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ABSTRACT

We argue that in the minimal SUSY ex-—
tension of the standard model, CP-
violation cannot be explained through
SUSY phases alone. But SUSY graphs,
especially with gluinos, can wake
important contributions to CP-viola-
tion through the ZKobayashi~Maskawa
phase.
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The SU(2) x U(l} gauge symmetry of the standard modell) for electroweak
interactions is spontanecusly broken by the (real) vacuum expectation value of a
single scalar doublet. This implies that in this minimal framework, CP-violation
only arises from complex Yukawa couplings while flavour changing neutral processes
are naturally forbidden at the tree level, As a consequence, CP violating flavour
changing neutral processes are induced through charged weak gauge boson exchanges

)

and described by the Kobayashi-Maskawa (KM)2 mixing matrix. In particular, assuming

a not-too-light top quark, the estimated ¢ parameter associated with the K° - X°

system is compatible with the experimental value.3}

Flavour changing neutral
processes in general and the K° - KO system in particular are, in fact, stringent
tests for any extension of the presently successful standard model.

q)based‘on N=1

Recently, a minimal supersymmetric version of this model
supergravity has been proposed. Although two scalar doublets are now needed,
flavour changing neutral currents are still forbidden at the tree level, dus
to supersymmetry (SUSY). However, complex soft breaking terms such ?s gaugino
5

Majorana masses or trilinear Yukawa~like scalar self_interactions , low energy
remnants of the super Higgs mechanism 6) respensible for the breaking of local
supersymmetry, introduce new physical phases in the game. Moreover, with a

typical breaking scale of the order of 1010 Gev, large renormalization effects

are expected. In particular ,it has been stressed that the new gauge couplings
between squark (§), quark (gq) and gaugine (&)obtain an important flavour

changing piece from one loop radiative corrections induced by the charged scalars.
The gluine, in particular, could preoduce a large contribution to ¢ because it is
associated with the strong coupling constant. We therefore focus our attention

on these contributions. However,using restrictions from the experimental bound

on the electric dipole moment of the neutron (EDMN)7) we {ind that SU3Y-phases

alcone cannot be responsible for CP-viclation.

On the other hand, we show that CP-violation from the KM-phase through
supersymmetric diagrams can be of the right order of magnitude. This becomes
especially important if the top quark mass turns out to be relatively small. Indeed,
in this case , conventional non-supersymmetric CP-violation might not be sufficient3).
Furthermore, SUSY~-graphs bring the KM—conﬁributions to the EDMN nearer to the
experimental bound. Thus even if the intrinsic SUSY-phases are small, 3USY can

play an important réle in CP-violaticn.
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From this peint of view, we derive restrictions on the squark and gluino
masses coming from the ¢ parameter. As a byproduct, from the real part of the

K°- K° matrix element,we only get mild constraints.

In summary, the minimal SU3Y extension of the standard model successfully
emerges from this preliminary but usually dangerous entrance examination.
_ 4),5) -
In this model , the mass matrix for the down squarks (d) is

related to the quark mass matrices Mq,M, in the following way:

t t
ML+ MMy +cMyM, Arvnwhfﬂd
t t
Amy, My /uzé 1+MgMy

where 4 is the typical complex soft breaking parameter induced by the "hidden"

superpotential responsible for the super Higgs mechanism

A :IA]GLwIqu (2)

while the;ﬁJF{mass parameters are of the same order as the gravitino mass m
]

3
8),9) . o . /2
,Wwill be crucial in our discussion.

2
It is associated with the main one loop flavour violating correction te My and

The coefficient ¢, which is of order 1

thus implies a CP-violating flavour changing piece in the new gauge interactions

for down guarks. For the gluino (E)lo) this interaction is given by

Lsda = Wigd 8T {1 P + LA}y,

with (3)
F) - 1-4% P = 1+¥s
L L 'R 2
where go denotes the strong coupling constant and T are the representation
matrices of SU(3) . Similar Lagrangians describe the interactions of the other
gauginoslo). The 6 x 3 matrices FL R are defined as ’
Kl
ud . (4)
g, ~t/U _.Lrs ~t[0
[ =¢ U ; [L=e U 4
L O R s

where qu%and 0 diagonalize the down guark mass matrix and the down squark mass
]

matrix respectively:

A ~t
v M UE < F, 0T M3

]

= diag fﬁ;) (5)

o T

¥
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The SUSY-phase ¢g appearing in the TL,R matrices arises from a suitable phase
rotation of the gluinc field whose soft breaking Majorana mass term is in general

complex:

BT 2) / (6)
HQg = ‘W1g, e 9

For the diagonalization of the down squark mass matrix (1), we will proceed in two

steps by introducing two unitary matrices Gl and 62 such that

~ [enpd 0

~ e Do
UGl i U 0 e'w“U: . (7)
We get
Al Al ~
ot o~ o~ ML A+ KR K 1Al my,, Fg ) ~
U Mgu=U . . - U, )
iA!h'\wlMd PR1+ Hd

where K is the KM matrix. In particular, we see that only the combination
dg=da is relevant for CP-vioclatiocn.

N -~ _9 &SZZ -~ Q .
Let us now turn to the matrix element M,, (g)= < X* |H_pp (g)}] K induced

by gluino exchange (see Fig. 1). Performing a complete evaluation, we obtain:

~ ldl ie ke : m m '
Mo (§)= {Ijm (L e Lear)(so-3sr #5271
9 : o

(TR Lor) V)]
o1 K DRI (0407 4

P AT T (250

R (I_L;s*,:-id I.Lms*erd+ LeaR) v:’] }

where the terms with superscript D and M arise from diagrams of Figs. la and 1b

respectively. The functions Ijm and ij are given by

Ijm= 1 [ Zlng 1 _ (Ejﬁim)]

Zj-Im b (1-g* 1- %
'3 . ~ 2
_ 1 z; ¥ 1 (7.7 ,
Kjm = 2~ Zm (4—2,-)‘+ 1- 2} (% ”‘)] with ZF(?%)- (10)
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Intreducing the following matrix ciements

Vg = (K IS8R d Sy FuPad g 1K (T2 g (THO T®)

B
(11)
D(M) _ 8T < ° a5 b bra) T aclh)
Z" 15, 6 Py g Sp07dg K (T2TY)  (ToI T2)
with  © «omv AR TE § «3 14
AB=LR; o, 31‘5 =1,2,3 (colour indices)
then the Dirac (Majorana) terms in (9) satisfy the relations:
D{M) D(M) B(M) p(M) DMy . D(M)
\/+ = VLL = VRR ) S+ - SLL "SRR
DMl DIMY DM DIM) _ DM _ DIM)
v__ - VLR - VRL i S_, = SLR - SRL
D(MYy _ DIM) _ < DM} {12)
2 - ZL - Z.Ps .
These matrix elements can be evaluated in the vacuum insertion method. With
K°(P) = CP X° (-p), we obtain
L) M_ 2
v-l- h I?N V+ = 7.?N
& 2 1 2
VP - (A ERN Vo= (2 - 2RIN
§2 = -3 RN St Z RN (13)
o (2,3 4 _1
S__ ':.[a'fi;R)N S:‘ ={18 37 R)N
p_ 2 M_ 2
Z - 3RN 2 - 3RN
2 %
with N = "'"““"""—1’ ‘ | R_.. __f‘“d*' "“5‘1" .

11) due to the

3USY phase 6= qg—¢g. For simplicity, we will restrict ourselves to twc generations

Now let us analyze the E contribution to the e parameter

{(no KM phase) in which case we can approximately calculate the TL,R matrices
defined in {4):

+[1 ¢ OccPy -5€.cp, t o -c,5p,  56.5p,

.‘f ~ i e~ P

fl‘- =e Ur. 0 ) & (%9.cp,  Bep, r;.q__e‘? U1 {1)35'? ~s8.sp, ~€O.Sp,
SP. o [ s, o (15)
0 5Py o <Py

with .
tg(?.pi) = - l{Almd; m«}h__ /(ﬂ?_-'ﬂg) (16)



and eé being the Cabibbo angle. Here, cp,, sec etc. stand for cospl,sinecetc.
Usually Hi-Hg turns out to be of the order of a few Gevlz). From the way the

¢ -phase appears in ', g we immediately conclude that only the first two terms
in {9) can give an imaginary contribution to Mz1(g) which we will denote by

In M2¢1 (#). Using the fact that

st mg
e (17)
57 mg

we can safely neglect the second one such that

Im M:\ (g)": ] 2"5;1 %RN chzec 519(5291 sS4 (111'1I11+I7-1) . (18)

B' represents any correction to the vacuum insertion estimate of the matrix element.

The last factor appearing in the above is a manifestation of the double GIM13)

mechanism:
- 1 ~ LTV =
I41—2I12+I,_.1—m(1‘12 "M,,) (M /mg) (19)
g9
with
~ ~ 4 ry i_l (2C)
I(z)= (1_2),1[6(——————-1_2 Jinz + 17 + 2 - |

and M being an average down squark mass.

Using (1), we obtain for the squark mass difference

~ T " o 1. 2+ .4 .
M,_" M,, > c(lmc-mu)—P?_ (/AR-/U.L) ~em, (21)
For simplicity we neglect p: (U; - uf ),though it could be of the order of

With a similar omission, the appearance of the Cabibbo angle in Eq. (15)
8)

2
m -
igs justified

From this we conclude that#

¢ 45 “ Mw\6  ~
Tm My, (§)= (125215"%6Y) FRECa %, sue () x¢ Lot (22)
with X= ﬁ/m‘g" and m_ =135 g,.,v.

¥

we snould pemark that there can be other contributions to Eg. {22) of a
similar order of magnitude coming from small entries inI‘L’R which we have
approximated by zero in Eq. (15}, because these get multiplied by mass differences

of the order pi-—pé.
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To get an estimate of the phase ¢ , we now use the experimental constraint

coming from the EDMN. The & contribution to the EDM of a down quarqu)is

S dpid¥y 1 g
dy (§) = an ng 2 Im (T} T );}D(;}L) (23)

where D{r) is the functiocn I, (r,0) defined in Ref.15). The GIM mechanism

operates again and we cbtain

jd rid¥y 1 1 1 LA P (24)
ZI“"“-]]- )"‘D(" £ — Cps 51?(.4“_!_—___/_*_‘3 2
F L 'R xll x]?-) xq P1 Pq mZ D(K)
- N oy o 2t Z .5 ~(712+1 bz
with D(E) - W 1 + ) (2Z2+1) 2 -1 } . (25)

Using Eq (16) for 8p,; as well as the following genercus upper bound

ld (g < 10 " em

we obtain 2. 1Al My, (‘_M_w )7' 1 6“{1) [s2¢] < 0.5 - 10‘3 (26)
2T mg img ] XA

which can be used as an upper bound for the phase ¢ = sin ¢,

From Egs.(22) and (26), we therefore conclude that

nd (27)
¢ . 18 1 RB' 2, Mw Mwid,  x81T(x2)]
‘Im M21fg)j E, (415 10 QLV)SH IAICdS m%{ﬁ)spl—j:"ﬁ,—(:;—)—
X

where the x-dependence is rather mild in the interesting region (see Fig. 2).
Taking og= 0.1, My, = Mw and sp, v 0.1 as & plausible value for the mixing angle
2

p,,» we conclude that we need a light down squark

¥ 1
M < 10 Mw (28)
to get a sizeable contribution to g5 {in order not to be in trouble with the

16)

bound on £'/¢) . Such a light M, however, is already excluded experimentalllle).
At this peint, we would like to stress that among all the gaugino contributions

to M21 the one from the gluinos is, in fact, dominant. Indeed, the neutral v and Z°

gaugino contributions corresponding to Figs. la, 1b are suppressed due to smaller

6 ~ 2

Kix™}

remain finite as x + = {see Fig. 2), it is apparent that even a very small

gauge coupling constants. Moreover, because the functions x i(xe),x

photine mass does not spoil this conclusion. The contributicn coming from the

charged gaugino W corresponding to Fig,10 is even more suppressedl6)’18).
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Let us now concentrate on the contribution from the KM phase § to Im M, (&)
To get an order of magnitude estimate of the LELR term in Eq (9), we can replace the

s4¢ appearing in Eg. (22) by the typical KM factor 592 863 s, Even for the
9)

maximum allowed values of 562,38;‘ one can easily convince oneself that this factor

(~3.6x10_3) is emaller than the maximum value of s4¢ allowed by EDMN (26} . Therefore
its contribution is negligible. The other terms in Eq.(9) are further suppressed by
a factor 504 /sp2 except for the LLLL term which, as we will show, can give an

important contributiomn.

. Now, we turn to the LLLL term. Tc make life easler, we ignore the LR-mixing in

Ma which is a reasonable approximation for two generations, and should provide us

with the right order of magnitude estimate in the three generation case. In this

situation, the coupling matrices FL are of the following simple form

+R

Substituting (29) into Eg. (9) and making use of the double GIM mechanism, we obtain
M8 (§)e - y 15 24 B (Mu/ )€
nt9 (1.25-40 2 GeV) c* o B (Mw/&)° -

A * y ~ ~
TR TR 23 Gy ) [T eRoen) o
with ) * ! ¢

A; = Kis Kig 3]

& % [E+4 1 {32)
Kz)= (1_2)4[6\1_2)ln2+10+§-+2]

and B being the usual correction factor to the vacuum insertion approximation in

N
11)

conventionzl non-SUSY box diagram has only m% dependence . To estimate the
imaginary part of Eq. (30),one can use the plots of x6I (x2) and x6 K (XE) in Fig. 2

and choose values of ﬁ greater than the experimental bound of 15 GeV172 It is then

easy to check that for reascnable choices of A3 within the allowed range 19)and for

the W box diagram. We observe that Eq. (30) depends on mg' whereas the

even relatively light mg (30 GeV) one can get an e of the right order.

To cheek that simultaneously the g-contribution to the EDMN from the KM phase
§ does not exceed the experimental bound, we now replace s2Z¢ in Eq. {(24) by

562 s8. s8 to get a roughestimate of dd {g) {23). As we have already noted this

3
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last factor is less than s2¢max. Hence the EDMN contribution from § is safely below,

but can be c¢lose to, the experimental bound, in striking contrast to the non.SUSY case
Finally, we look for restrictions on M and mé coming from the bounds on M2§ (8),
First we consider the imaginary part. For reasonable allowed values of the top quark
mass and 392,563,5, we take 19), for example:
a) my = 50 GeV, s, =0.05, $63=0.03, 8=90°
and
b)'mt = 30 GeV, s, =0.07, 593:0.01, §=170%
the imaginary part of the expression in the bracket in Eg. (30)
Im [ (3_1)1(’_"}:)"_2_72(_’23)1] (33)
31 m. 21 m,

takes the values 18.2 and (.45 respectively. Using this along with the experimental
value of ¢={2.28 *0.05) x lO-3 as an upper bound for Hq. (30} and setting c=1,
we obtain the plots of Fig. 3 {{curves (a) and (b)]. We also plot in Fig. 3 a more
conservative bound obtained from the real part of Eq. {30) in the two generation
case. [A slightly different approach has been pursued in Ref. 21 to get bounds on

AM/N From fy also in the four quark model]. From the curves (a) and (b), it is
clear that the restrictions are rather sensitive to the top quark mass and the KM
mixing angles. A definite unambiguous statement will be possible only when these
are known to befter accuracy. On the other hand, the restrictions from Amy. [turve
(c)l, which is more reliable, turns out to be weak and does not constrain the
freedom very much. In this figure, we also show the bound M 2 0.9 m, coming from

. g
the absence of radiative SU(3)C and U(l}EM breaking through squark vacuum

expectation values 22).

Conclusions:

(1) We find that supersymmetric phases alone cannot explain CP-viclation in the

X'-K° system in conjunction with the EDMN.

20)

.
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{2) The KM phase can give large contributions through gluinc graphs implying

constraints on squark and gluino masses (see Fig. 3).

(3) Moreover, gluino graphs enhance the value of the electric dipole moment

of the neutron.

Finally we point out some of the limitations of our calculations: we have not
considered the strong CP-violation23), and have also not taken into account the
Lee-Weinberg mechanismaq). In additien, in our numerical estimations, we have
always assumed the validity of the vacuum insertion method (B'=B=1l) because

conflicting estimates of B exist in the 1iterature25).
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FIGURE CAPTIONS

Fig, 1
Fig. 2
Fig. 3 :

The SUSY gluinc box diagrams contributing to the K°K%-matrix element.
Fig. la is the usual Dirac contribution and Fig. 1b represents the

additional contribution because of the Majorana nature of the gluino.

The various functions of the ratio of the squark mass to the gluino

mass that enter into the CP-viclation and EDMN calculations (see text).

The regions above the curves marked (a) and (b) are allowed by the CP
violation parameter e for the choices:
{a) mg = 5C GeV, s0,= 0.05, sb, = 0.03, §=90°

t
(b) m_ = 30 GeV, s6,= 0.07, s6, = 0.01, &=170°

t
respectively. The broken curve (¢) corresponds to the bound from

Me = Wy in the two generation case. The shaded region is ruled out
S
by exper%mentslT). The region to the right of the dot-dashed line is

excluded by Ref. 22).



len

oW s WaWaWaWa Wi Wia Wanl-Wal
~

d
S
d

S

S



T T [T T T [T 11 L LLLLLRL LU
<
| — =
— - -
[ L=
3
<
[ I
~ i
X
S -
=10 —
- —
. A=t
e =
- .
o
| " e |
| I
- 1 o
- -
= \_‘
3t
| 1o
- J o
IR luvisg 1 Litiave gy Doty g Boiaia 1 o TSR RNt
3 - o =
—
- s e o T ]
< =2 -
o o

SNOILINNA

SQUARK MASS / GLUINO MASS

Fig. 2



mmmmmmmmmmmmmmm

//%////%%///////%/////%//%/%//W |




	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16

