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An outstanding problem in the theory of ionic conductivity is a derivation of the well-known
Hubbard–Onsager–Zwanzig expression for the dielectric friction on an ion from first principles. In
fact, microscopic theories have repeatedly failed to reproduce the Hubbard–Onsager–Zwanzig
expression under any limiting conditions. We show in this article that the existing molecular
theories and the continuum model treatments calculate two entirely different contributions to the
friction on the ion. While the former calculates the contribution from the solvent density mode
alone, the latter includes only the contribution from the current mode. Thus the existing molecular
theories can never be reduced to the Hubbard–Onsager ~H–O! theory. In addition, we show that the
existing molecular theories become inconsistent for larger ions where the H–O theory is accurate.
The reverse is true for smaller ions. An expression is derived here which is valid at both the limits
and for all ion sizes and its consequences discussed. © 1998 American Institute of Physics.
@S0021-9606~98!50234-6#
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I. INTRODUCTION

The ionic conductivity of a dilute electrolyte solution is
usually described by the following well-known Debye–
Huckel–Onsager expression1

L~c!5L02~A1BL0!Ac, ~1!

where L0 is the limiting ionic conductivity which is obtained
by extrapolating the concentration c to zero. A and B are the
two constants determined by the properties of the system.

The limiting ionic conductivity (L0) is, therefore, deter-
mined solely by the ion–solvent interactions. In other words,
L0 is determined by the friction, z, exerted by the solven
molecules on the ion. The total friction is usually divided
into two additive parts. The first is the usual friction due to
the viscosity of the medium and is assumed to be given by
Stokes law. The second part is assumed to be given by the
interaction of the electric field of the ion with solvent polar-
ization and is termed as the dielectric friction (zDF), a name
coined by Born2 many years ago. However, a theoretical
calculation of this dielectric friction has turned out to be a
very difficult task. There are several simple expressions that
exist in the literature which have been derived through the
formulation and analysis of so-called electro-hydrodynamic
equations. Two well-known expressions are due to Zwanzig3

and Hubbard and Onsager4. The expression due to Zwanzig
is given, for the slip boundary condition, by

zz,DF~slip!5
3
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a!Also at the Jawaharlal Nehru Center for Advanced Scientific Research,
Jakkur, Bangalore; electronic mail: bbagchi@sscu.iisc.ernet.in; FAX: 91-
80-334 1683; 91-80-331 1310
3980021-9606/98/109(10)/3989/5/$15.00 

Copyright ©2001. A
wheree0 and e` are the zero and the infinite frequency di-
electric constants, respectively,tD is the Debye relaxation
time constant of the dipolar solvent, Rion and q are the radius
and the charge of the ion. Zwanzig also obtained the value of
the friction for the stick boundary condition where only the
prefactor of Eq. ~2! increased from 3/16 to 3/8.

In the Hubbard–Onsager ~H–O! theory,4 there are two
somewhat different expressions which have been used. The
first is a perturbative expression which is of the same form as
Zwanzig’s expression, except the prefactors are different and
smaller. In the H–O theory, the prefactors are 17/280 and
1/15 for the slip and the stick boundary conditions, respec-
tively. These perturbative expressions, with small prefactors,
fail to predict a saturation in the value of the dielectric fric-
tion when the ion size becomes smaller than the size of the
solvent molecules—a feature termed to be inconsistent with
the hydrodynamic calculation. A more thorough analysis of
the Hubbard–Onsager equation does yield a saturation effect
in the dielectric friction of small ions; however, the underly-
ing physical mechanism involved a rather subtle interplay
between electrical and hydrodynamic forces. Subsequently, a
more physical expression in terms of viscoelectric effect was
derived by Hubbard and Wolynes5 in terms of a position
~from the ion! dependent or local viscosity. This expression
gives the desired saturation effect and also a much better
agreement with the experimental results for large ions. The
basic expression still resembles that of Zwanzig. The prob-
lem with small ions, however, remains unsolved. The pre-
dicted ion size dependence remains physically unrealistic for
small ions.

Recently, a microscopic approach has been developed
which proceeds on an entirely different line.6–9 Here the di-
electric friction is determined by using the force–force cor-
relation function. The final expression is given by a sum of
three terms
9 © 1998 American Institute of Physics
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zmol5zbin1zrr1zmic,DF, ~3!

where zbin is the friction due to the binary interaction be-
tween the solute and the solvent molecules, the second term,
zrr is the contribution to the friction due to the collective
solvent number density fluctuation. Detailed expressions for
these two terms have recently been presented. It is the third
term, zmic,DF, which is of interest in the present study. This
term gives the friction due to coupling of the ion with the
orientational polarization of the dipolar solvent.6–9 The mag-
nitude of the dielectric friction for small ions appears to be of
the right magnitude. A significant aspect of the microscopic
theory is that both ultrafast solvation and the self-motion of
the ion play important roles in accelerating the relaxation of
the frictional force on the ion and thereby in reducing the
magnitude of the dielectric friction.9

In view of the relative success of the microscopic theory,
one asks the following question that has been repeatedly
raised in the past. Is it possible to reduce the microscopic
expression of the dielectric friction to that of Hubbard–
Onsager–Zwanzig? The answer seems to be negative. This is
to be contrasted with the case of the rotational dielectric
friction where the molecular expression neatly goes over to
the continuum model expression under the proper
conditions.10 The failure of the molecular expression to re-
produce the correct continuum model expression has re-
mained an enigma in this field.

We show in this article that the existing microscopic
theory can never be reduced to the continuum model simply
because the two theories calculate two entirely different con-
tributions to the friction. While the continuum model focuses
on the contribution arising from the polarization current
term, the molecular theories calculate the contribution from
the density term. The final expression for the total friction is
given by

1

z
5

1

zbin1zrr1zmic,DF
1

1

zhyd1zhyd,DF
, ~4!

wherezhyd and zhyd,DF are the hydrodynamic friction ~with-
out the polar contribution! and the hydrodynamic ~polariza-
tion current! dielectric friction. A derivation of this term is
provided in Sec. III . Note here that the relative contributions
of these terms are determined by several factors, the most
important being the ion–solvent size ratio. For large ions, the
second term in Eq. ~4! dominates and one expects to recover
the Hubbard–Onsager–Zwanzig expression. For small ions
~like Li1 and Na1), on the other hand, the first term domi-
nates and the microscopic expression provides the correct
description.

However, there is a serious corollary associated with the
above result. In the microscopic theory, the contribution of
zbin1zrr is equated with 4ph0Rion , whereh0 is the solvent
viscosity and Rion is the radius of the ion. This is clearly
inconsistent, even though for some intermediate size ions
~like Cs1 in water!, the two terms are numerically close.
This inconsistency becomes glaring for small ions, like Li1.
We shall come back to this point in Sec. IV.

Equation ~4! provides the marriage between the two dis-
joint approaches to limiting ionic conductivity. It clearly
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shows that the friction on a large ion is dominated by hydro-
dynamic forces while microscopic solvent fluctuation effects
dominate the friction for small ions.

The organization of the rest of the paper is as follows.
Section II deals with the strategy of obtaining continuum
results from a microscopic theory. Section II I contains the
derivation of Eq. ~4!. Finally Sec. IV concludes with a brief
discussion of the results.

II. STRATEGY FOR DERIVING CONTINUUM RESULTS
FROM MOLECULA R THEORIES

The success of a molecular theory is often judged by its
ability to reproduce the correct phenomenological theory. In
the present context this implies that the microscopic ap-
proach adapted here should be able to reproduce the con-
tinuum model results. We shall give two examples here to
stress this point. In the case of the dielectric friction on a
rotating dipole the microscopic expression could be success-
fully reduced10 to the continuum model expression of
Nee–Zwanzig–Hubbard–Wolynes.11 Another example of
such a reduction is provided by molecular hydrodynamics.
The mode-coupling theory expression for the translational
friction correctly goes over to the Stokes’ hydrodynamic re-
lation ~with the slip boundary condition! when the size of the
tagged particle is much larger than that of the solvent
molecules.12,13 In all the above cases, the following strategy
has been used.

~i! The response of the liquid is Markovian with only
one relaxation time. For the case of the rotational dielectric
friction, this is the Debye relaxation time of the dielectric
function while in the case of the translational friction, it is
the viscous relaxation time of the transverse momentum cur-
rent autocorrelation function.

~ii ! The pair correlation function between the solute and
the solvent molecules is replaced by the asymptotic limiting
result. For example, for the rotational dielectric friction, it is
the dipole–dipole direct correlation function, cd2d(k) which
is replaced by its asymptotic form. In the Gaskell–Miller12

reduction of the mode coupling expression to the slip hydro-
dynamic result, it was the form factor which takes the form
of a step function. Subsequently, the same derivation has
been carried out in a more microscopic manner where the
relevant vertex functions are replaced by simple forms.13

~iii ! One neglects the self-motion of the solute mol-
ecules.

However, this strategy fails completely when one tries to
derive the continuum model expressions for the translational
friction from the microscopic theory of Wolynes.6,7 As noted
by Wolynes himself, the main problem is that the relevant
correlation functions vary too strongly for any continuum
limi t to exist.7 Earlier, I presented aderivation of Zwanzig’s
result by following the strategy outlined above.8 However, in
order to obtain a limiting result, it was necessary to replace
the wave vector dependent screening term @121/eL(k)# by a
Lorentzian term of the following form8

12
1

eL~k!
5S 12

1

e0
D @11~kl!2#21, ~5!
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where l is a fitting parameter. Under these approximations
one recovers an expression for dielectric friction of the fol-
lowing form:8

zDF5
q2

3r ion
3 S 12

1

e0
D tL , ~6!

wheretL is the longitudinal relaxation time obtained from
the solvent dielectric relaxation parameters as follows: tL

5(e` /e0)tD . This expression is close to that of Zwanzig’s.
Note, however, that the above reduction is flawed be-

cause @12eL(k)21# is an increasing function of k at small
wave numbers! We have presented the above analysis to em-
phasize the conceptual and analytical difficulty one faces in
reducing the microscopic expression to the continuum limit.

III. THE MICROSCOPIC DERIVATION

There are several ways to derive Eq. ~4!. The simplest
one is to appeal to fluctuating hydrodynamics,14 which pro-
vide the following equations for the time dependence of the
tagged particle number density ns(r ,t) and the current term
J(r ,t)

]ns

]t
52¹.J~r ,t !, ~7!

J~r ,t !52Dmic¹ns~r ,t !1JR~r ,t !, ~8!

where Dmic is the microscopic diffusion term determined by
the short range interactions between the ion and the solvent
molecules. The term JR is the source of thermal fluctuations
which wil l be neglected here.

Equations ~7!–~8! have a nice physical meaning. The
position of the tagged particle can change either by interac-
tions with its immediate neighbors, which wil l cause Brown-
ian motion of the particle, or by the coupling of the particle
to the natural currents of the liquid. These two stochastic
processes occur at different length scales. While the former
is determined primarily by the structural relaxation, and
hence by the molecular dynamics, the latter is determined by
the usual Navier–Stokes hydrodynamics and hence by the
viscosity of the medium. Equation ~8! leads to the following
decomposition of the self-diffusion coefficient:

D5Dmic1Dhyd. ~9!

Note that essentially the same expression has been derived
by several workers before.15,16

It still remains to determine Dmic and Dhyd which are the
real nontrivial problems. In order to determine them, we turn
to the mode-coupling theory which, by itself, also leads to
the form given by Eq. ~4!. The starting point of our deriva-
tion is the following expression for the time dependent
friction:17

z~ t !5
b

mVE d1d2d18d28@ q̂•¹ r 1
v~r12r2 ,V2!#

3Gs~12;1828ut !@ q̂•¹ r 1
8 v~r182r28 ,V28!#, ~10!

where v(r 12r 2 ,V2) is the interaction potential between the
ion and a dipolar solvent molecule. d15dr 1dp1 and d2
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5dr2dp2dV2 where r,p,V denote the position, momentum,
and the orientation of either a tagged solute ~with subscript
1! or of a dipolar solvent molecule ~with subscript 2!.
Gs(12;1828ut) is the resolvent operator which describes the
correlated time evolution of the positions and moments of
both the tagged particle and the surrounding solvent mol-
ecules. That is, as the ion moves from (r1 ,p1) at time t to
(r18 ,p18) at t8, the solvent molecule at (r2 ,p2 ,V2) moves to
(r28 ,p28 ,V28). Thus, the Green’s function describes the time
evolution of the two particle ~coupled solute–solvent! sys-
tem. In Eq. ~10! q̂ is a unit vector in the laboratory fixed
frameb5(kBT)21.

The subsequent steps follow the treatment of Sjogren
and Sjolander17 closely. One first separates the binary inter-
action term. For this derivation we include only the isotropic
part of the short range interaction in the binary term. The
frictional contribution of this binary term is also nontrivial
for continuous potentials but one knows how to deal with it.
The rest of the Green’s function is then expanded into the
hydrodynamic modes which are the conserved variables. For
solutes, they are the density and the momenta as the energy
fluctuations are neglected. For the solvent molecules, the
number density includes the orientational terms as well.

As stated before, we are neglecting the angular momen-
tum relaxation of the solvent molecules. Therefore, the
analysis required here is essentially the same as presented in
Ref. 17. The final expression of the friction can be written as

z~z!5zmic~z!2S zmic~z!

zcurr~z! D z~z!, ~11!

zmic(z) is the microscopic friction given by

zmic~z!5zbin1zrr~z!1zPP~z!. ~12!

zrr(z) is the contribution from the isotropic density fluctua-
tion which would be present even in a nondipolar liquid
while zPP(z) is the contribution from the polarization fluc-
tuation. We can now identify zPP with the dielectric friction
of the molecular theories, that is, with zmic,DF of Eq. ~3!.
zcurr(z) is the natural hydrodynamic term containing a con-
tribution from the current flows. Equation ~11! can be solved
to obtain

1

z~z!
5

1

zmic~z!
1

1

zcurr~z!
~13!

This is essentially the same as Eq. ~4!, so our derivation is
over. But we still need to show that all the terms are avail-
able and that the current term goes over to the Hubbard–
Onsager–Zwanzig form. This is detailed below.

The expression for the two density terms can be obtained
directly from the density functional theory, which leads to
the following expression of the force density on a tagged
ion:7–9

F~r ,t !5kBTnion~r ,t !¹E dr 8dV8cid~r ,r 8,V8!dr~r 8,V8,t !.

~14!

The frictional contribution can be obtained by using
Kirkwood’s formula. This leads to the following expressions
for Rrr and RPP terms:9,13,17
ll Rights Reserved.
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Rrr~ t !5
rkBT

@m~2p!3#
E dk8~ k̂.k̂8!2~k8!2Fs~k8,t !

3@cid
iso~k8!#2F~k8,t !, ~15!

RPP~ t !5
2kBTr

3~2p!2E dkk2Sion~k,t !@cid
10~k!#2Ssolvent

10 ~k,t !,

~16!

where cid
iso(k) and cid

10(k) are the isotropic and the longitudi-
nal components of the ion–dipole direct correlation func-
tions, respectively.18 Ssolvent

10 (k,t) is the orientational dy-
namic structure factor of the pure solvent. In defining these
correlation functions, the wave number k is taken parallel to
the z axis. r0 is the average number density of the solvent.
Fs(k,t) denotes the self dynamic structure factor of the ion.

We next calculate the current term. This can again be
obtained from the elegant treatment of this term by Gaskell
and Miller.12 The current contribution to the friction can be
obtained by projecting the velocity field of the ion on the
binary termrk0 j k , whererk0 is the ion density and j k is the
current of the liquid. The subsequent steps are well
documented—we simply present the final expressions

Rtt~ t !5
b

3r~2p!3E dkFs~k,t !
2 f̂ ~k!

k2
Ctt~k,t !, ~17!

where f̂ is a form factor which takes into account the finite
size of the solute.

The following steps are now employed in the evaluation
of the current term in the hydrodynamic limit:
~i! The current–current time correlation function is given by
the following simple expression:

Ctt~k,t !5Ctt~k,t50!exp~2hk2t !, ~18!

whereh is the viscosity of the medium.
~ii ! The viscosity of the medium is a sum of two terms. The
first term is the usual shear viscosity,h0, of the pure liquid.
The second term is the enhancement of the viscosity due to
the presence of the ion. This is a viscoelectric effect. The
enhancement of the fluid viscosity is given by the following
well-known expression19

h5h0F11 S tD

16ph0
D ~e02e`!2E2G , ~19!

where E is the screened electric field of the ion. The en-
hanced solvent viscosity in the vicinity of the ion is the pic-
ture originally used by Fuoss.6 Thus, one has to deal with a
position dependent or local viscosity given by

h~r !5h0S 11
tD~e02e`!q2

16ph0e0
2r 4 D . ~20!

~iii ! Replace the position dependent viscosity h(r ) by h(r
5Rion), that is, by the value at the surface. This approxima-
tion can be improved but calls for numerical work which
again is not necessary here.
~iv! As mentioned before, neglect the ionic self-motion term,
that is, set Fs(k,t) equal to unity.
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We next follow the treatment of Gaskell and Miller to
obtain the hydrodynamic approximation of the current term.
The following expressions are obtained for the two hydrody-
namic boundary conditions

zcurr54phRion1
1

4

q2

Rion
3 ~12e` /e0!

tD

e0
, ~21!

for the slip boundary condition and

zcurr56phRion1
3

8

q2

Rion
3 ~12e` /e0!

tD

e0
, ~22!

for the stick boundary condition. Note that a continuum
analysis of dielectric friction on an ion which deals with a
local viscosity leads essentially to the same equations, as
was shown earlier by Stiles and Hubbard.20

One can now easily identify the dielectric friction due to
thecurrent term. Theexpressions are identical with the forms
obtained by Hubbard and Onsager but with a prefactor which
is somewhat larger.

It is possible to carry out a full evaluation of the current
term, but at theexpenseof extensivenumerical work because
even after making the continuum modellike approximations,
we need to solve for the current time correlation function in
terms of the position dependent viscosity. When this is done,
the value of the friction is expected to decrease and become
closer to that of Hubbard and Onsager.

IV. CONCLUSION

In this article we have presented a microscopic deriva-
tion of the dielectric friction on a moving ion in a dipolar
liquid. The final expression @Eq. ~4!# provides a‘‘marriage’’
between the two different theories of the dielectric friction.
Equation ~4! is more accurate than either of the two ap-
proaches, but calls for the use of proper evaluation of the
respective contributions.

What are the consequences of Eq. ~4!? First, it provides
the much needed description of the crossover from the struc-
tural relaxation dominated regime for small ions to the hy-
drodynamic dominated regime for large ions. In this cross-
over, all the five terms of Eq. ~4! play an important role. This
was not appreciated before. Second, the scenario is really
interesting for ions with size slightly larger than that of the
solvent. For example, the friction on the lower members of
quarternary alkyl ammonium ions in water and acetonitrile
may involve contribution from bothzmic andzhyd terms. One
should also consider the implication of Eq. ~4! for the time
~or frequency! dependence of dielectric friction.
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