of the dynamic structure factor of deals with solute smaller in size than the solvent. Here we
the solute,F°(q,t) and the dynamic structure factor of the have compared the results with the existing computer simu-
solvent,F(q,t). Similarly, the input parameter needed to cal- lation results. In the second part we have studied solutes
culate Rr(t) is the vertex function of the solute—solvent which are larger than solvents. Here we have shown the
mixture, yg; »(q), which actually takes care of the interaction crossover from the collision and density dominated region to
of the solute motion with the current mode of the solvent.the transverse current dominated region.
The other parameters required are the Einstein frequency of .
. A. Solute size smaller than solvent
the solute in presence of the solvent moleculeg,,, the
dynamic structure factor of the solute, and the transverse We have considered diffusion in the Lennard-Jofés
current autocorrelation function of the solve@,(q,t). 12) system with reduced temperatifé=0.75 and reduced
Thus, in order to solve all the above equations one needdensity betweerp*=0.844 and 0.92. The calculated self-
to calculate a large number of dynamical variables. The exdiffusion coefficient of the bulk liquid ap*=0.844 and
pressions of these variables are presented in the AppendixT*=0.728 is equal to 1.9710"° cn? s~ %, which is close to
Finally, note that the expression for the recollision fric- the simulated values 1.%¥810"° cn? s %1% The mass of the
tion given by Eq.(4) involves the full friction itself on the solute is the same as the solvent molecules. This is precisely
right-hand side. Thus, the equations are to be solved selthe system studied in computer simulatiGrhe variation of
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20 presence of other solvent moleculBs,=0.024 forp* =0.92.
This leads to a smooth curve shown in Fig. 1. The agreement
between theory and simulations is how excellent.

One interesting point to be noted is that fat=1 (when
the solute is of the same size as the solyvembre than 50%
contribution to the friction at high density comes from the
direct collision term. It shows that even such zero frequency
quantity as the diffusion coefficient may receive a significant
microscopic contribution. This is in agreement with the ear-
lier observation by Hynes, Kapral, and WeinbétgHow-
. . ever, note that forz=1 we find the hydrodynamic contribu-

4 tion to the friction to be negligible.

15t

f . B. Solute size larger than solvent

‘ ‘ ‘ We next address the interesting question of the crossover
0 5 10 15 20 to the SE behavior for large solutes. In the regime where the
(51/62 solute size is bigger than the size of the solvent, the diffusion

mechanism can be completely different. In this limit one
expects a hydrodynamic behavior and the SE relation to be

FIG. 1. The ratio of the self-diffusion coefficient of the sol(is,) to that of . : : :
the solvent molecule®,) is plotted as a function of the solvent—solute size valid. Earlier StUdleJSo’ show that Eq'(7)’ with onIy the

ratio (o4/o>) for equal mass. The solid line represents the values calculated®T7(Z) term, can correctly reduce to the SE limit for large
from the present mode coupling theory. The filled circles and the crosses/a, provided thatFS(q,t) is set to unity,F°(q,t) is ne-

Ifetpfgserllt the Computﬁer fim:'amf- 5 and the T]‘Odiﬁe? CO”r:pUterﬁS]imU' (rzﬂected, and the vertex function has the proper form which
e e e e e ltas, however, left unspecified. No detaied study of this
Here the range of density studied is*(=po?)=0.85-0.92 and Problem, to the best of our knowledge, has ever been carried
T*(=kgT/e)=0.75. out for dense liquids. We consider the following questions
particularly interesting: Where exactly the crossover takes
place? Is there any sharp crossover at all? Since we are in-
the self-diffusion coefficient with the solute size is shown interested in large solute sizé5%(q,t) is neglected. This fur-
Fig. 1, where the size of the solute molecule has been varietther guarantees th&;(z) has the correct hydrodynamic
from 1 to 3 times that of the solvent molecule. In the sameform. We have studied the relative values of {3{z)
figure we show the comparison of the calculated results witht R, ,(z) ] andRy1(z) which are calculated self-consistently.
the computer simulated valud3he agreement is very good. In Fig. 2 we have plotted the size ratio dependence of the
The following comments on this comparison are in order: values of the first term and the second term of &f. We
There is an enhanced diffusion at size ratiés(.72=a4/0>) see that value oR(z) is higher than 1fp(2)+R,,(2)
between 1.5 and 15. This occurs due to rather sdagqou- wheno,/oy is 3 and above. The scenario changes below size
pling of the solute’s motion from the density modes of theratio 3 andR;(z) rapidly becomes smaller as we approach
solvent in this region. To get a measure of this decouplingsize ratio 1. When7 =4, the magnitude of(z=0) in-
we give below a few values of the Enskog contributidp) creases almost linearly with the size of the solute. The ratio
and the contribution from the density mode of the solventm{(z=0)/7R, which can be termed the hydrodynamic
[R,,(z=0)] (the values presented here are all scaledgpy boundary coefficien(HBC), is equal to 12.545 faz =4,
For same size of the solute and the solvdng=1), which is very close to 4, the value of the slip HBC. We
{e=13.18 anR,,(z=0)=10.512. Forz=2, {=6.855and were also curious to know the effect of the inertial term
R,,(z=0)=2.39. On the other hand, for,=5 and above, [F(q,t)] on the crossover. With this term presenfn; we
R,,(z=0) becomes negligible compared to the binary partfound that the crossover takes place at somewhat larger sol-
This sharp decoupling also explains the saturation fowute sizeo,/oy=6. However, the ration{(z=0)/7R remains
22>10. (i) There is an apparent disagreement between thkarge, which is rather unphysical. The effect®f(q,t) on
theory and simulation betweew=12 and 18. While the the diffusion of solute for larger sizes requires further study.
theory gives a smooth curve, there is a dip in the simulation A study of the crossover has also been carried out by
result. We have studied the system in the limit of the soluteconsidering the mass dependence of the solutes of different
concentration zero. So in our case the size of the solutsizes. It is known that for inert gasses and alkanes the mass
should not influence the diffusion of the bulk solvent. It varies almost linearly with the diametét? Considering this,
should remain constant for a particular density and temperawve calculated the values of {4(z) +R,,(2) and Rr(2).
ture as the solute size is varied. We have tried to make th&he results obtained are not significantly different, reflecting
simulation system comparable with our studied system byhe relative insensitivity of diffusion to the mass. In this case
fixing the value of the diffusion of a solvent molecule in the crossover shifts to a slightly larger size ratio.
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the natural current of the solvent slow down, the position of
crossover might shift as the size of the solute is varied. In the
deeply supercooled regime the picture may change again.
Here the density fluctuation becomes so slow that diffusion
occurs through an activated hopping mechanism, the origin
of which is not yet clearly understood. The present formula-
tion cannot be applied to describe this regime.

An interesting result of the present study is the recovery
of the Stokes expression between the friction and the viscos-
ity. An intriguing aspect is the natural convergence of the

002 ratio m¢(z=0)/7R to the slip hydrodynamic boundary co-

\ efficient (HBC) as the solute size is increased. This then
\ naturally raises the question that, what are the conditions
001 F \ under which the stick HBC, %, can be recovered. In our
N calculation we have considered the LJ energy parameter of
N~ e ] the solute—solvent paik;,) equal to that of solvent—solvent
5 4 6 8 pair (e). We think that an appropriate calculation would be to
study the dependence of the friction as a functioriegf/e).
Whene;,> €, the value of the friction on the solute particle is
expected to increase as the solute experiences a greater at-
traction toward its neighboring solvent molecules. This rise
in the friction might lead to the stick HBC. We hope to
address this problem in the future.

In conclusion, the results presented here show, for the
first time, that the known enhancement of diffusion for small
solute sizes can be explained from first principles. In addi-
tion, we predict that the crossover from the microscopic to
the hydrodynamic regime should occur when the solute is
about 2-3 times larger than the solvent molecules. The
IV. CONCLUSION present study also suggests that the decoupling of the solute

After summarizing the results, the following physical motion from the solvent hydrodynamic modes is hierarchi-
picture of the size dependence of diffusion emerges from théal. However, the quantitative details may again change
present study. In dense liquids the relative importance of th#&hen the liquid is in the supercooled regime.
hydrodynamic modes of the solvent in the motion of a solute
particle is determined largely by the solute—solvent size ra-
tio. When the size of the solute is decreased from a verPFCKNOWLEDGMENTS
large value(where the hydrodynamic SE relation is valid

the comb_lr!atlon {HFR,,) (the_ combined effect of the_ bi- sions on the problem and R. Biswas for help and discussion.
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tributes to the friction on the tagged particle.

From the above study we find that for normal liquids and
for the same solute—solvent size ratio, the direct collisionyppenpix
part contributes more than 50% to the total friction. This
picture is expected to change in supercooled liquids. In this Here we present the calculational details of all the input
regime the structural relaxation of the solvent becomes verparameters required to calculd®s (t) andRr(t).
slow, which causes the friction to increase rapidly as the In Eq. (5), ¢15(q) is the two-particle direct correlation
liquid is progressively supercooled. Although the number offunction between the solute and the solvent molecules in the
direct collisions will undergo a modest increase due to thavave vector ) space and it is calculated by using the well-
increase in the number of nearest neighbors, it is the colkknown WCA theory which requires the solution of the
pling of the solute motion to the density fluctuation which is Percus—Yevick equation for the binary mixtireThe latter
expected to make the dominant contribution. In the superis obtained after taking the limit of solute concentration zero.
cooled regime the natural flow of the solvent also become&®(q,t) is the self-dynamic structure factor which is as-
very slow. As both the structural relaxation and the flow ofsumed to be given By

FIG. 2. The size mediated crossover from the microscopic to the hydrody:
namic behavior of diffusion. In this figure the contribution to the diffusion
from the binary and the density modes given tggb{erp]‘l has been
compared with that from the transverse current mode giveR.y All the
values are scaled bg=[mao?/kgT] 2

It is found that the total friction is higher in this case which
is expected.

We thank Dr. R. Zwanzig for several informative discus-
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. ;{_qszT 1 . ) We have assumed that the transverse current correlation
F(q,t)=exp——— | t+ — (e *0—-1) ||, Al ion is qi
(q,t) i, Z ( ) (A1) function is given by
where {,={(z=0), the latter has been calculated self- Cu(Q,2) = 1 (A8)
. . ’ - 2, N
consistently from Eq(7).}? In the expression ofS(q,t) us- N wi(q)
ing the zero frequency value of the friction is an approxima- z z+ 7 Yq)

tion. It is the time dependent friction which would have o\
given us the correct result; but doing an infinite-loop calcu-Where‘”_t(q) IS the SeC‘?“d _mor_nent szthe transverse current
correlation function which is given By

lation with the time dependent friction is nearly impossible.

Assuming the zero frequency limit does not introduce much 5 ) kgT S

error, we know that the major contribution B, (t) to the 0i(q)=9" -+ wot 74(a)- (A9)
total friction is in the long time limitF%(q,t) is the inertial )

part of the self-dynamic structure factor given by Here y4(q) is the transverse component of the vertex func-

tion which has the same expression as @&(.), only replac-
ing g15(r) by g(r) anduvx(r) by v(r). For 7;(q) we have

ksT g°t2 A2
(A2) used the expression proposed by Akazu and DaMels,

0 —

F (q,t)—ex;< o o |
F(q,t) is the dynamic structure factor of the solvent. It is
obtained from its Laplace transform froR(q,z). By using
the following well-known Mori continued-fraction expansion sz(q)ZZwtz(Q)‘F 1+ (q/qg)?

and truncating at second order, the expressiofr{ar,z) can 4o (A10)
be written a§'?

kgT
7 (0)~207(q) + 207 —~

Hereqq is an adjustable parameter which actually determines

F(0.2)= S(a) (A3) the transition of the behavior dt,(q,z) from “small q”
(4,2)= (02 to “large q.” For argon qg,=15 A% z%0)
q . S > 0 t
Z+—Aq =limy_o[mpwi(q)]/q°n. Here 5 is the zero frequency
z+ —— shear viscosity which is calculated from the following mode
2+ 7q coupling expressioff®

whereS(q) is the static structure factor. The static structure o
factor is calculated from the solution of the Percus—Yevick 7= 7ng+ kBT/60772f dao[S'(q)/S(g)]?
equation for pure liquids.(wg)=(ksTg?)/mSq) and 7;* 0

= 2JAq/ 7. Aq=0{(g) —(w5), wherew{(q) is the second % ,
moment of the longitudinal current correlation function x J; dt[F(q,t)/S(a)]° (A11)
given by 12
T HereS'(q) is the first derivative of the static structure factor.
©A(q)=3q? %+wg+ YA(9). (A4) 7 is the Enskog shear viscosity given'By
o o (1+3.2¢01(015) +12.18)°g1 0717))
Here y4(q) is the longitudinal component of the vertex func- NE= 78 901 , (A12)
tion andwy is the well-known Einstein frequency of the sol- 1271
vent, where ¢=mp*/6 and 7g=0.179MksT) % 0. We have

5 compared the value of viscositﬁgcalculated from the above
I __ P . o expression with simulation resultsThe agreement is good.
(D=~ f dr exp(~ig-ng(r) 5z v(r), (A5 For example, aT* (=kgT/€) =0.728 andp* (=po°)=0.844,
n(simulation=2.53 andy(calculatedl=2.77. Herec and e
wgzi f drg(r)V2u(r). (AB) are the usual Lennard—Jones parameters for the diameter and
3m well depth, respectively. The values of are scaled by
(mksT) Y202, Equation(A8), after using the proper value of
Jo, provides a satisfactory description of the transverse cur-
rent fluctuations over a wide range of wavelength. All the
microscopic equations given above are fully self-contained
and are solved self-consistently.

g(r) is the radial distribution function anal(r) is the inter-
atomic potential of the solvent. It is known that E#3)
provides a reliable description df(q,z) over the whole
(q,2) plane.

In Eq. (6), ¥41,(q) is the tangential component of the
vertex function andwy,, is the Einstein frequency of the
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