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The mechanism of isomerization (basepair openings) dur-

ing transcription initiation by RNA polymerase at the

galP1 promoter of Escherichia coli was investigated by

2-aminopurine (2,AP) fluorescence. The fluorescence of

2,AP is quenched in DNA duplex and enhanced when the

basepair is distorted or deformed. The increase of 2,AP

fluorescence was used to monitor basepair distortion at

several individual positions in the promoter. We observed

that basepair distortions during isomerization are a

multi-step process. Three distinct hitherto unresolved

steps in kinetic terms were observed, where significant

fluorescence change occurs: a fast step with a half-life of

around 1 s, which is followed by two slower steps occur-

ring with a half-life in the range of minutes at 251C.

Contrary to commonly held expectations, basepairs at

different positions opened by 2,AP assays without any

obvious pattern, suggesting that basepair opening is an

asynchronous multi-step process. cAMP .CRP, which acti-

vates transcription at galP1, enhanced the rate-limiting step.
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Introduction

Both activation and repression of transcription of initiation

are most often achieved by DNA-binding gene-regulatory

proteins (activators and repressors), which act by modulating

the activity of RNA polymerase through contact(s). Such

contacts may involve a single activator or repressor bound

to a specific DNA site at or near the promoter, as in

many prokaryotic genes (Gralla and Collado-Vides, 1996),

or one or more components of a conglomerate of proteins

assembled at a DNA site that could be kilobase pairs away

from the promoter, as is frequently found in eukaryotic

systems (Ptashne and Gann, 1997; Carey, 1998). In the latter

examples, the protein–protein contact between a DNA–multi-

protein complex and RNA polymerase results in a DNA loop.

The core question, which remains unresolved, is how such

physical contacts transpire into transcription regulation at

the level of RNA polymerase binding, or a later step. A

common concept assumes that the contact affects transcrip-

tion initiation by modifying the structure of RNA polymerase

allosterically. Although allosteric mechanisms may contri-

bute to the regulatory processes, a regulator–RNA polymer-

ase contact may act by a different mechanism, that is, by

differential energetic stabilization of one or more of the

intermediate states and/or transition states of the RNA

polymerase–promoter-initiating complex (Roy et al, 1998).

Thus, it is important to identify and characterize all the

intermediates in the transcription initiation pathway

(Chamberlin, 1974; deHaseth and Helmann, 1995; Gussin,

1996; Record et al, 1996).

Recently, the determination of structures produced a great

deal of information with respect to the RNA polymerase

holoenzyme and some complexes with DNA (Murakami

et al, 2002a, b). However, a comprehensive identification of

all intermediates still remains elusive. The nature of the

intervening transition states is even more difficult to study

in the absence of direct kinetic methods. A direct real-time

method to study the transcription initiation pathway and its

regulation is the use of the fluorescent base analog 2,amino-

purine (2,AP) to study the basepair-opening steps of the

promoter by RNA polymerase (Jia et al, 1996; Újvári and

Martin, 1996; Sullivan et al, 1997). In this report, we used a

direct real-time spectroscopic method to probe the steps of

isomerization by using 2,AP in the galP1 promoter of

Escherichia coli. We followed the fluorescence of 2,AP put

in different positions of the promoter to dissect isomerization,

and studied how its activator, CRP, affects the steps. Our

results showed that isomerization of galP1 is a multi-step

process with a rate-limiting one, and that CRP acts by

enhancing the rate-limiting step.

Results

The gal operon of E. coli is under the control of two

promoters, galP1 and galP2 (Figure 1), belonging to the so-

called ex–10 family, in which the �35 region does not play

any role (Bown et al, 1997). We introduced several mutations

in the ex–10 region of the galP2 promoter to eliminate

its interaction of the RNA polymerase (Bingham et al, 1986;

see Materials and methods). Single basepair substitution

experiments demonstrated that each of these mutations

severely decrease galP2 activity while having almost no effect

on galP1 activity (DEA Lewis and S Adhya, unpublished

results). A combination of these mutations is expected to

abolish completely the galP2 activity with only a modest

down effect, if any, on galP1. In vitro transcription results

using this template were in agreement with this expectation
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(see below). galP1 templates carrying these galP2� mutations

were used in all experiments that follow.

Measurement of basepair opening in the galP1

promoter containing 2,AP

It is generally believed that about a 15-basepair segment

becomes single stranded (referred to as ‘opened’) in the

isomerized, that is, open, complex (Gamper and Hearst,

1982; McClure, 1985; Amouyal and Buc, 1987; Attey et al,

1994; deHaseth and Helmann, 1995). However, little data

exist as to the basepair-opening process and whether the

latter is a stepwise process. 2,AP is an adenine analog that

pairs with thymine, with only a slightly weaker basepair

affinity compared to an A:T basepair in the DNA duplex

(Sowers et al, 1986; Nordlund et al, 1989; Wu et al, 1990; Law

et al, 1996). 2,AP-containing DNA is in the B-form and does

not show any major structural alteration (McLaughlin et al,

1987; Xu et al, 1994). Unlike the normal DNA bases, 2,AP

displays fluorescence at neutral pH, which is significantly

quenched in the DNA duplex. Consequently, any disruption

or unstacking of the 2,AP:T basepair leads to enhancement of

fluorescence (Guest et al, 1991; Bloom et al, 1993; Raney et al,

1994; Xu et al, 1994), although a correlation of the disrupted

structure with fluorescence properties remains difficult

because of the potential effect of RNA polymerase on 2,AP

quantum yield. However, the rate of fluorescence increase of

2,AP can be quantitatively linked to the rate of opening or

distortion of the double helix, and offers a powerful tool to

study the process of basepair opening. As the distortion of the

helix during the transcription initiation pathway occurs in the

�10 region, we prepared templates, each containing 2,AP

replacing an adenine in either strand at positions from �12 to

þ 3. Two different-sized templates containing 2,AP were

prepared: (i) 106-basepair-long duplexes of two completely

chemically synthesized strands, and (ii) PCR-generated 358-

basepair-long templates. Both kinds of templates gave similar

results, although the quality of fluorescence data appeared to

be better in the latter ones. The transcriptional competency

of these templates was judged by electrophoretic mobility

shift assay (EMSA) of RNA polymerase binding using the

106-basepair long duplexes, as well as by in vitro transcrip-

tion assays using the 358-basepair-long DNA. Figure 2 shows

the EMSA and the in vitro transcription results for the wild

type and several 2,AP-containing DNA templates. The incor-

poration of 2,AP into the templates made no difference in the

binary complex formation as measured by EMSA. Similarly,

in vitro transcription experiments showed that the galP1 RNA

synthesis and its stimulation by CRP from the 2,AP-contain-

ing templates, except the one with the analog at position �11,

were comparable to that from the wild-type template. We

previously showed that substitution of the adenine by 2,AP at

�11 made galP1 defective (Lim et al, 2001).

A distortion in the double helix as a discrete early event

during isomerization was suggested recently (Saecker et al,

2002). A rapid component of 2,AP fluorescence increase in

the lacP1 promoter E. coli was also detected (Liu et al, 2003).

This observation led us to examine the changes in 2,AP fluo-

rescence by stopped-flow methods. Figure 3 shows the

kinetics of fluorescence increase of a 358-basepair DNA con-

taining galP1 with 2,AP substituted at the þ 3 position upon

RNA polymerase binding. The fluorescence increase showed

saturation behavior and can be fitted to a single exponential

with an average rate constant of 0.9 s�1. The 106-basepair

Figure 1 Top: Relevant region of the gal promoter of E. coli showing galP1 and galP2 (mutated) and depicted by dotted lines, and the CRP-
binding site (green). RNA polymerase is schematically drawn in yellow. The two blue arrows are the PCR primers for generating DNA templates
for transcription. The blue box indicates a transcription stop signal for the purpose of generating transcript of defined size in vitro. Bottom:
DNA sequence of the 106-basepair galP1 promoter fragment. Transcription starts at position þ 1. cAMP .CRP binding region centered at
position �41.5 is shown in green. The shaded segment is the presumed region of basepair distortion. The basepairs indicated by downward
arrows around position �10 show mutations in the P1� DNA used as a control (see Figure 4). The positions from �19 through �14 have
mutational alterations (not shown) that inactivate RNA polymerase binding to the galP2 promoter.

Figure 2 (A) EMSA of RNA polymerase binding to the 106-basepair
galP1 DNA duplex containing 2,AP at the positions indicated. (B)
In vitro synthesis of galP1 RNA in the absence and presence of CRP
with 358-basepair gal DNA templates containing 2,AP at the posi-
tions indicated. WT indicates galP1 DNA containing no 2,AP.

Basepair openings in transcription initiation
S Roy et al

The EMBO Journal VOL 23 | NO 4 | 2004 &2004 European Molecular Biology Organization870



template containing 2,AP at þ 3 also gave a similar profile

with an average pseudo-first-order average rate constant of

0.85 s�1 (data not shown). Of the other 2,AP-containing tem-

plates tested with 2,AP at �6, �5, �4, �3, �2, þ 1 or þ 2,

only the one with 2,AP at position þ 2 showed significant

fluorescence increase by stopped-flow assays. The derived

average rate constant was 0.69 s�1, suggesting that a helix

distortion occurs very early around the þ 2/þ 3 region. Given

the uncertainties of the stopped-flow measurements, it is

unlikely that the values 0.85 and 0.69 s�1 are really different.

Asynchrony in basepair opening

In order to observe the basepair openings at a later stage of

the transcription initiation, we performed manual mixing

experiments. In these experiments, the 106-basepair 2,AP-

containing DNA duplexes were mixed with RNA polymerase

at a final concentration of 1mM each, which is at least an

order of magnitude higher than the dissociation constant of

the galP1 promoter–RNA polymerase closed complex

(Goodrich and McClure, 1992). As the on-rates for promoters

are very fast, the initial binary closed-complex formation

(Knaus and Bujard, 1990) at such concentrations should be

over within the mixing time of about 15 s, and hence any

change in fluorescence should reflect the step(s) at which

significant quantum yield change occurs. Figure 4 shows the

fluorescence increase with 2,AP at the �2 position. The rate

increase was fitted well to a single exponential, suggesting

that the fluorescence increase occurred predominantly in one

step. In contrast, the 2,AP fluorescence of the control galP1�

DNA with 2,AP at the same �2 position did not increase upon

mixing with RNA polymerase. We assume that the fluores-

cence increase in the wild type is mostly due to basepair

openings at the galP1 promoter. We conjecture that the

observed initial decrease of the fluorescence before reaching

a plateau in the mutant template in the absence of specific

promoter binding was caused by quenching of fluorescence

when RNA polymerase makes nonspecific interactions with

the DNA template that is devoid of any active promoter.

Figure 5 shows the kinetics of 2,AP fluorescence increase

by manual mixing when the label was present at the þ 3

position in both þ 358-basepair-long PCR-generated (panel

A) and the 106-basepair-long synthetic (panel B) templates.

The rate constants (kapp) were determined to be very similar,

2.1�10�3 and 1.34�10�3 s�1, respectively, justifying the use

of the two types of templates interchangeably. Figure 6 lists

the rate constants of fluorescence increase (interpreted as

basepair openings) obtained by the manual mixing method

for galP1 DNA with 2,AP at different positions from �12 to

þ 3, as derived from the corresponding single exponential

curves (see Materials and methods). It is clear that the

forward rate constants for the templates containing 2,AP at

different positions vary considerably, in some cases by an

order of magnitude. At first inspection, the rate constants

determined by manual mixing may be grouped into three

different categories: rapid basepair opening at positions �12,

�10, �4, �2, þ 1 and þ 3; moderate openings at positions

�12, �10 and þ 1; and slow openings at positions �7, �5

and þ 2. It is known that single basepair substitutions at

�12, �10 and þ 1 have moderate down effects on transcrip-

tion (DEA Lewis and S Adhya, in preparation). Thus, it is very

likely that the second group of positions actually belongs to

the rapid opening group and shows a moderate rate due to

the mutational effects of 2,AP substitutions at these locations.

Thus, we classify the basepair openings determined by

manual mixing into two classes, pending further exploration

of 2,AP mutational effects: rapid (�12, �10, �4, �2, þ 1 and

þ 3) and slow (�7, �5 and þ 2). Two of the slow positions

(�5 and þ 2) show no mutational effect in single base subs-

titution experiments (DEA Lewis and S Adhya, in preparation).

Enhancement of basepair opening by CRP

As previously proposed, a regulator of transcription initiation

can act by modulating the energetics on one or more steps of

the initiation pathway by making differential contact(s) with

Figure 3 2,AP fluorescence intensity changes (in arbitrary units) of
the 358-basepair DNA template containing 2,AP at the þ 3 position
of the galP1 promoter as a function of time (0–10 s) upon rapid
mixing with RNA polymerase using a stopped-flow device. A typical
run is shown. A derived rate constant for this run may differ from
the average rate constant mentioned in the text. See Materials and
methods for experimental details.

Figure 4 2,AP fluorescence changes in 106-basepair DNA tem-
plates containing 2,AP at the �2 position of the galP1 promoter as
a function of time upon manual mixing with RNA polymerase in a
Perkin-Elmer spectrofluorometer, and expressed as a ratio of two
channels. The 2,AP fluorescence increased with time when the
promoter was galP1þ (filled circles), and decreased initially and
reached a plateau when the promoter was galP1� (open circles).
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DNA-bound RNA polymerase, whose conformation, depend-

ing on the DNA sequence of the promoter, constantly changes

during the course of the reaction (Roy et al, 1998). By

differential contacts, a DNA-bound regulator lowers the free

energy of and stabilizes one or more of the intermediates

during the course of the reaction. An activator that estab-

lishes contacts during the transition state of the slowest step

of isomerization would lower its activation energy and en-

hance the overall isomerization. From the abortive initiation

assays, it was suggested that CRP activates galP1 by enhan-

cing mostly the isomerization step (Herbert et al, 1986;

Goodrich and McClure, 1992). We used the 2,AP fluores-

cence-increase experiments to study the effects of CRP on

various basepair-opening rates. We emphasize, as mentioned

before, that the rate of fluorescence increase is the important

parameter, and not the quantum yield, in assessing the

activator effect. Figure 7 shows the effect of CRP on the

deformation rate of DNA templates substituted with 2,AP at

different positions. It is clear that CRP had little effect on

the faster basepair-opening positions as was observed by

following 2,AP fluorescence increase at positions þ 1 and

þ 3. However, CRP accelerated the slower rate constants

significantly. There was a 4–10-fold increase in the rate

constants as observed by following 2,AP fluorescence in-

crease at positions �7, �5 and þ 2. The rates of the þ 1

and þ 2 groups were comparable in the presence of CRP.

If an activator enhances one or more steps of the initiation

Figure 5 2,AP fluorescence increase with (A) 358-basepair PCR-
generated templates in a single-channel PTI spectrofluorometer
expressed in normalized fluorescence intensity, and (B) 106-base-
pair synthetic templates in a Perkin-Elmer LS50B spectrofluorom-
eter with alternate scans as described in Materials and methods.
Hence, the Y-axis is expressed as a ratio of two channels. In both
cases, 2,AP was present at the þ 3 position. Details are given in
Materials and methods.

Figure 6 Rate constants of basepair openings at different positions
of galP1 upon RNA polymerase binding as measured by 2,AP
fluorescence increase shown in bar graphs. The DNA sequence of
the �14 to þ 5 region of the promoter is shown at the bottom of the
bar graphs. The positions of the adenines, which were individually
probed by 2,AP in either strand, are shown in red. Error bars are not
given for cases in which experiments are carried out only two to
three times. Only averages are shown for them.

Figure 7 Effect of CRP on the rate constants at five different
positions of adenine as probed by 2,AP. Without CRP (gray); with
CRP (green). The inset shows, as an example, the fluorescence data
for the þ 2 position.
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pathway, it must at least enhance the rate-limiting step. This

is exactly what was observed. The magnitude of the CRP

effect on the isomerization as obtained from abortive initia-

tion assays was similar to that obtained above (Herbert et al,

1986; Goodrich and McClure, 1992).

Discussion

Study of the transient intermediate populations in the process

of transcription initiation in real time is crucial for a mechan-

istic understanding of basal transcription as well as its

regulation. The use of 2,AP as a fluorescence probe allowed

us to dissect the isomerization step of transcription initiation

in greater detail than hitherto possible, both from structural

and kinetic viewpoints.

Isomerization is a multi-step process

Our results discussed above demonstrated different steps of

isomerization. It was previously shown that the A:T basepair,

called the ‘master’ basepair, at the �11 position plays a

crucial role in initiating the basepair-opening process (Lim

et al, 2001). Even a small change of shift of the amino group

from the 6 (in adenine) to the 2 position (in 2,AP) blocked the

basepair opening at �11. As the 2,AP:T basepair is energeti-

cally similar to an A:T basepair, it is likely that this stringent

specificity is due to an interaction of �11A with RNA poly-

merase. It was suggested that �11A interacts with aromatic

residues of RNA polymerase (Fenton et al, 2000; Tsujikawa

et al, 2002). It was also suggested that the distortion of the

duplex at the master position triggers further destabilization

of the helix. A significant increase of 2,AP fluorescence,

placed at þ 2 and þ 3, determined by stopped flow, indi-

cates, however, that þ 2/þ 3 destabilization takes place

either simultaneously or immediately following the �11A

interaction. Whether these two steps are identical or con-

secutive is not known at this point. It was previously pro-

posed that a contact of the RNA polymerase b–b0 jaw with

DNA basepairs occurs relatively early around the start site

during isomerization (Saecker et al, 2002). The fluorescence

change observed with 2,AP labeled at the þ 2/þ 3 regions in

the stopped flow may be related to this event.

The slower basepair-opening steps in galP1, as detected by

manual mixing, can be divided into two phases. In the first

phase, most of the basepairs in the �10 region became

distorted. It appears that in the other phase, basepairs at

�7, �5 and þ 2 opened significantly slowly. The slow steps

are unlikely to be side reactions because they become faster

in the presence of CRP, commensurate with the CRP-

mediated enhancement of transcription at galP1 (see later).

Based on the information presented above, we propose the

following multi-step kinetic scheme of open complex forma-

tion at the galP1 promoter:

(i) interaction of �11A with RNA polymerase and very fast

destabilization of the þ 2/þ 3 region;

(ii) fast opening of the basepairs as in positions �4, �2

and þ 3;

(iii) slow opening of the remaining basepairs.

Thus, the basepair-opening process in galP1 is asynchronous.

It is interesting to compare the two open complexes, RPO1

and RPO2, demonstrated by Record and co-workers in the lPR

promoter (Suh et al, 1992, 1993). RPO2 showed significantly

enhanced permanganate and hydroxy-radical reactivities

compared to RPO1 in the �4 to þ 2 region of PR, including

a large permanganate reactivity of the þ 2 base. This may be

compared to the fluorescence change in the slowest phase in

galP1 (–5 and þ 2). We also note that �7T permanganate

reactivity is affected inversely between RPO1 and RPO2 (Suh

et al, 1993).

CRP enhances the rate-limiting step

In principle, the slow step described above could be a side

reaction. However, we assign this last slow step to the

generation of the catalytically competent open complex for

the following reasons: (i) The step is activated by CRP

(Figure 7). (ii) Addition of NTPs clears the promoter of

RNA polymerase, which was observed by decrease of the

2,AP fluorescence, presumably because of the restoration of

the helix structure (data not shown). The rate constants

measured by abortive initiation assays also strongly support

that this step is the last rate-determining step of open com-

plex formation (Lavigne et al, 1992). A rate constant of

isomerization of 1.4�10�3 s�1 was obtained for P1 by the

abortive RNA synthesis measurements with a 113-basepair

linear DNA template carrying a mutation in the P2 promoter

(�16A to C change). The average rate constant (average of

the 2,AP experiments at positions �7, �5 and þ 2) of the

slowest basepair-opening step was about 8�10�4 s�1. The

latter experiments were carried out at 251C, whereas the

abortive initiation assays were performed at 371C. We ob-

served an approximately five-fold enhancement of the slow-

est 2,AP basepair-opening step at 371C when compared to

251C (S Roy and S Adhya, unpublished results), making the

two rate constants very close.

Basepairs open asynchronously

Our results suggest that basepair openings at a promoter do

not occur uniformly throughout the region but follow differ-

ent rates depending on the position of the basepair in the �10

region, and imply that individual basepair openings may be

somewhat independent events. This is contrary to the com-

monly held belief that starting with a nucleation point the

DNA duplex becomes single stranded in a sequential fashion

during isomerization. How can a basepair at a particular

position in the helix open up if its two immediate neighbors

have not yet done so? Our results of individual ‘stand-alone’

basepair openings, that is, opening of one basepair without

simultaneous opening of one or both neighboring pairs at the

same time as reflected by 2,AP fluorescence assays, are

consistent with the idea of base flipping (Streisinger and

Owen, 1985; Roberts, 1995). In fact, base flipping has been

invoked for the interaction between �11A and aromatic

residues in RNA polymerase (Fenton et al, 2000; Tsujikawa

et al, 2002).

Materials and methods

Materials
E. coli RNA polymerase holoenzyme was purchased from Epicentre
Technologies. CRP, purified to 98% homogeneity by FPLC
(Pharmacia) from an E. coli strain carrying the crp gene in a
multicopy plasmid (pHA5), was a gift from S Garges (NCI).
Synthetic oligodeoxynucleotides containing 2,AP substitutions
either as primers or as 106-nt-long chains were purchased from

Basepair openings in transcription initiation
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Sigma-Genosys or Trilink BioTechnologies. The 106-nt-long poly-
mers were purified by polyacrylamide gel electrophoresis.

Preparations of DNA templates containing 2,AP
DNA duplexes (�75 to þ 30) for fluorescence measurements
were prepared fresh before use. They were made by mixing 10ml
of each complementary oligo (10mM) with 10ml of 500 mM Tris–
HCl, pH 7.5, containing 100 mM MgCl2 and 1 M NaCl. The total
volume was adjusted to 100ml with water. Hybridization was
carried out by raising the temperature of the mixture to 951C for
5 min and slowly lowering the temperature (11C/100 s) to 251C
using a PCR machine. DNA templates for the electrophoretic
mobility shift assays were further purified after hybridization
by 8% polyacrylamide gel electrophoresis. The 2,AP-containing
DNA templates were also prepared by PCR, in which one of the
primers was the 2,AP-containing synthetic oligomer. The second
primer corresponded to the segment downstream to a transcription
terminator (Figure 1). The DNA templates for PCR reactions
were plasmid pSA509 containing a 288-basepair segment of
the gal control region (�197 to þ 91; Figure 1) followed by a
transcription terminator (Choy and Adhya, 1993). After the PCR
reaction, the 358-basepair DNA fragments were purified by
electroelusion (BioRad) followed by ethanol precipitation. The
358-basepair-long PCR DNA templates generated a 125-nt-long RNA
transcript from the galP1 promoter in in vitro transcription
reactions. All DNA templates contained the following changes to
inactivate the P2 promoter: �16A-T, �17G -T, �18T-C and
�19G-T.

In vitro transcriptions
In vitro transcription reactions were performed at 251C in a 50ml
volume. The initial reaction mixture (45ml) contained 10 nM DNA
template, 20 nM RNA polymerase, 20 mM Tris-acetate, pH 7.5,
10 mM magnesium acetate, 200 mM potassium glutamate and 40 U
rRNasin (Promega). CRP, when present, was added to the initial
reaction mixture at 50 nM. cAMP concentration was 1mM. The
initial mixtures were incubated at 251C for 20 min, and 5ml of NTP
(2 mM of ATP, GTP and CTP, 0.2 mM UTP and 5 mCi a 32P-UTP) was
added. The mixtures were further incubated for 10 min at 251C, and
the reaction was terminated by the addition of 50ml of the STOP
solution (BRL). Samples were boiled for 2 min and 3 ml of each
sample was loaded onto 8% polyacrylamide-urea sequencing gels
to analyze the RNA. Quantitation of the transcripts was done by
PhosphorImager.

EMSA
A volume of 1ml of appropriately diluted RNA polymerase was
mixed with 2 ml of 32P-labeled DNA fragments (200 pM) and 2ml of
the binding buffer (100 mM Tris-acetate, pH 7.5, 50 mM magnesium
acetate and 1 M potassium glutamate) in a total reaction volume of
10ml. The reaction mixtures were incubated at 371C for 10 min,
followed by the addition of 1ml of heparin (0.5 mg/ml). The entire
reaction volume was loaded onto 4% polyacrylamide gel for
electrophoresis.

2,AP fluorescence measurements by stopped-flow mixing
For rapid fluorescence measurements of base opening, a stopped-
flow spectrometer with fluorescence detection (Applied Photophy-
sics, SX 18MV) was used. A volume of 500ml each of RNA
polymerase (200 nM) and DNA template (600 nM) in 2� transcrip-
tion buffer was set up in separate syringes. In all, 25ml of each
reagent was rapidly mixed (6.0 ml/s) in the reaction chamber at
a time. Upon the loading of each reagent onto the stopped-flow
device, 10 measurements were performed consecutively. The

reaction was excited with 315 nm and emission at 370 nm was
measured for 10 s. Reactions were prepared and measured at 251C.
The kinetic data of fluorescence were automatically processed,
analyzed and saved onto a hard disk of the computer connected to
the spectrofluorometer.

2,AP fluorescence measurements by manual mixing
Fluorescence measurements were performed in a Perkin-Elmer
Luminescence Spectrometer LS 50B and a, RTC-2000/SE spectro-
fluorometer from Photon Technology International. Samples were
excited at 320 nm (10 nm slit width) and the emission spectra of
370 nm (15 mm slit width) were measured. Prior to the measure-
ments, the temperatures of all the reaction components and
instruments were equilibrated at 251C. The fluorescence measure-
ment and the binary complex formation were executed at 251C. The
binary complex formation between the promoter and RNA
polymerase was initiated by mixing 50ml DNA template (1 mM)
and 10ml RNA polymerase (5mM). The buffer was 0.05 M Tris–HCl,
pH 7.5, containing 0.1 M NaCl and 10 mM MgCl2. As a control,
50ml of the same DNA (1mM) was mixed with 10ml of the
RNA polymerase storage buffer. Immediately after the mixing
(time 0), both reactions were transferred to cuvettes (Hellma Cells,
0.300). The emission spectra from both samples were recorded
alternately every 15 s for 2000 to 4000 s by employing a motorized
4-position turret cuvette holder. To compensate for the machine
error, such as machine drift, the fluorescent values of the
experiment (DNAþRNA polymerase) were divided by those of
the control (DNAþRNA polymerase storage buffer) to calculate the
fluorescence ratios. We assumed that the kinetics of binary complex
formation is very rapid at the concentrations used (Knaus and
Bujard, 1990). This is likely to be the case as the concentration of
RNA polymerase and DNA is several-fold greater than a KB

�1 value
of 2.5�10�7 obtained from abortive initiation experiments (Lavigne
et al, 1992), and the on-rate measured for most promoters is around
108 M�1 s�1 (Knaus and Bujard, 1990). Under these conditions,
there is a rapid formation of the initial complex that then isomerizes
by the first-order kinetics. Sigma plot 4.0 was used to fit the
fluorescence data. The rate constants of the open-complex
formation were calculated by fitting the fluorescence ratio to the
equation f¼ y0þ a(1�e�bt), where f is the ratio at time t, y0 is the
initial ratio, a is the observed amplitude and b is the apparent first-
order rate constant (kapp) of basepair opening. The rate constant
kapp is related to the true first-order rate constant (k) by the
relationship kapp¼ kKaDT/(1þKaDT)þbk, where Ka is the associa-
tion constant and DT is the total DNA concentration. This
relationship was obtained because of a rapid equilibrium between
free DNA and the closed complex, the total DNA concentration
being greater than that of total RNA polymerase. Although the
formal concentrations of DNA and RNA polymerase were the
same, the active fraction of RNA polymerase used was only 20%
fulfilling the above condition. The value of b was determined by
carrying out the reaction at two different DNA concentrations for
three different templates. The obtained values for different
templates were remarkably close. The average value and standard
error obtained was 0.29570.057. This value for b was used
to obtain the value of the forward rate constant for all the
templates from kapp.
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Újvári A, Martin CT (1996) Thermodynamic and kinetic measure-
ments of promoter binding by T7 RNA polymerase. Biochemistry
35: 14574–14582

Wu P, Nordlund TM, Gildea B, McLaughlin LW (1990) Base stacking
and unstacking as determined from a DNA decamer containing a
fluorescent base. Biochemistry 29: 6508–6514

Xu D, Evans KO, Nordlund TM (1994) Melting and premelting
transitions of an oligomer measured by DNA base fluorescence
and absorption. Biochemistry 33: 9592–9599

Basepair openings in transcription initiation
S Roy et al

&2004 European Molecular Biology Organization The EMBO Journal VOL 23 | NO 4 | 2004 875


