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Solvation dynamics of a charge bubble in water
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Abstract. A microscopic theory is used to calculate the solvation-time correlation
function, (S(t)), of a light, non-stationary charge bubble in water. The calculated
correlation function is found to be similar to the energy-time correlation function of
asolvated electron. The ionic mobility of a charge bubble of the size of the hydrated
electron is also calculated. It is found that the mobility of the charge plays a very
important role in its own solvation.
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1. Introduction

In this work we present a microscopic calculation of the solvation dynamics of a light
(nearly massless) non-stationary charge bubble in water. The bubble is characterized by
a spherical shape which is uniformly filled by a charge of 1 esu. The bubble interacts
with water molecules (which are assumed to be dipoles) through charge—dipole
interaction. This model has been introduced to mimic some aspects of an electron in
water and has been partly motivated by the interesting electro-hydrodynamic model of
electron solvation introduced recently by Rips (1995). We have calculated the solva-
tion-time correlation function (S(t)) of this system. The new aspect of the present study
is the systematic incorporation of the self-motion of the solute. The calculated S(t) is
surprisingly similar to the solvation energy correlation function of a solvated electron
obtained via quantum simulations by Rossky and coworkers (Schwartz and Rossky
1994). While it is probable that this similarity is purely fortuitous and that the present
fully classical calculation has no connection with electron solvation dynamics, there is
still the possibilty that it is the same long wavelength dynamics that contributes to

Initial solvation in both the systems. The present theoretical calculation incorporates

the long wavelength polarization response of the liquid correctly.

2. Theoretical formulation

Both in experiments and in computer simulation studies the time-dependent progress
of solvation of a probe solute is described either in terms of the solvation time
correlation function (S(z)) or the solvation energy—energy time correlation function
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(Cgg()). The solvation time correlation function, S(f) is defined as usual by the
following expression (Bagchi et al 1984),

_ Esolv(t) _ Esolv(oo)
S(t) B Esolv(o) - Esolv(oo) ’ (1)

where E,, (1) is the time-dependent solvation energy of the probe at time t and E,;, (o0)
is the solvation energy at equilibrium. The energy—energy time correlation function,
Cgp(t) is defined by the following expression (Nandi et al 1995),

_ (AE(AE()

where AE(t) is the fluctuation in the energy difference between two levels. It is usually
stated that S(t) and Cgg(t) are the same within the linear response of the liquid.
However, for solvation of electron, S(t) and Cgg(2) can be considerably different. Here
we calculate Cgg(¥).

In order to study the time-dependent progress of solvation in liquids like water, we
need a theory that properly includes the dynamic response of the liquid and also the
coupling of the probe solute to the solvent. The present theoretical formulation is based
on the well-known density functional theory (DFT) and has been discussed many times
earlier (Nandi et al 1995; Biswas and Bagchi 1996), so we give only the bare essentials
here. Let us consider a system where the charge bubble is translationally mobile and the
surrounding dipolar molecules are free to rotate and translate. All these motions can
contribute to the process of solvation of the charge bubble. One can then use the DFT
to obtain a general free energy functional (of density) from statistical mechanics. The

free energy functional leads to the following expression for the time-dependent
solvation energy (Nandi et al 1995)

E(r,t) = —kpThy(r,1) jdr'dQ’ Cy_ g, ¥, Q) op(r, Q) 1), (3)

where n,(r,?) is the probability that the charge bubble is at position r at time ¢, and
dp(r,Q,1) is the fluctuation in the position (r), orientation (Q) and time (t)-dependent
number density of the dipolar solvent. ¢, _ ,(r,',Q') is the bubble—dipole direct correla-
tion function (DCF) (Chan et al 1979) and k, T is Boltzmann constant (kp) times the
absolute temperature (T). Note that in this expression, the coupling between the ionic
solute and the dipolar solvent enters through ¢, _ (k). At large distances from the solute
this term gives the usual coupling between the electric field of the ion and the dipole
moment density. At small distances it includes the molecular aspects and the equilib-
rium distortion of the solvent due to the polar solute. Note that (3) leads to an
ngzelzssion of solvation energy that includes the effects of self-motion of the charge
ubble.

At this point one should justify the use of (3) to obtain the time-dependent solva-
tion energy of the charge bubble which arises mainly due to the coupling of the
electric field on the charge bubble with the solvent polarization mode. We have
assumed that the main interaction of the bubble with the surrounding water dipoles
is electrical in origin. However, it is also assumed that the bubble on the average
retains its spherical shape. The latter is possible because of a short range soft-
sphere type repulsive interaction between the bubble and the water molecules.
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In the calculations presented here, we assume that the bubble-water molecule
correlation function is given by the mean spherical approximation (MSA) model
which is equivalent to assuming a hard core repulsive short range potential. The
nature of the effective potential operative between the charge bubble-water dipole
pair is given as follows

Gp_4)=0, r<(o,+ O'Hzo)/Z, 4)
and

Cp—ar)= = Blafx/r®), 1 >(0y+0y,0)/2, )

where g, _,(r) describes the space (r)-dependent radial distribution function between the
charge bubble and the water dipoles and ¢, _ ,(r) is the bubble-dipole direct correlation
function in real space. g is the charge on the bubble and u is the dipole moment of
a solvent molecule positioned at r from the centre. The use of the above MSA-type
closure is reasonable because of the uniform charge distribution. We calculate the
¢, 4 using the mean spherical approximation (MSA).

We use (3) as a starting point to calculate the solvation-time correlation function,
S(t). The steps necessary for arriving at the final expression of () have been discussed
in detail in many of our earlier studies (Nandi et al 1995) and thus we give here only the
final expressions. The solvation energy—energy time correlation function (EETCF) is
given as follows.

ceme)y -4 [

dkk?|cy2 ()1 Sy(ks 1) Sorvent s £, (6)
0

where V' is the total volume of the system. S,(k,t) is the self-dynamic structure
factor of the bubble and S,,,.,,(k, t) is the dynamic structure factor of the solvent.
The analytical expressions for these two functions have been given elsewhere
(Nandi et al 1995). The final expression of the solvation time correlation function
is obtained by following the steps outlined elsewhere (Biswas and Bagchi 1996) and
is given by
[ dkk?|cf (R L1 — e, ())1S,(k 0%~ [z + Z(k, )]
Cee(0) = © AL 12 (10 |2 )
.[0 dkk?|cy2 4 1*[1 = 1/e (k)]
The important ingredients to calculate Cgg(t) from (7) are the bubble—dipole direct
correlation function (¢, _ ;), the self-dynamic structure factor (S, (k, t)), the static orienta-
tional correlation function (g, (k)) and the generalized rate X(k,z) of polarization
relaxation. This rate is given by, (Nandi et al 1995; Biswas and Bagchi 1996),

2
Sk, )= 2k Tf, (k) N l;:ETk fu(k) ,
ITz+Tg(k,2)] ma*[z+T(kz)]
where I is the average moment of inertia of a solvent molecule of diameter ¢ and mass
m. T'p(k, z) and I';.(k, z) are the rotational and the translational dissipative kernels,

respectively. The longitudinal components of the static structural correlations of the
pure solvent are expressed by (Bagchi and Chandra 1991)

Jo(k) =1—(po/4m)c(110; k), )

where ¢(110; k) denotes the (110) th component of the direct correlation function in the
intermolecular frame with k parallel to z axis. f; (k) is also related to the longitudinal
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part of the wave-number dependent dielectric function, ¢, (k), by the following exact
relation (Bagchi and Chandra 1991),

1 3Y

TRAT) (19

3Y is the polarity parameter of the pure solvent which can be calculated from the
number density (p) and dipole moment (u) of the solvent as follows,
3Y =4n/3 x (kT)™'u?p. For the self-dynamic structure factor, we assume here that
S, (k, t) = exp (— D4k?t), where D’ is the translational self-diffusion coefficient of the
bubble. This has been calculated self-consistently as described below.

3. Calculational procedure

The accurate calculation of the frequency kernels is a non-trivial exercise. These
quantities are crucial in determining the time scale of the time-dependent solvation of
a solute—be it ionic or dipolar. We have calculated the I'g(k, z) directly from the
experimentally available dielectric relaxation data and far-infrared (FIR) lineshape
measurements of water. In order to do so we approximate I (k, z) by its k = 0 limiting
value (Biswas and Bagchi 1996). The connecting relation between the I'x(k, z) and the
frequency-dependent dielectric function, &(z), is as follows (Biswas and Bagchi 1996),
ks T _ (o= 1) z[e(z) —n*] m
I[z4+Thk=0,2] 3Yn* ey—e(z) °
where ¢, and n* are static and optical dielectric constants of water, respectively. In the
present calculations, Iy (k, z) for water has been obtained using the above relationin the
following way. The frequency-dependent dielectric function, g(z) in the low frequency
regime is described by two Debye relaxations with time constants equal to 8-3 and 1-3
ps, while at high frequency &(z) derives major contributions from the librational and
intermolecular vibrational motions of the hydrogen-bonded network. These high
frequency motions appear as three peaks around 700, 200 and 50 cm ™ * as found in FIR
line-shape studies. I';(k, z) has been obtained using the known value of the respective
translational diffusion coefficient, D,. For water, additional contributions from the
intermolecular vibrations have also been taken into account; details of this have been
discussed elsewhere (Biswas and Bagchi 1996).

The static bubble-dipole direct correlation function, ¢z ,(k) is obtained using the
mean spherical approximation (MSA) given by Chan et al (1979) in the limit of zero
ionic concentration. The other important input is ¢(110;k) which has again been
obtained from MSA corrected for the limits of both k —0 and k— oo by using the
XRISM results of Raineri et al (1992). The details are available elsewhere (Nandi et al
1995; Biswas and Bagchi 1996). We have used T =298 K in all the calculations.

In order to include the self-motion of the bubble, we need to find the friction onit.
This 15 calculated by using the following mode-coupling theory expression (Sjogren
and Sjolander 1979){(z) = (.. + { pr(z), Where { .. is the bare friction on the ion acting
from collisons. The expression for the frequency dependent dielectric friction, { () is
given as follows (Biswas et al 1995; Biswas and Bagchi 1997)

2k, Tp, [© ®
Lopl) =522 J dte"'f Ak kel ) Sy (kS (). (1)
0 0
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Figure 1. Calculated equilibrium solvation-time correlation function of a light,
mobile charge bubble is compared with that of a solvated electron — the latter was
obtained by Schwartz and Rossky (1994) via quantum simulation. The solid line
represents the decay of the calculated function with D4 = 22 x 10~ *cm?s L. filled

circles represent the simulated results (non-equilibrium) of Schwartz and Rossky
(1994).

For the light bubble considered here {hare = 0. The friction, therefore, originates fully
from the interaction with solvent polarization and has been calculated by a self-
consistent calculation. We find that
k,T
Db = —12— =22x10"*cm?s7 !,
which is approximately four times larger than that of the solvated electron in water.
Clearly the bare term is important, neglect of which has led to such high values.

4. Results and discussion

In figure 1 we plot the calculated equilibrium solvation time correlation function (S ®)
of the mobile charge-bubble in water. The diameter of the charge-bubble is taken as
that of a bromide (Br ~) ion. Thus the solute-solvent size ratio is 1-3. The calculated S (®
shows a pronounced biphasic character. For comparison, we also plot the computer
simulation results on electron solvation in water. There are several points to note. First,
as the short time part of the calculated S(f) is governed by the small wave-number (that
is, k —0) processes, the initial part of S(f) is insensitive to the size of the probe. Second,
the short time decay is also rather insensitive to the value of D%, although the long time
part is sensitive to it.

There could be several reasons for the observed numerical agreement with electron
solvation dynamics. The short time part of both may derive contribution from the long
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wave-length modes. In the long time, quantum effects such as non-adiabatic transitions

may play a role in electron solvation. For classical charge bubble, this is compensated
by the enhanced translational self-diffusion.

The present theory neglects any change in the size and shape of the cavity. It is also
possible that an extra relaxation channel of the equilibrium correlation function is
made available through the fluctuation of the cavity size and the shape. Some of these
effects were included in the hydrodynamic model of Rips (1993)
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