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Abstract

We study the problem of constructing a probability density in 2N -dimensional phase
space which reproduces a given collection of n joint probability distributions as
marginals. Only distributions authorized by quantum mechanics, i.e. depending
on a (complete) commuting set of N variables, are considered. A diagrammatic or
graph theoretic formulation of the problem is developed. We then exactly determine
the set of “admissible” data, i.e. those types of data for which the problem always
admits solutions. This is done in the case where the joint distributions originate from
quantum mechanics as well as in the case where this constraint is not imposed. In
particular, it is shown that a necessary (but not sufficient) condition for the existence
of solutions is n ≤ N + 1. When the data are admissible and the quantum constraint
is not imposed, the general solution for the phase space density is determined explic-
itly. For admissible data of a quantum origin, the general solution is given in certain
(but not all) cases. In the remaining cases, only a subset of solutions is obtained.



I. Introduction

In quantum theory, we usually assume that probability densities for eigenvalues of two
noncommuting observables cannot be measured by the same experimental set up. A
related theoretical question is : does there exist a joint probability distribution of the
eigenvalues of two such observables A and B which correctly reproduces the individual
probabilities for A and for B as marginals (i.e., on integration over the eigenvalues of
the other observable). Perhaps surprisingly, the answer to this question is yes. More
generally, for a system with N configuration space variables q1, q2, . . . , qN , consider
complete commuting sets (CCS) S1, S2, . . . , Sn of observables, each Si consisting of
some coordinate and some momentum variables (where Si and Sj must contain some
mutually non-commuting observables to be considered distinct CCS). Is there a joint
probability density ρ(q1, . . . , qN , p1, . . . , pN ) whose marginals reproduce the quantum
probability densities of the different CCS, S1, S2, . . . , SN? We shall prove that a
necessary condition for this to be possible for arbitrary quantum states is n ≤ N + 1;
this result is a precise no go theorem for simultaneous realization of more than (N+1)
quantum marginals.

Actually, this no go theorem also has applications to the classical arena of joint
time-frequency distributions in signal processing and joint position-wave number dis-
tributions in image processing. It is therefore useful to state the problem in a general
setting encompassing both classical and quantum mechanics.

Consider the general problem of reconstructing a probability density over R
M ,

given a set of n associated joint probability distributions over subspaces of R
M . In this

general setting the problem can be stated as follows. Suppose first that a probability
density ρ(y1, . . . , yM ) is given and define the marginal distributions

σα(Yα) =

∫
dY ′

α ρ(y1, . . . , yM ) (α = 1, . . . , n) , (I.1)

where Yα

⋃
Y ′

α is, for each α, a partition of {y1, . . . , yM}. These joint distributions
obey a set of compatibility conditions. Indeed, let Yαβ be the set of variables that
σα(Yα) and σβ(Yβ) have in common and introduce the partitions Yα = Yαβ

⋃
Y ′

αβ and
Yβ = Yαβ

⋃
Y ′′

αβ. Then eqs. (I.1) imply

∫
dY ′

αβ σα(Yαβ , Y
′
αβ) =

∫
dY ′′

αβ σβ(Yαβ , Y
′′
αβ) . (I.2)

Conversely, suppose that a set {σ1, . . . , σn} of joint probability distributions is given,
which satisfies the compatibility conditions (I.2). Is it always possible to find some
probability density ρ which reproduces them as marginals, in accordance with equa-
tions (I.1)? In the affirmative, how can we “reconstruct” such ρ’s? It turns out that
eqs. (I.2) are in general only necessary conditions for the existence of a positive den-
sity ρ, and our problem is precisely to solve the questions of existence, multiplicity
and explicit determination of the ρ’s (if any).

Actually, we address these questions not in such a general setting, but in the case
where R

M = R
2N is the phase space of some physical system with coordinates yj

identified with conjugate canonical variables {qj , pj}
N
j=1 and where all distributions

σα depend on exactly N variables x1, . . . , xN restricted by the condition xi = qi or pi
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(i = 1, . . . , N). The reason for this choice lies in the motivation of the problem within
the context of quantum mechanics. Indeed, the functions σα just introduced can
then be understood as quantum probability distributions associated with n complete
commuting sets of observables (CCS), selected among 2N possible choices (the 2N

possible assignments of the variables xi). By “quantum probability distributions” is
meant here a set of functions σα(x1, . . . , xN ) derived from a common wave function
〈q1, . . . , qN |ψ〉 (in the Schrödinger representation), in accordance with the formula

σα(x1, . . . , xN ) = |〈x1, . . . , xN |ψ〉|2 (α = 1, . . . , n) , (I.3)

or more generally, for a mixed quantum state described by the density operator ρ̂,

σα(x1, . . . , xN ) = 〈x1, . . . , xN | ρ̂ |x1, . . . , xN 〉 (α = 1, . . . , n) . (I.4)

The problem in this physical framework is directly related to the construction
of “maximally realistic quantum mechanics”, a program initiated by S.M. Roy and
V. Singh in 1995 [1] and intensively pursued since then [2]-[4]. Without entering a
detailed discussion of this relationship from the viewpoint of quantum physics (for
which we refer the reader to [1]-[4]), let us recall the main results gained so far. In [2]
it was shown that for any N ≥ 2, a set of n = N+1 quantum probability distributions
of the special form

{σ1(q1, q2, . . . , qN ), σ2(p1, q2, . . . , qN ), σ3(p1, p2, q3, . . . , qN ), . . . , σN+1(p1, p2, . . . , pN )}
(I.5)

can be realized as a set of marginals of a common phase space probability density
ρ(q1, . . . , qN , p1, . . . , pN ). Further the “no go” conjecture was made that for n ≥ N+2
(and for any choice of n distinct CCS), there exist sets {σ1, . . . , σn} of quantum
probability distributions which cannot be recovered as marginals of some ρ. The
determination of the most general density ρ reproducing the set (I.5), as well as
the status of sets of CCS-distributions different from (I.5) and not necessarily of a
quantum origin (i.e. mutually compatible but not necessarily construed according
to eqs. (I.4)), were left as open questions. In [4], hereafter denoted by (I), complete
answers to these questions were given in the special case N = 2 (see also [3] for a
brief summary). In particular, the general positive solution ρ of the equations





∫
dp1dp2 ρ(q1, q2, p1, p2) = σ1(q1, q2) ,∫
dq1dp2 ρ(q1, q2, p1, p2) = σ2(p1, q2) ,∫
dq1dq2 ρ(q1, q2, p1, p2) = σ3(p1, p2) ,

(I.6)

was worked out for an arbitrary set {σ1, σ2, σ3} (quantum or not) and the “no go”
conjecture stated above was proved for N = 2. In fact, it was shown that a necessary
and sufficient condition for n (≤ 4) arbitrarily given compatible σα’s to be marginals
of a probability density in 4-dimensional phase space is n ≤ 3 (“Three marginal the-
orem”). These results were obtained by first deriving certain correlation inequalities
between the σα’s from the mere existence of a positive and normalized ρ. Such in-
equalities, which are the analogues in phase space of the standard Bell inequalities for
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spin variables [5], turn out to have an interest of their own in the context of quantum
physics, as discussed in [3]-[4].

The generalization of the study performed in (I) to the case of an arbitrary num-
ber n of CCS-distributions of any species in a phase space of arbitrary dimension 2N ,
which is precisely the aim of the present work, is not a straightforward task. It will be
accomplished by means of two main tools : the Bell-like inequalities just mentioned
(it turns out that no new correlation inequalities, proper to the 2N -dimensional case,
are needed for the present purpose) and a specific diagrammatic formulation of the
problem which appears essential both for a concise exposition of our final statements
and for their proof. In this way, we shall be able to treat the problem exhaustively and
to give, in the general case, definite answers to the questions previously posed, in the
form of a clear-cut theorem. This theorem will be stated at once in section II (Theo-
rem 1), after having introduced a set of appropriate definitions. As a by-product, the
theorem affords a proof of the “no go” conjecture for any N (Theorem 2). On the
positive side, it considerably extends early results of Cohen and Zaparovanny [6] for
two marginals with non intersecting sets of variables by simultaneous realizability of
N+1 marginals which have intersecting sets of variables as well. The rest of the paper
(sections III to V) is almost entirely devoted to the (quite long!) proof of Theorem 1,
and is therefore mainly technical. Our concluding comments are presented in section
VI.

II. Definitions and results

In order to give our results a precise and unambiguous form, we introduce the following
definitions:

1. A CCS-distribution (CCS for Complete Commuting Set) in N dimensions is a
probability distribution1 σ(x1, . . . , xN ), with xj = qj or pj for each index j.

The CCS-distributions can occur in 2N different types, each type corresponding
to one choice of the N -tuple of arguments.

2. An n-chain is a set {σ1, . . . , σn} of mutually compatible CCS-distributions of
distinct types. Here, the mutual compatibility conditions (I.2) read, for any pair
{σα(Yα), σβ(Yβ)}, where Yα = {y1, . . . yr, Y }, Yβ = {y′1, . . . y

′
r, Y } and y′j is the

conjugate of yj (y′j = qj or pj according as yj = pj or qj),

∫
dy1 . . . dyr σα(y1, . . . , yr, Y ) =

∫
dy′1 . . . dy

′
r σβ(y′1, . . . , y

′
r, Y ) , (II.1)

Thus, an n-chain is a possible candidate for a set of n marginals, i.e. joint
probability distributions obtained from some phase space probability distribution2

ρ(q1, . . . , qN , p1, . . . , pN ) by integrating over some of the arguments.

The type of an n-chain is defined by the types of its elements.

1Here and in the following, probability distributions are understood as positive normalized mea-
sures, with an absolutely continuous part and (possibly) Dirac measures.

2We shall use sometimes the notation ρ(−→q ,−→p ).
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3. An n-chain is admissible if there exists at least one phase space probability dis-
tribution ρ reproducing all the CCS distributions of the n-chain, namely such that

σα(x1, . . . , xN ) =

∫
dx′1 . . . dx

′
N ρ(q1, . . . , qN , p1, . . . , pN ) , (α = 1, . . . , n)

(II.2)
where x′i is the conjugate of xi. Eqs. (II.2) imply (II.1). Using the notation Zα =
{x1, . . . xN}, Z ′

α = {x′1, . . . , x
′
N}, and dNZ ′

α = dx′1 . . . dx
′
N , (II.2) can be rewritten

as

σα(Zα) =

∫
dNZ ′

αρ(~q, ~p), (α = 1, . . . , n)

4. An n-chain is a quantum n-chain if there exists at least one quantum state
described by the density operator ρ̂ such that eqs. (I.4) hold.

Note that in that case the compatibility conditions (II.1) are automatically satis-
fied.

5. Two CCS-distributions σα and σβ are contiguous if they differ by the assignment
of only one variable xi (to qi and pi), namely

σα(x1, . . . , xi−1, qi, xi+1, . . . , xN ) and σβ(x1, . . . , xi−1, pi, xi+1, . . . , xN ).

We call i the index of the pair {σα, σβ}.

6. To each n-chain we associate a graph which is constructed as follows:

• to every CCS-distribution of the chain, associate a vertex characterized by
the collection of the variables of this distribution,

• connect two vertices by a link if they correspond to contiguous CCS-distribu-
tions. We call index of the link the index of the pair of contiguous CCS-
distributions, and we say that the two vertices are contiguous.

As usual, there are connected and disconnected graphs, tree graphs and graphs
with loops. A graph G completely determines the type of the associated n-chain,
so that we can speak of a chain of type G.

7. An n-chain and its associated graph are said to be proper if no two links have
the same index.

Since there are at most N possible indices, a proper graph has at most N links,
and thus, if it is connected, at most (N + 1) vertices. Furthermore, a graph with
a loop cannot be proper. Therefore, a connected proper graph is necessarily a tree
graph with at most (N + 1) vertices.

8. A graph G is fully admissible if all n-chains of type G are admissible.

A graph G is quantum admissible if all quantum n-chains of type G are admis-
sible.

Full admissibility entails quantum admissibility.

A graph G is non admissible if it is not quantum (and a fortiori not fully)
admissible.
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9. Let a non connected graph G be subgraph of a connected graph Gc. We call
insertions the vertices of Gc which are not vertices of G. Gc is called G-simple
if all its insertions have only two legs.

In the following, in order to shorten the writing, particularly when drawing graphs,
we often replace the variables qj and pj by the indices j and j′ respectively. For
example, to a CCS-distribution σ(q1, p2, q3) we associate the vertex 12′3 in a rectangle
box. As for the inserted vertices, we use instead round boxes, e.g.

�
�

�
�12′3 .

We are now in a position to give a complete characterization of the graphs, or
equivalently of the types of n-chains, according to their (full, quantum or non) ad-
missibility.

Theorem 1

1. If a graph G is proper and connected, then it is fully admissible.

2. If G is proper but non connected, then

a. if G is subgraph of a proper connected graph Gc, then

i. if Gc is G-simple, G is fully admissible,

ii. if Gc is not G-simple, G is quantum, but not fully, admissible.

b. if G is not subgraph of a proper connected graph Gc, then it is non admissible.

3. If G is non proper, then it is non admissible.

This theorem is complemented by the explicit construction of all the phase space
distributions ρ reproducing a given chain of type G, a construction which is completed
only in the case of full admissibility, that is to say when G is either connected and
proper, or subgraph of a connected, proper and G-simple graph Gc (see section IV-
B). In the case of quantum admissibility, when the connected graph Gc is proper but
not G-simple, the situation is not as favorable and the general expression of ρ is not
known (see section V-B-2).

Remarks:

1. Given a graphG, a properGc, when there is one (case 2.a), is in general not unique.
It is a consequence of the theorem that either all the proper Gc’s are G-simple, or
none of them is.

Notice that this is a pure graph theoretic statement.

2. For N = 2, the main result of section IV of (I), which was derived from Bell-like
correlation inequalities, is the following : both in the classical and quantum cases,
there exist 4-chains σ1(q1, q2), σ2(p1, q2), σ3(q1, p2) and σ4(p1, p2) which cannot be
reproduced as marginals of any probability distribution ρ(−→q ,−→p ). In the language
of the present paper, this can be rephrased as :

The non proper graph
12 12′

1′2 1′2′

2

2

1 1 is non admissible.
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This is the simplest case of part 3 of the above theorem, and actually it is the clue
of its proof.

G 1234 1′234 1′2′34

12′3′4′

1 2

Gc
1234 1′234 1′2′34

�
�

�
�12′34

�
�

�
�12′3′4

12′3′4′

..............................................................................................

..............................................................................................

1 2

12

3

4

1234 1′234 1′2′34

�
�

�
�123′4

�
�

�
�123′4′

12′3′4′

1 2

3

4

2

Figure 1: A non connected proper graph G which is not subgraph of
any proper connected graph Gc : G is non admissible. Two possible (non
proper) Gc’s are shown : one with a loop, the other one a tree graph.

G Gc

(a) 1234 1′234 1′2′34

1′23′4′

1 2
1234 1′234 1′2′34

1′23′4′
�
�

�
�1′23′4

1 2

3

4

(b) 1′23

12′3

123′

1′23

12′3

123′

�
�

�
�123

..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
.

............
.............
.............
.............
..............
.........

1

2

3

Figure 2: (a) a non connected proper graph G which is subgraph of a
proper connected G-simple graph Gc : G is fully admissible. (b) a non
connected proper graph G which is subgraph of a proper connected non
G-simple graph Gc : G is quantum but not fully admissible.

An immediate corollary of Theorem 1 is

Theorem 2 (N + 1 Marginal Theorem)

A necessary condition for all quantum n-chains of a given type to be admissible is
n ≤ N + 1.

It suffices to use parts 2.b and 3 of Theorem 1 and to note that G cannot have
more vertices than Gc, and that a proper Gc has at most N + 1 vertices (see the

6



remark after the above definition 7 of proper n-chains and graphs).

Notice that, in contradistinction with the three marginal theorem of (I), the above
theorem gives only a necessary condition. This is because only proper connected
graphs Gc are involved when N = 2 and n ≤ N + 1, whereas non proper connected
Gc’s do appear as soon as N ≥ 3. Of course, for proper connected graphs G for which
n must be ≤ N + 1, part 1 of Theorem 1 guarantees admissibility for N ≥ 3 also.

Theorem 1 will be proved in sections III to V. In order to help understanding its
content, we give in Figs. 1 and 2 examples of the various cases encountered.

III. Non proper graphs

Consider a non proper graph G. By definition, there exist at least two links with
the same index (say 1) connecting a first pair of vertices (V, V ′) and a second pair
(W,W ′). Then there necessarily exists a second index (say 2) such that the variables
x1 and x2 have in the four vertices V , V ′, W and W ′ the assignments as shown in
Fig. 3.

12... 1′2... 12′... 1′2′...11

V V ′ W W ′

Figure 3: Critical quartet in a non proper graph.

Quite generally, in a graph G (proper or not), a set of four vertices where a pair
of variables takes the four possible assignments will be called a critical quartet.

We now prove

Lemma 1 A graph G containing a critical quartet is non admissible.

Given an n-chain {σα}α=1,...,n of type G in N dimensions and a partition of the set
of indices {1, . . . , N} = J

⋃
K, let us introduce the distributions

σ̃α(XJ ) =

∫ ∏

k∈K

dxk σα(XJ ,XK) .

Some of these σ̃α’s may coincide. We call J-reduced n′-chain the maximal set of
n′ distinct σ̃α’s (n′ ≤ n). Obviously, a necessary condition for the n-chain to be
admissible is that the associated J-reduced n′-chain be admissible. Now, consider a
quantum n-chain constructed with a factorized wave function of the form

Ψ(q1, . . . , qN ) = Ψ1(QJ)Ψ2(QK) . (III.1)

Choosing then J = {1, 2}, to be the indices of a critical quartet, our results in (I) (see
Remark 2 after Theorem1) immediately imply the non-admissibility of the J-reduced
4-chain. Hence, the non-admissibility of the n-chain σα itself, and Lemma 1 follows.

This establishes part 3 of Theorem 1, namely that a non proper graph G is non
admissible.
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IV. Connected proper graphs

Let G be a connected proper graph. We establish part 1 of Theorem 1 by associating
to any chain of type G a particular phase space distribution ρ0 reproducing this chain.
The explicit construction of such a ρ0 is described in section IV-A. In section IV-B,
we derive the expression of the most general phase space distribution reproducing the
given chain.

IV-A. Particular solution

Let Cn = {σ1, . . . , σn} be an n-chain of type G. Since G is a proper tree graph with
(n−1) links, there are exactly (N −n+1) variables which have the same assignments
in all the distributions σα. After a possible renumbering of the indices of the xi’s, we
can therefore assume that in σα(x1, . . . , xn−1, xn, . . . , xN ) the assignment of each of
the variables xn,. . .,xN is independent of α. These variables, which will play a purely
passive role, are henceforth denoted collectively by T , whereas T ′ will stand for the
set of conjugate variables {x′n, . . . , x

′
N}.

The solution ρ0(q1, . . . , qN , p1, . . . , pN ) of eqs. (II.2) is constructed as the product
of “vertex functions”, “propagators” and an arbitrary positive function of T ′. The
former elements are defined by the following “Feynman rules”:

1) to each vertex x1, . . . , xN of G, we associate the vertex function σα(x1, . . . , xN )
of the chain Cn,

2) for each link li of G carrying the index i, by using the compatibility condition
(II.1) for the pair {σαi

, σβi
} of contiguous CCS-distributions attached to this link,

we define the integrated distribution

σαiβi
(x1, . . . , xi−1, xi+1, . . . , xN ) =

∫
dqi σαi

(x1, . . . , xi−1, qi, xi+1, . . . , xN ) ,

=

∫
dpi σβi

(x1, . . . , xi−1, pi, xi+1, . . . , xN ) .

(IV.1)
Then, to the link li we associate the propagator

̟i(x1, . . . , xi−1, xi+1, . . . , xN ) ≡





1

σαiβi
(x1, . . . , xi−1, xi+1, . . . , xN )

if (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ Sαiβi
,

0 otherwise ,

(IV.2)
where Sαiβi

is the (essential) support of σαiβi
.

The support properties of the σα’s, σαβ’s and ρ0, and the relations between them
(due to compatibility and positivity) are not innocent in the forthcoming considera-
tions, and we should pay attention to them. However, doing so leads to cumbersome
technicalities which are in fact straightforward generalizations of those developed in
the rigorous proof of Theorem 1 in (I) for the case N = 2. Thus, in this section IV,
we shall ignore such inessential complications.
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The function ρ0 is then written as

ρ0 =

(
n∏

α=1

σα

n−1∏

i=1

̟i

)
ζ , (IV.3)

where ζ(T ′) is an arbitrary non negative function in L1(RN−n+1, dN−n+1T ′) with
normalization ∫

dN−n+1T ′ ζ(T ′) = 1 . (IV.4)

That the expression (IV.3) for ρ0 solves the equations (II.2) results from the following
property:

Let V̂ = x1, . . . , xN be a one-leg vertex of the proper tree graph G and i

be the index of the link l̂ attached to it. Let σ̂(x1, . . . , xN ) be the corresponding
element of the chain Cn. Then

∫
dqi ρ

(n)
0 (−→q ,−→p ) = ρ

(n−1)
0 (q1, . . . , qi−1, qi+1, . . . , qN , p1, . . . , pN )

if xi = qi ,
∫
dpi ρ

(n)
0 (−→q ,−→p ) = ρ

(n−1)
0 (q1, . . . , qN , p1, . . . , pi−1, pi+1, . . . , pN )

if xi = pi ,

(IV.5)

where ρ
(n)
0 is the above defined ρ0 associated to the n-chain Cn, and ρ

(n−1)
0 is

the ρ0 similarly associated to the (n-1)-chain Cn−1 obtained from Cn by removing
the CCS-distribution σ̂. Notice that the reduced chain Cn−1 corresponds to the
reduced graph G(n−1) obtained from G by removing the one-leg vertex V̂ and the

link l̂. Hence ρ
(n−1)
0 = ρ0/(σ̟̂i).

Equation (IV.5) holds because: i) in ρ
(n)
0 the variable xi appears only in the factor

σ̂, ii) the propagator of the link l̂ is precisely the inverse of the integral of σ̂ over xi.

Now, given any σα in the chain Cn, corresponding to the vertex Vα of G, one can
start the reduction G(n) → G(n−1) of the tree graph G(n) ≡ G at some arbitrarily
chosen one-leg vertex V̂ 6= Vα, and repeat it (n − 1) times in such a way that one is
left with the graph G(1) consisting solely of the vertex Vα. To this “peeling process”
G(n) → G(n−1) → . . . → G(1) of tree graphs is naturally associated, via eqs. (IV.5),

a reduction ρ0 ≡ ρ
(n)
0 → ρ

(n−1)
0 → . . . → ρ

(1)
0 of functions ρ

(m)
0 , which eventually

produces

ρ
(1)
0 (x1, . . . , xn−1, T, T

′) =

∫
dx′1 . . . dx

′
n−1 ρ0 = σα(x1, . . . , xn−1, T ) ζ(T ′) , (IV.6)

and hence, by integrating over T ′ :

∫
dx′1 . . . dx

′
N ρ0 = σα(x1, . . . , xN ) . (IV.7)

Notice that, although the order of the repeated integrations over the x′i’s is imposed
by the steps of the peeling process, this order becomes obviously irrelevant in the
above equation: the equations (II.2) are valid for ρ = ρ0 indeed.
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Finally, to illustrate our Feynman rules, let us take as an example the graph G(5)

of Fig. 4. The distribution ρ0 associated to any 5-chain of type G(5) is

ρ0(−→q ,−→p ) = σ1(q1q2q3q4)
1

σ12(q2q3q4)
σ2(p1q2q3q4)

1

σ23(p1q3q4)
σ3(p1p2q3q4)

1

σ24(p1q2q4)
σ4(p1q2p3q4)

1

σ45(p1q2p3)
σ5(p1q2p3p4) .

Here and in the sequel, we keep writing the propagators as 1/σαβ , although they are
strictly given by eq. (IV.2).

1234 1′234 1′2′34

1′23′4′ 1′23′4

1 2

3

4

Figure 4: a proper connected graph with N=4 and n=5.

IV-B. General solution

Let us define the n following positive measures, each one associated to a particular
component σα of the n-chain Cn

dµα =





ρ0(~q, ~p)

σα(Zα)
dNZ ′

α if Zα = (x1, . . . , xN ) ∈ Sα ,

0 otherwise ,

(IV.8)

where Sα denotes the (essential) support of σα. Due to eq. (IV.7) these (x1, . . . , xN )-
dependent measures3 are normalized for all (x1, . . . , xN ) ∈ Sα.

It is convenient to write the general solution ρ we are looking for in the form

ρ = ρ0 (1 + λh) . (IV.9)

Here, the function h(−→q ,−→p ) will be chosen as to ensure eq. (II.2), which results in the
linear equations

∫
dNZ ′

α ρ0(−→q ,−→p )h(−→q ,−→p ) = 0 , (α = 1, . . . , n) , (IV.10)

whereas the real constant λ is a normalisation factor which will be useful to control
the positivity of ρ. Thanks to definitions (IV.8), eqs. (IV.10) are equivalent to

∫
dµα h = 0 (α = 1, . . . , n) . (IV.11)

We then observe that, for any α and any function g in L1(R2N , ρ0 d
Nq dNp)

∫
dµα

(∫
dµα g

)
=

∫
dµα g , (IV.12)

3Notice also that the dµα’s are continuous linear mappings of L1(R2N
, ρ0 dNq dNp) into itself.
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since
∫
dµα g does not depend any longer on the integration variables (x′1, . . . , x

′
N )

and dµα is normalized. That is, the linear operators Pα : L1(R2N , ρ0 d
Nq dNp) →

L1(R2N , ρ0 d
Nq dNp) defined by Pα g =

∫
dµα g are projectors,

P 2
α = Pα (α = 1, . . . , n) . (IV.13)

The set {Pα} enjoys certain algebraic properties which are crucial for the construction
of the general solution h of eqs. (IV.11) :

Lemma 2

a) The projectors Pα and Pβ associated with any pair {Vα, Vβ} of contiguous vertices
commute

[Pα, Pβ ] = 0 . (IV.14)

b) If Vα, Vβ and Vγ, are three vertices of the connected proper (tree) graph G such
that Vα belongs to the (unique) path connecting Vβ to Vγ , and is contiguous to at
least one of these two vertices, then

Pγ Pα Pβ = Pγ Pβ . (IV.15)

The proof is given in Appendix A. We stress that the contiguity of Vα with Vβ or Vγ

is essential for the validity of eq. (IV.15).

Let us now introduce the central object of our construction, namely the operator

Π = 1 −
n∑

α=1

Pα +
n−1∑

i=1

Pαi
Pβi

, (IV.16)

where Pαi
and Pβi

denote the operators P associated with the two (contiguous) ver-
tices Vαi

and Vβi
attached to the link with index i. Thanks to Lemma 2, it is readily

shown that Π is annihilated by all the projectors Pα :

Pγ Π = 0 (γ = 1, . . . , n) . (IV.17)

Indeed :

Pγ Π = Pγ −
n∑

α=1

Pγ Pα +
n−1∑

i=1

Pγ Pαi
Pβi

,

= −Pγ

n∑

α=1
α6=γ

Pα +
n−1∑

i=1

Pγ Pαi
Pβi

.
(IV.18)

But, according to eqs. (IV.15) :

Pγ Pαi
Pβi

= Pγ Pδi
, (IV.19)

where δi = βi (resp. αi) if Vαi
(resp. Vβi

) belongs to the path connecting Vγ to Vβi

(resp. Vαi
). Hence

n−1∑

i=1

Pγ Pαi
Pβi

= Pγ

n∑

α=1
α6=γ

Pα , (IV.20)
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which entails eq. (IV.17) (the property ΠPγ = 0 (γ = 1, . . . , n), which also holds as
a consequence of eq. (IV.15), will not be used here). Note that eq. (IV.20) would not
be valid if the graph G were not connected.

Furthermore, Π is itself a projector :

Π2 = Π , (IV.21)

as immediately deduced from

Π2 = (1 −
n∑

α=1

Pα +
n−1∑

i=1

Pαi
Pβi

)Π

and eq. (IV.17). This operator allows us to write down at once the general solution
of eqs. (IV.11), i.e.

Pα h = 0 (α = 1, . . . , n) , (IV.22)

as
h = Π f , (IV.23)

where f is an arbitrary function in L1(R2N , dNq dNp). That eq. (IV.23) implies
eqs. (IV.22) is trivial due to eq. (IV.17). Conversely, any function h satisfying
eqs. (IV.22) assumes the form (IV.23) : since then h = Πh, it suffices to take f = h.

We now have to give the representation formula for h resulting from eqs. (IV.23)
and (IV.16) an explicit form in terms of the data of the problem, namely the ele-
ments of the chain Cn. For this purpose, it is necessary to use appropriate notations.
First, we denote by Zα the collection of arguments of the vertex function σα, and Z ′

α

the collection of the conjugate arguments (a notation already used in the definition
(IV.8)). Then

(Pαf)(Zα) =
1

σα(Zα)

∫
dNZ ′

α ρ0(−→q ,−→p ) f(−→q ,−→p ) . (IV.24)

Second, we denote by σαi
(Xi, xi) and σβi

(Xi, x
′
i) the vertex functions of the ver-

tices Vαi
and Vβi

, where Xi = {x1, . . . , xi−1, xi+1, . . . , xN}. Accordingly, we write
ρ0(Xi,X

′
i, xi, x

′
i) for ρ0(−→q ,−→p ), where X ′

i = {x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
N}, and so on.

With these notations

(Pαi
Pβi

f)(Xi) =

∫
dN−1X ′

i dx
′
i

ρ0(Xi,X
′
i , xi, x

′
i)

σαi
(Xi, xi)

(Pβi
f)(Xi, x

′
i) , (IV.25)

and

(Pβi
f)(Xi, x

′
i) =

∫
dN−1X ′

i dxi
ρ0(Xi,X

′
i, xi, x

′
i)

σβi
(Xi, x′i)

f(Xi,X
′
i, xi, x

′
i) . (IV.26)

In the r.h.s. of eq. (IV.25), one observes that the integral
∫
dN−1X ′

i ρ0 can be per-
formed explicitly by means of the “peeling process” described in section IV-A :

∫
dN−1X ′

i ρ0(Xi,X
′
i, xi, x

′
i) =

σαi
(Xi, xi)σβi

(Xi, x
′
i)

σαiβi
(Xi)

. (IV.27)
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This equation obtains by stopping the peeling process at the reduced graph made of
the two vertices Vαi

, Vβi
and the link between them. Here appears the propagator

1/σαiβi
with

σαiβi
(Xi) =

∫
dxi σαi

(Xi, xi) =

∫
dx′i σβi

(Xi, x
′
i) . (IV.28)

Then, inserting eqs. (IV.26) and (IV.27) in eq. (IV.25), one gets, after simplifications,

(Pαi
Pβi

f)(Xi) =

∫
dN−1X ′

i dxi dx
′
i

ρ0(Xi,X
′
i, xi, x

′
i)

σαiβi
(Xi)

f(Xi,X
′
i , xi, x

′
i) . (IV.29)

Finally, collecting eqs. (IV.23), (IV.16), (IV.24) and (IV.29), we obtain the expression
of the function h we were looking for

h(−→q ,−→p ) = f(−→q ,−→p ) −
n∑

α=1

1

σα(Zα)

∫
dNZ ′

α ρ0(−→q ,−→p ) f(−→q ,−→p )

+
n−1∑

i=1

1

σαiβi
(Xi)

∫
dN−1X ′

i dxi dx
′
i ρ0(−→q ,−→p ) f(−→q ,−→p ) .

(IV.30)

Equations (IV.9) and (IV.30) provide us with the general solution ρ of the linear
system (II.2). It remains to enforce the positivity of this solution. Let us denote bym+

(resp. −m−) the (essential) supremum (resp. infimum) of h. Because of eq. (IV.10),
m+ and m− are strictly positive when h does not vanish identically. Then, from
eq. (IV.9), the condition ρ ≥ 0 is equivalent to the condition on the parameter λ

−
1

m+
≤ λ ≤

1

m−
. (IV.31)

We stress that the allowed interval [− 1
m+

, 1
m−

] is not zero as soon as the range of

the arbitrary function f is (essentially) bounded. Indeed, assuming that A ≤ f ≤ B
(almost) everywhere, one finds from eq. (IV.30) that m± ≤ n (B −A).

Equations (IV.9), (IV.30) and (IV.31) for ρ constitute the generalization of the
results in section V of (I) (see eqs. (V.8) to (V.10) there) to phase spaces of arbitrary
dimension, in one case of full admissibility (connected proper graphs).

V. Non connected proper graphs

Throughout this section, devoted to the proof of part 2 of Theorem 1, a vertex (or
insertion) with only two legs will be called simple vertex.

V-A. Non proper Gc

Our purpose here is to establish part 2.b of Theorem 1. To this end we first construct
a particular connected graph Gc such that the proper graph G is subgraph of Gc.
By hypothesis Gc is not proper. We then show that this implies the existence of at
least one critical quartet in the graph G. According to Lemma 1, the statement 2.b
immediately follows.
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Let G =
⋃

k Gk be the decomposition of a proper graph G into connected com-
ponents Gk’s. Each Gk is a proper graph, hence a tree. We connectify G recursively
according to the following scheme. Assume we have already connectified the compo-
nents G1, . . . , Gk into a connected diagram Γk. We define Γk+1 as follows. Let us call
segment a linear chain of inserted simple vertices and links, and define its length by
the number of its links. We choose one of the shortest segments which connect Γk to
the component Gr (r = k + 1, . . .). Among the Gr’s we select one, say Gk+1, which
minimizes the length of the attached segment. We call Σk this segment. The diagram
Γk+1 is defined by Γk+1 = Γk

⋃
Gk+1

⋃
Σk.

Note that

1) in the above construction, two contiguous vertices of a Γ are not necessarily linked,
so that the diagrams Γ are not always graphs as defined in section II. The advantage
of this construction is that the Γk’s are trees.

2) the segment Σk is attached to Gk+1 through a vertex of G and attached to Γk

through either a vertex of G or an inserted vertex of Γk (as represented in Fig. 5).
In the latter case, this inserted vertex becomes non simple (if it was simple before).
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Γk Σk Gk+1

Figure 5: the diagram Γk+1

3) there is in general some arbitrariness in the construction of the Γk’s. First, the
recursive process has to be initialized by the choice of one component as Γ1. Next,
in the subsequent steps of the process, there is a possible arbitrariness in the choice
of Gk+1 and its attached segment.

Once this connectification process is completed, we end up with a connected tree
diagram Γc which contains all the components of G. If Γc is not a graph, we obtain a
graph Gc by adding links between all pairs of contiguous vertices which are still not
linked in Γc.

Gc and Γc may coincide or not. In the latter case, it is important to notice that
Gc and Γc are still either both proper or both non proper. This follows from the fact
that i) when going from Γc to Gc, a loop of Gc is created each time one adds a link,
ii) a loop contains at least two pairs of links carrying the same index.

Let us define the diagrams Ωk by

Ωk = Γk

⋃
Gk+1

⋃
Gk+2

⋃
. . .

which satisfy the inclusion relations

Ω1 ≡ G ⊂ Ω2 ⊂ . . . ⊂ Ωc ≡ Γc ⊂ Gc .

Now, by hypothesis Gc, and thus also Ωc = Γc, are non proper, whereas Ω1 = G
is proper. This implies the existence of an integer k such that Ωk ⊂ Ωk+1 with Ωk
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proper and Ωk+1 non proper. From the observation that

Ωk+1 = Ωk

⋃
Σk ,

we deduce that there exists at least one index, say 1, which is carried by just two
links, one l1 in Σk and a second one l′1 in Ωk. The link l′1 may appear either in Γk or
in the components Gk+1, . . . of G, which leads us to distinguish three cases :

a) l′1 ⊂ Gk+1,

b) l′1 ⊂ Γk,

c) l′1 ⊂ Gk+2 or Gk+3 or . . .

We now proceed with a few remarks which will be useful in the forthcoming
argument, although not always explicitly refered to thereby :

1) All the end points (one leg vertices) of the Γk’s belong to G.

2) Any link of a Γk belongs to at least one linear chain with end vertices belonging
to G.

3) On a segment, the indices of the links can be reordered at our convenience. This
should be kept in mind when constructing the Γk’s.

4) Two links carrying the same index cannot be attached to a common vertex.

As a consequence of these last two remarks, since all the Σk’s are shortest con-
necting chains,

5) all segments Σk are proper, and

6) on a connected tree Γk, the (unique) path joining two links carrying the same
index contains either two vertices of G, or one vertex of G and one inserted non
simple vertex, or two inserted non simple vertices.

Case a)

Let V be any vertex of Γk belonging to G, and V ′ be the vertex of Gk+1 where
the segment Σk attaches. Figure 6 exhibits the relevant part of Ωk+1, namely the
linear chain joining the vertices V and V ′, and the linear chain from V ′ to the link
l′1 in Gk+1. Moreover, in accordance with Remark 3), we have attached the link l1 to
V ′. We have also called 2 the index of the other link attached to V ′.
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1 12

V V ′ W ′ W

Γk Σk Gk+1

Figure 6: Case a)

According to Remarks 3) and 4), there is no link with index 2 in Σk. Furthermore,
since Γk

⋃
Gk+1 is proper, no new link of index 1 or 2 can appear in the linear chain
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connecting V to W . As a consequence, the vertices V , V ′, W and W ′ constitute a
critical quartet.

Case b)

The relevant part of Ωk+1 is displayed in Fig. 7. Here, V is a vertex of Γk belonging
to G, such that the (unique) path joining it to Σk contains the link l′1.
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Ṽ ′

W ′

W̃ ′

W

Γk Σk Gk+1

Figure 7: Case b)

The existence of the non simple vertices Ṽ ′ and W̃ ′ results from Remark 6). They
may possibly coincide with respectively the vertices V ′ and W ′ of G. As previously,
no new index 1 or 2 can appear in the chain displayed in Fig. 7, which implies that
the vertices V , V ′, W and W ′ constitute a critical quartet.

Case c)

In that case, the relevant part of Ωk+1 is made of two disconnected parts, as
displayed in Fig. 8. As previously, the non simple inserted vertex Ṽ may possibly
coincide with V .
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Γk Σk Gk+1 Gk+2

Figure 8: Case c)

Let us denote by I the set of indices appearing (each only once) in the links
between V and Ṽ , by J the set of indices appearing in the segment Σk but the index
1, and by K all the remaining indices. We can assume I

⋂
J = ∅ (otherwise the

configuration would also enter the case b)). We further split the sets I, J and K as
I = I1

⋃
I2, J = J1

⋃
J2, K = K1

⋃
K2. Here, I1 and I2 are introduced to separate

the variables which have the same or different assignments in the vertices V on the
one hand and in the vertices W and W ′ on the other hand, and similarly for the
splitting of J and K. Then {1, I1, I2, J1, J2,K1,K2} is a partition of {1, 2, . . . , N},
and the assignments of the variables in the vertices V , V ′, W and W ′ of G, and Ṽ
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take the form 



V = {1I1 I2 J1 J2 K1 K2}

Ṽ = {1I ′
1 I

′
2 J1 J2 K1 K2}

V ′ = {1′ I ′
1 I

′
2 J

′
1 J

′
2 K1 K2}

W = {1I1 I
′
2 J1 J

′
2 K1 K

′
2}

W ′ = {1′ I1 I
′
2 J1 J

′
2 K1 K

′
2}

(V.1)

In these formulas, I1,I2, . . . represent collections of variables q and p. In accordance
with our convention (see sect.II), I1 is written as a set of indices, namely those of I1
but each one being primed or not. As for I ′

1, it is written as a set of the same indices,
non primed (resp. primed) if primed (resp. non primed) in I1. Similarly for the other
sets I2,I

′
2, . . .

Let us define the distance d(U,U ′) between two vertices U and U ′ as the number
of variables with different assignments in U and U ′. Inspecting eq. (V.1), one readily
obtains 



d(Ṽ , V ′) = 1 + j1 + j2 ,

d(Ṽ ,W ) = i1 + j2 + k2 ,
(V.2)

where j1 = card J1, and so on. Since Σk is one of the shortest segments connecting Γk

to one of the components Gk+1, Gk+2, . . ., one must have d(Ṽ , V ′) ≤ d(Ṽ ,W ), which
entails

i1 + k2 ≥ 1 .

This means that the sets I1 and K2 cannot be both empty. If K2 6= ∅, we choose
the index 2 in K2, so that the vertices V , V ′, W and W ′ constitute a critical quartet.
If K2 = ∅, I1 is not empty, Ṽ does not coincide with V , and thus Ṽ is a non
simple inserted vertex, necessarily linked in Γk to a vertex V̂ of G as displayed in
Fig. 8. Choosing now the index 2 in I1, one finds that the vertices V̂ , V ′, W and W ′

constitute a critical quartet.

V-B. Proper Gc

When G is subgraph of a proper connected graph Gc, the latter is a tree graph which
can be decomposed into the connected components Gi of G and connecting segments
Σk, even when Gc does not coincide with the specific graph Gc constructed in the
previous section V-A. One needs to distinguish two cases:

a) all the segments Σk’s are disjoint. Then all insertions are simple and Gc is G-
simple.

b) at least two segments have one common vertex. This vertex is not a simple inser-
tion and thus Gc is not G-simple.

V-B-1. G-simple Gc

Here, as in section IV, we establish part 2.a.i of Theorem 1 by associating to any chain
C of type G a particular phase space distribution ρ0 reproducing this chain. We also
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give the general form of the ρ’s reproducing the chain.

The construction of ρ0 proceeds through the “Feynman rules” of section IV-A,
complemented with propagators associated with the segments of Gc. Let Σ be such a
segment connecting the vertices Vα and Vβ of G, and let r be its length. Let σα(X,Y )
and σβ(X,Y ′) be the corresponding vertex functions of C, where X (resp. Y ) denote
the set of variables which have the same (resp. a different) assignment in σα and σβ.
The compatibility of σα and σβ allows us to define

σαβ(X) ≡
∫
drY σα(X,Y ) =

∫
drY ′ σβ(X,Y ′) . (V.3)

For different segments Σl labelled by the index l, we use the notation σαlβl
(Xl).

To the segment Σl we now associate the propagator

̟l(Xl) =





1

σαlβl
(Xl)

if Xl ∈ Sαlβl
,

0 otherwise ,

(V.4)

where Sαlβl
is the support of σαlβl

. This amounts to consider Σl as a new kind of link
(in the graph Gc) which we call composite link. Then the function ρ0 reads

ρ0(−→q ,−→p ) =

(
n∏

α=1

σα(Zα)

) (
n−1∏

l=1

̟l(Xl)

)
ζ(T ′) , (V.5)

where the second product in the r.h.s. is performed on all links, namely the links of
G and the composite links of Gc. Note that, since Gc is a connected tree, the total
number of links is (n− 1). As for the function ζ(T ′), which is arbitrary but non neg-
ative and normalized, it takes care of the “passive” variables T = {xn, xn+1, . . . , xN}
and their conjugate T ′, as in eq. (IV.3).

The proof that the ρ0 of eq. (V.5) solves the equations (II.2) relies on the “peeling
process” described in section IV-A. Here, this process has to be extended to the case
where the one-leg vertex V̂ introduced there is attached to a composite link. Let
σ̂(X,Y ) be the vertex function of C associated to V̂ , where X (resp. Y ) is the set of
variables whose assignment does not change (resp. changes) through the composite
link. Then eqs. (IV.5) become

∫
drY ρ

(m)
0 (−→q ,−→p ) = ρ

(m−1)
0 (X,X ′, Y ′) , (V.6)

and the rest of the proof is completely similar to that given in section IV-A.

The determination of the general solution ρ of eqs. (II.2) is also carried out along
the lines followed in section IV-B, by using this time the extended peeling process.
The definitions of the measures dµα and of the projectors Pα (which now involve
the function ρ0 of eq. (V.5)) are unchanged. The Lemma2 still holds, though with
an extended acceptation of “contiguity” : two vertices Vαl

and Vβl
of G connected

by a composite link Σl of Gc are declared contiguous. Actually, only minor changes
are needed to generalize the proof given in Appendix A (essentially the substitution
xi → Y ). The operator Π is now defined as

Π = 1 −
n∑

α=1

Pα +
n−1∑

l=1

Pαl
Pβl

, (V.7)
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where the last sum in the r.h.s. is a sum over all links of Gc, composite or not. Its
properties (IV.17) and (IV.21) remain true and, with ρ written as in eq. (IV.9), one
finds that the general solution for h is given again by eq. (IV.23). A change then
occurs in eq. (IV.27) when the two vertices Vαi

and Vβi
there become two vertices Vαl

and Vβl
connected by a composite link. In this case eq. (IV.27) becomes

∫
dN−rlX ′

l ρ0(Xl,X
′
l , Yl, Y

′
l ) =

σαl
(Xl, Yl)σβl

(Xl, Y
′
l )

σαlβl
(Xl)

. (V.8)

One ends up with the following expression of h, generalizing the representation for-
mula (IV.30)

h(−→q ,−→p ) = f(−→q ,−→p ) −
n∑

α=1

1

σα(Zα)

∫
dNZ ′

α ρ0(−→q ,−→p ) f(−→q ,−→p )

+
n−1∑

l=1

1

σαlβl
(Xl)

∫
dN−rlX ′

l d
rlYl d

rlY ′
l ρ0(−→q ,−→p ) f(−→q ,−→p ) .

(V.9)

We remind the reader that, in this formula:

i) f is an arbitrary function in L1(R2N , ρ0 d
Nq dNp);

ii) the first sum in the r.h.s. is over all vertices Vα of G; Zα denotes the collection of
arguments of the vertex function σα and Z ′

α the collection of conjugate arguments;

iii) the second sum is over all links (of length rl), that is the simple links of G and
the composite links of Gc; the definition of the functions σαlβl

occuring in the
sum, as well as the meaning of the collections of variables Xl, X

′
l , Yl and Y ′

l , are
provided by eq. (V.3), which reduces to eq. (IV.28) in the case of a simple link of
index i.

V-B-2. Non G-simple Gc

It remains to prove part 2.a.ii of Theorem 1.

Consider first an arbitrary quantum chain C of type G. The CCS-distributions of
C are then expressed in terms of some density operator ρ̂, in accordance with eqs. (I.4).
But, in this case, a set of CCS-distributions associated with the insertions of Gc can
also be computed through these equations. One thus obtains an extended chain Cc

of compatible CCS-distributions associated with all the vertices of Gc. Since Gc is
proper, the chain Cc is admissible (irrespective of the fact that Gc is not G-simple),
which implies the admissibility of C. Hence the quantum admissibility of the graph
G.

To prove that G is not fully admissible, we show that there are (non quantum)
chains of type G which are not admissible.

By assumption Gc contains at least one insertion V with k ≥ 3 legs, say the vertex�



�
	12 . . . N with legs carrying the indices j = 1, 2, . . . , k. These legs connect V to k

subgraphs G
(j)
c of Gc which are proper connected trees, but mutually disconnected

(otherwise Gc would contain loops). By removing all the insertions, together with
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their legs, from each of the G
(j)
c ’s, we obtain k subgraphs G(j) of G which are proper

(not necessarily connected) trees. The vertices V
(j)
l of each G(j) are of the form

1, 2, . . . , j − 1, j′, j + 1, . . . , k,J
(j)
l , where J

(j)
l represents a set {k+ 1, k+ 2, . . . , N}

of indices, each one being primed or not.

We now use the following lemma, the proof of which is given in Appendix B.

Lemma 3

In a 2k-dimensional phase space with k ≥ 3, there exist k-chains of compatible
distributions {τ1(p1, q2, q3, . . . , qk), τ2(q1, p2, q3, . . . , qk), . . ., τk(q1, q2, . . . , qk−1, pk)}
which are not admissible.

Let us construct a chain C of type G by assigning to each vertex V
(j)
l of G(j)

(j = 1, . . . , k) the CCS-distributions

σ
(j)
l (q1, . . . , qj−1, pj, qj+1, . . . , qk,X

(j)
l ) = τj(q1, . . . , qj−1, pj , qj+1, . . . , qk) σ̃

(j)
l (X

(j)
l ) ,

(V.10)

where X
(j)
l denotes the set of variables xi corresponding to J

(j)
l and the σ̃

(j)
l ’s are

arbitrary probability distributions depending on these variables, only subjected to

the apposite compatibility conditions4. The elements of the chain C = {σ
(j)
l }j=1,...,k;l

are evidently compatible CCS-distributions. Let us pretend that these distributions
are marginals of some phase space density ρ. Then, by defining the reduced density

ρ̃(q1, . . . , qk, p1, . . . , pk) =

∫
dqk+1dpk+1 . . . dqNdpN ρ(−→q ,−→p ) (V.11)

in a 2k-dimensional phase space, one finds that

τj =

∫
dN−kX

(j)
l σ

(j)
l (any l) ,

=

∫
dp1 . . . dpj−1dqj dpj+1 . . . dpk ρ̃ (j = 1, . . . , k) . (V.12)

This would mean that the reduced k-chain C̃ = {τj}j=1,...,k is always admissible, in
contradistinction with Lemma 3. We conclude that there exist chains of type G which
are not admissible.

The two statements in part 2.a.ii of Theorem 1 are now established and the proof
of this theorem is complete.

Finally, we would like to obtain an explicit expression of all the phase space
densities ρ solving eqs. (II.2) for a given quantum chain C of type G, by following
again the method of section IV. However, serious complications crop up in the final
step of the procedure.

First, a particular solution ρ0 is obtained by applying the formula (IV.3) to the
extended chain Cc. Alternatively, one can determine other particular solutions ρ′0
by using, instead of Cc, the chains C′

c obtained from Cc by removing all or some of

4That such σ̃
(j)
l ’s always exist is easy to see, e.g. by choosing completely factorized forms for

them.
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the simple insertions of Gc and applying the procedure of section V-B-1 involving
composite links and their associated propagators. Whatever ρ0 is chosen, we keep
writing the general solution in the form ρ = ρ0(1 + λh), as in eq. (IV.9).

Then a change appears in the determination of the function h, because one does
not have to require the density ρ to reproduce all the CCS-distributions of the chain
Cc (or C′

c), but only those of the given chain C. This means that h should satisfy the
eqs. (IV.22), where the index α now refers to the only elements of the initial chain
C. As a consequence, the form (IV.16) of the appropriate operator Π (to be used in
eq. (IV.23)) is no longer valid, since the properties (IV.17) and (IV.21) hold only if
the underlying graph is connected. Notice that a similar difficulty already appeared
when dealing with G-simple graphs Gc in the previous subsection. There, it was
overcome by introducing composite links which eventually allowed us to remove the
insertions of Gc. Unfortunately, no such device presents itself for non G-simple Gc’s,
and constructing the “good” projector Π in this case seems to be quite a difficult
problem, which we leave unsolved here.

Of course, the projector Πc associated with the chain Cc already provides us with
a large class of solutions, but certainly not all the solutions.

VI. Conclusions

We have investigated the extent to which it is possible to reproduce a given set of joint
probability distributions σα(x1, x2, . . . , xN ) with xi = qi or pi, in arbitrary number n
and with arbitrary position-momentum assignments of the xi’s, as marginals of some
probability density ρ(−→q ,−→p ) in 2N -dimensional phase space. We have been able to
give a complete characterization of those sets which can always be reproduced by a
ρ(−→q ,−→p ) (admissible sets), irrespective of the functional form of the σα’s provided
they are compatible, and both for quantum probability distributions σα and for more
general (classical) ones. This has been achieved by introducing a specific, powerful
diagrammatic method and by relying on previous results [3]-[4] obtained in the case
N = 2 by means of Bell-like inequalities in phase space.

When both classical and quantum sets {σα}α=1,...,n are admissible, we have con-
structed the general solution ρ(−→q ,−→p ) of the problem. When only quantum sets are
admissible, we have the explicit expression of a large class of solutions, which how-
ever is not exhaustive. Concerning the dynamical aspect which is completely ignored
in this paper, our results in the quantum case motivate the construction of realistic
quantum mechanics reproducing (N + 1) marginals at all times t and thus consider-
ably improving on the de Broglie-Bohm mechanics [7], which reproduces only one σα

(the position probability distribution σ(−→q , t)).

On the other hand, all cases of non admissibility have been identified. For quantum
σα’s again, this may be viewed as a general contextuality theorem of the Gleason-
Kochen-Specker type [8], which also extends a previous result of this type due to
Martin and Roy [9]. At the same time, this provides a proof of a long-standing
conjecture, the “(N + 1) marginal theorem”.

From the mathematical standpoint, the parts of our main theorem (Theorem 1)
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pertaining to the quantum case are essentially new statements concerning multi-
dimensional Fourier transforms in L2(R2N , dNq dNp). These statements vastly extend
the results of Cohen and Zaparovanny [6] for two non-intersecting marginals to the
case of N +1 marginals containing overlapping variables. Thus, they can be expected
to open new applications in classical signal and image processing [10]. From the
physical point of view, our results completely settle, at a formal level, the question
of “maximal reality” raised and already investigated in special cases [1]-[4]. Their
possible relevance for related fundamental problems of quantum theory (in particular
for helping towards a clarification of the still controversial problem of measurement)
remains to be explored.
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Appendix A. Proof of Lemma 2

A. a) Commutation relation (IV.14)

Consider two contiguous vertices Vα and Vβ of G connected by a link li with index
i, and denote by σα(xi,X, T ) and σβ(x′i,X, T ) the corresponding distributions of
the chain Cn, where X = {x1, . . . , xi−1, xi+1, . . . , xn−1}. By removing the link li,
the proper tree graph G is broken in two connected components Gα and Gβ : G =
Gα∪li∪Gβ. To this splitting clearly corresponds a partition {Xα,Xβ} of the variables
X such that, among X and their conjugate X ′, all the variables {Xα,X

′
α,Xβ} and

only them appear in the vertices of Gα, whereas all the variables {Xα,Xβ ,X
′
β} and

only them appear in the vertices of Gβ. In parallel, the particular solution ρ0 given
in eq. (IV.3) factorizes as

ρ0 =
ρα ρβ

σαβ
ζ , (A.1)

where the function ρα (the “ρ0/ζ” of the subchain of Cn of type Gα) depends only on
(xi,Xα,X

′
α,Xβ), the function ρβ depends only on (x′i,Xα,Xβ ,X

′
β), and

σαβ(X,T ) =

∫
dxi σα(xi,X, T ) =

∫
dx′i σβ(x′i,X, T ) .

The measures dµα and dµβ as defined by eq. (IV.8) now take the form :




dµα =
ρα
σα

dX ′
α

1
σαβ

ρβ dX
′
β dx

′
i ζ dT

′ ,

dµβ = ρα dX
′
α

1
σαβ

ρβ
σβ

dX ′
β dxi ζ dT

′ .
(A.2)

Hence, for any g(−→q ,−→p ) ∈ L1(R2N , ρ0 d
Nq dNp) :

PαPβ g =
1

σαβ

∫
dx′i

∫
dX ′

α

ρα

σα

∫
dX ′

β ρβ

∫
dT ′ ζ (Pβ g) .

The integrations over X ′
α, X ′

β and T ′ can be performed explicitly since Pβ g does not
depend on these variables. Noticing that

∫
dX ′

α ρα = σα ,

∫
dX ′

β ρβ = σβ , (A.3)

and taking account of eq. (IV.4), we get

PαPβ g =
1

σαβ

∫
dx′i σβ (Pβ g) , (A.4)

=
1

σαβ

∫
dx′i σβ

1

σαβ

∫
dxi dX

′
α dX

′
β dT

′ ρα
ρβ

σβ

ζ g . (A.5)

Since σβ does not depend on xi, X
′
α and X ′

β, the factors σβ and 1/σβ in eq. (A.5)
cancel each other. This gives

PαPβ g =
1

(σαβ)2

∫
dxi dx

′
i dX

′
α dX

′
β dT

′ ρα ρβ ζ g . (A.6)

The r.h.s. of this equation is symmetric in α↔ β, which establishes eq. (IV.14).
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A. b) Relation (IV.15)

Let Vα, Vβ and Vγ be now three vertices of G such that Vα belongs to the path con-
necting Vγ to Vβ and is contiguous to Vβ. Consider again the connected subgraphs Gα

and Gβ defined in A.a) above, together with the partition {Xα,Xβ} of the variables
X, and distinguish in Gα the linear subgraph Gαγ made of the vertices Vα, Vγ and
the path connecting them. Denote by Iα1 the set of indices of the links of Gαγ and
by Iα2 the set of indices of the remaining links in Gα. To this splitting corresponds a
further partition {Xα1 ,Xα2} of the variables Xα, as indicated in Fig. 9 :

xi,X
′

α1
,Xα2 ,Xβ ,T xi,Xα1 ,Xα2 ,Xβ ,T x′

i
,Xα1 ,Xα2 ,Xβ ,T
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Iα1 i

Vγ Vα Vβ

Gαγ li

Figure 9: The path between Vγ and Vβ in G.

With a factorization of the measure dµγ analogous to those of eq. (A.2), we can
write

PγPαPβ g =

∫
dXα1 dX

′
α2
dX ′

β dx
′
i dT

′ ρα

σγ

1

σαβ

ρβ ζ (PαPβ g) . (A.7)

Here, we can perform explicitly the integrations over x′i, X
′
β , X ′

α2
and T ′, for PαPβ g

does not depend on these variables. First :

∫
dx′i dX

′
β ρβ =

∫
dx′i σβ = σαβ . (A.8)

The left equality in eq. (A.8) results, as in eq. (A.3), from the “peeling process” (de-
scribed in section IV.A) corresponding to the reduction of the graph Gβ to the vertex
Vβ. Similarly, the (partial) peeling process corresponding to the reduction Gα → Gαγ

yields ∫
dX ′

α2
ρα = ραγ , (A.9)

where ραγ is the “ρ0/ζ” of the subchain of type Gαγ . Thanks to eqs. (A.8), (A.9) and
(IV.7), equation (A.7) boils down to

PγPαPβ g =

∫
dXα1

ραγ

σγ
(Pα Pβ g)

or, by inserting the expression (A.4) of PαPβg :

PγPαPβ g =

∫
dXα1

ραγ

σγ

∫
dx′i

σβ

σαβ
(Pβ g) . (A.10)

On the other hand :

PγPβ g =

∫
dXα1 dX

′
α2
dX ′

β dx
′
i dT

′ ρ0

σγ
ζ (Pβ g) , (A.11)

where the integrations over X ′
β, X ′

α2
and T ′ can be performed explicitly since Pβ g

does not depend on these variables. The integration over X ′
β first produces, through
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r=2

the partial peeling process corresponding to G→ (Gα ∪ li ∪ Vβ) :
∫
dX ′

β ρ0 = ρα
1

σαβ
σβ . (A.12)

Then eqs. (A.9) and (IV.4) are used again for the integrations over X ′
α2

and T ′ re-
spectively. Altogether, this reduces the expression (A.11) to the r.h.s. of eq. (A.10).
Therefore PγPαPβ g = PγPβ g, which establishes eq. (IV.15) in the case where Vα is
contiguous to Vβ.

The proof of eq. (IV.15) in the case where Vα is contiguous to Vγ is completely
similar.

q.e.d.

Appendix B. Proof of Lemma 3

We construct a particular k-chain of compatible distributions τj and we prove that
there is no positive phase space density ρ reproducing these distributions as marginals.
We take τj of the form:

τj(q1, . . . , qj−1, pj , qj+1, . . . , qk) = γj(pj) τ j(q1, . . . , qj−1, qj+1, . . . , qk) (j = 1, . . . , k)

where {τ1, . . . , τ k} is a k-chain of compatible, reduced distributions and the γj(pj)’s
are arbitrary, normalized one variable distributions.

Let us look for a phase space density ρ reproducing the τj’s. The τ j’s are given
in terms of the configuration space density

ρ(q1, . . . , qk) ≡
∫
dkp ρ(q1, . . . , qk, p1, . . . , pk) (B.1)

as

τ j(q1, . . . , qj−1, qj+1, . . . , qk) =

∫
dqj ρ(q1, . . . , qk) . (B.2)

We now choose the τ j’s as follows:





τ1(q2, . . . , qk) =
k∏

r=2

Tr −
k∏

r=2

Ur ,

τ j(q1, . . . , qj−1, qj+1, . . . , qk) =
k∏

r=1
r 6=j

Tr +
k∏

r=1
r 6=j

Ur , (j = 2, . . . , k) ,
(B.3)

where 



Tr = 1
2 [δ(qr − 1) + δ(qr + 1)] ,

Ur = 1
2 [δ(qr − 1) − δ(qr + 1)] ,

(r = 1, . . . , k) .

The τ j’s, which appear as sums of 2k−2 monomials of the form

1

2k−2

k∏

r=1
r 6=j

δ(qr − εr) εr = ±1 ,
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are obviously positive and normalized. Furthermore:

∫
dqi τ j(q1, . . . , qj−1, qj+1, . . . , qk) =

k∏

r=1
r 6=i,j

Tr (i 6= j) .

The r.h.s. of this equation is symmetric in i ↔ j, which entails the compatibility of
the τ j’s.

Clearly, the most general positive ρ obeying equations (B.2) is the sum of 2k terms
proportional to

∏k
r=1 δ(qr − εr). Equivalently, ρ can be written as a homogeneous

polynomial P ({Tr}, {Ur}) of degree k which, for each index r, is linear in Tr and Ur.
Then, since

∫
dqjTj = 1 and

∫
dqjUj = 0, we can express

∫
dqj ρ as ∂P/∂Tj , so that

eqs. (B.2) and (B.3) yield:





∂P

∂T1
=

k∏
Tr −

k∏
Ur ,

∂P

∂Tj
=

k∏

r=1
r 6=j

Tr +
k∏

r=1
r 6=j

Ur , (j = 2, . . . , k).

The general solution of these equations is:

P =
k∏

r=1

Tr − T1

k∏
Ur +

k∑

j=2

Tj

k∏

r=1
r 6=j

Ur + λ
k∏

r=1

Ur , (B.4)

where λ is an arbitrary real parameter.

Now, whatever the value of λ is, P , and thus ρ, are not positive. To show this, it
is sufficient to look at the coefficients of the two monomials

δ(q1 + 1)
k∏

r=2

δ(qr − 1) and δ(q1 − 1) δ(q2 + 1) δ(q3 + 1)
k∏

r=4

δ(qr − 1)

which appear in eq. (B.4) if k ≥ 3. One finds −(k − 1 + λ)/2k and (k − 5 + λ)/2k

respectively, the sum of which is independent of λ and negative.

q.e.d.
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